1
|
Avşar G, Pir P. An integrated study to decipher immunosuppressive cellular communication in the PDAC environment. NPJ Syst Biol Appl 2023; 9:56. [PMID: 37945567 PMCID: PMC10636193 DOI: 10.1038/s41540-023-00320-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one the most aggressive cancers and characterized by a highly rigid and immunosuppressive tumor microenvironment (TME). The extensive cellular interactions are known to play key roles in the immune evasion, chemoresistance, and poor prognosis. Here, we used the spatial transcriptomics, scRNA-seq, and bulk RNA-seq datasets to enhance the insights obtained from each to decipher the cellular communication in the TME. The complex crosstalk in PDAC samples was revealed by the single-cell and spatial transcriptomics profiles of the samples. We show that tumor-associated macrophages (TAMs) are the central cell types in the regulation of microenvironment in PDAC. They colocalize with the cancer cells and tumor-suppressor immune cells and take roles to provide an immunosuppressive environment. LGALS9 gene which is upregulated in PDAC tumor samples in comparison to healthy samples was also found to be upregulated in TAMs compared to tumor-suppressor immune cells in cancer samples. Additionally, LGALS9 was found to be the primary component in the crosstalk between TAMs and the other cells. The widespread expression of P4HB gene and its interaction with LGALS9 was also notable. Our findings point to a profound role of TAMs via LGALS9 and its interaction with P4HB that should be considered for further elucidation as target in the combinatory immunotherapies for PDAC.
Collapse
Affiliation(s)
- Gülben Avşar
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
- Turkish Academy of Sciences, Ankara, Turkey.
| | - Pınar Pir
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
2
|
Yang M, Su Y, Xu K, Zheng H, Yuan Q, Cai Y, Aihaiti Y, Xu P. Ferroptosis-related lncRNAs guiding osteosarcoma prognosis and immune microenvironment. J Orthop Surg Res 2023; 18:787. [PMID: 37858131 PMCID: PMC10588205 DOI: 10.1186/s13018-023-04286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
OBJECTIVE To investigate the ferroptosis-related long non-coding RNAs (FRLncs) implicated in influencing the prognostic and immune microenvironment in osteosarcoma (OS), and to establish a foundational framework for informing clinical decision making pertaining to OS management. METHODS Transcriptome data and clinical data pertaining to 86 cases of OS, the GSE19276, GSE16088 and GSE33382 datasets, and a list of ferroptosis-related genes (FRGs) were used to establish a risk prognostic model through comprehensive analysis. The identification of OS-related differentially expressed FRGs was achieved through an integrated analysis encompassing the aforementioned 86 OS transcriptome data and the GSE19276, GSE16088 and GSE33382 datasets. Concurrently, OS-related FRLncs were ascertained via co-expression analysis. To establish a risk prognostic model for OS, Univariate Cox regression analysis and Lasso Cox regression analysis were employed. Subsequently, a comprehensive evaluation was conducted, comprising risk curve analysis, survival analysis, receiver operating characteristic curve analysis and independent prognosis analysis. Model validation with distinct clinical subgroups was performed to assess the applicability of the risk prognostic model to diverse patient categories. Moreover, single sample gene set enrichment analysis (ssGSEA) was conducted to investigate variations in immune cell populations and immune functions within the context of the risk prognostic model. Furthermore, an analysis of immune checkpoint differentials yielded insights into immune checkpoint-related genes linked to OS prognosis. Finally, the risk prognosis model was verified by dividing the samples into train group and test group. RESULTS We identified a set of seven FRLncs that exhibit potential as prognostic markers and influence factors of the immune microenvironment in the context of OS. This ensemble encompasses three high-risk FRLncs, denoted as APTR, AC105914.2 and AL139246.5, alongside four low-risk FRLncs, designated as DSCR8, LOH12CR2, AC027307.2 and AC025048.2. Furthermore, our analysis revealed notable down-regulation in the high-risk group across four distinct immune cell types, namely neutrophils, natural killer cells, plasmacytoid dendritic cells and tumor-infiltrating lymphocytes. This down-regulation was also reflected in four key immune functions, antigen-presenting cell (APC)-co-stimulation, checkpoint, cytolytic activity and T cell co-inhibition. Additionally, we identified seven immune checkpoint-associated genes with significant implications for OS prognosis, including CD200R1, HAVCR2, LGALS9, CD27, LAIR1, LAG3 and TNFSF4. CONCLUSION The findings of this study have identified FRLncs capable of influencing OS prognosis and immune microenvironment, as well as immune checkpoint-related genes that are linked to OS prognosis. These discoveries establish a substantive foundation for further investigations into OS survival and offer valuable insights for informing clinical decision making in this context.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yani Su
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Haishi Zheng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Qiling Yuan
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yongsong Cai
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
3
|
Wang J, Wu X, Xu J, Liao Y, Deng M, Wang X, Li J. Differential expression and bioinformatics analysis of exosome circRNAs in pancreatic ductal adenocarcinoma. Transl Oncol 2023; 33:101686. [PMID: 37182508 DOI: 10.1016/j.tranon.2023.101686] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignant tumor with an unfavorable prognosis. Increasing evidence indicated circRNAs were associated with the pathogenesis and progression of tumors, but data on the expression of serum exosomal circRNAs in PDAC are scarce. This study attempted to explore the prognostic value and function of serum exosomes in PDAC patients. METHODS Microarray-based circRNA expression was determined in PDAC and paired with normal serum samples, and the intersection of differentially expressed circRNAs (DECs) in serum exosomal samples and GSE79634 tissue samples was conducted. A specific CircRNA database was applied to investigate DECs binding miRNAs. Target genes were predicted using the R package multiMiR. Cox regression analyses were applied for constructing a prognostic model. The immunological characteristics analysis was carried out through the TIMER, QUANTISEQ, XCELL, EPIC, and ssGSEA algorithms. RESULTS 15 DECs were finally identified, and a circRNA-miRNA-mRNA network was established. A prognostic risk model was developed to categorize patients according to the risk scores. Furthermore, the association between risk score and immune checkpoint genes including CD80, TNFSF9, CD276, CD274, LGALS9, and CD44 were significantly elevated in the high-risk group, while ICOSLG and ADORA2A were upregulated in the low-risk group. CONCLUSIONS Our results may provide new clues for the prognosis and treatment of PDAC.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 41000, China
| | - Xing Wu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 41000, China
| | - Jiahao Xu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 41000, China
| | - Yangjie Liao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 41000, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 41000, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 41000, China
| | - Jingbo Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 41000, China.
| |
Collapse
|
4
|
Lee JE, Lee P, Yoon YC, Han BS, Ko S, Park MS, Lee YJ, Kim SE, Cho YJ, Lim JH, Ryu JK, Shim S, Kim DK, Jung KH, Hong SS. Vactosertib, TGF-β receptor I inhibitor, augments the sensitization of the anti-cancer activity of gemcitabine in pancreatic cancer. Biomed Pharmacother 2023; 162:114716. [PMID: 37086509 DOI: 10.1016/j.biopha.2023.114716] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exhibits a pronounced extracellular matrix (ECM)-rich response, which is produced by an excessive amount of transforming growth factor β (TGF-β), resulting in tumor progression and metastasis. In addition, TGF-β signaling contributes to rapidly acquired resistance and incomplete response to gemcitabine. Recently, selective inhibitors of the TGF-β signaling pathway have shown promise in PDAC treatment, particularly as an option for augmenting responses to chemotherapy. Here, we investigated the synergistic anticancer effects of a small-molecule TGF-β receptor I kinase inhibitor (vactosertib/EW-7197) in the presence of gemcitabine, and its mechanism of action in pancreatic cancer. Vactosertib sensitized pancreatic cancer cells to gemcitabine by synergistically inhibiting their viability. Importantly, the combination of vactosertib and gemcitabine significantly attenuated the expression of major ECM components, including collagens, fibronectin, and α-SMA, in pancreatic cancer compared with gemcitabine alone. This resulted in potent induction of mitochondrial-mediated apoptosis, gemcitabine-mediated cytotoxicity, and inhibition of tumor ECM by vactosertib. Additionally, the combination decreased metastasis through inhibition of migration and invasion, and exhibited synergistic anti-cancer activity by inhibiting the TGF-β/Smad2 pathway in pancreatic cancer cells. Furthermore, co-treatment significantly suppressed tumor growth in orthotopic models. Therefore, our findings demonstrate that vactosertib synergistically increased the antitumor activity of gemcitabine via inhibition of ECM component production by inhibiting the TGF-β/Smad2 signaling pathway. This suggests that the combination of vactosertib and gemcitabine may be a potential treatment option for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Pureunchowon Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Young-Chan Yoon
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Beom Seok Han
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Soyeon Ko
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Min Seok Park
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Yun Ji Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Sang Eun Kim
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Ye Jin Cho
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Joo Han Lim
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Ji-Kan Ryu
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Soyeon Shim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Dae-Kee Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea.
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea.
| |
Collapse
|
5
|
Wang Y, Qin D, Gao Y, Zhang Y, Liu Y, Huang L. Identification of therapeutic targets for osteosarcoma by integrating single-cell RNA sequencing and network pharmacology. Front Pharmacol 2023; 13:1098800. [PMID: 36686663 PMCID: PMC9853455 DOI: 10.3389/fphar.2022.1098800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Osteosarcoma (OS) is a common primary tumor with extensive heterogeneity. In this study, we used single-cell RNA sequencing (scRNA-seq) and network pharmacology to analyze effective targets for Osteosarcoma treatment. Methods: The cell heterogeneity of the Osteosarcoma single-cell dataset GSE162454 was analyzed using the Seurat package. The bulk-RNA transcriptome dataset GSE36001 was downloaded and analyzed using the CIBERSORT algorithm. The key targets for OS therapy were determined using Pearson's correlation analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on key targets. The DeepDR algorithm was used to predict potential drugs for Osteosarcoma treatment. Molecular docking analysis was performed to verify the binding abilities of the predicted drugs and key targets. qRT-PCR assay was used to detect the expression of key targets in osteoblasts and OS cells. Results: A total of 21 cell clusters were obtained based on the GSE162454 dataset, which were labeled as eight cell types by marker gene tagging. Four cell types (B cells, cancer-associated fibroblasts (CAFs), endothelial cells, and plasmocytes) were identified in Osteosarcoma and normal tissues, based on differences in cell abundance. In total, 17 key targets were identified by Pearson's correlation analysis. GO and KEGG analysis showed that these 17 genes were associated with immune regulation pathways. Molecular docking analysis showed that RUNX2, OMD, and CD4 all bound well to vincristine, dexamethasone, and vinblastine. The expression of CD4, OMD, and JUN was decreased in Osteosarcoma cells compared with osteoblasts, whereas RUNX2 and COL9A3 expression was increased. Conclusion: We identified five key targets (CD4, RUNX2, OMD, COL9A3, and JUN) that are associated with Osteosarcoma progression. Vincristine, dexamethasone, and vinblastine may form a promising drug-target pair with RUNX2, OMD, and CD4 for Osteosarcoma treatment.
Collapse
Affiliation(s)
- Yan Wang
- Science Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Di Qin
- Department of Geriatrics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yiyao Gao
- Science Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yunxin Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yao Liu
- Department of Geriatrics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lihong Huang
- Department of Geriatrics, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Lihong Huang,
| |
Collapse
|
6
|
PD-L1 Activity Is Associated with Partial EMT and Metabolic Reprogramming in Carcinomas. Curr Oncol 2022; 29:8285-8301. [PMID: 36354714 PMCID: PMC9688938 DOI: 10.3390/curroncol29110654] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Immune evasion and metabolic reprogramming are hallmarks of cancer progression often associated with a poor prognosis and frequently present significant challenges for cancer therapies. Recent studies have highlighted the dynamic interaction between immunosuppression and the dysregulation of energy metabolism in modulating the tumor microenvironment to promote cancer aggressiveness. However, a pan-cancer association among these two hallmarks, and a potent common driver for them-epithelial-mesenchymal transition (EMT)-remains to be done. This meta-analysis across 184 publicly available transcriptomic datasets as well as The Cancer Genome Atlas (TCGA) data reveals that an enhanced PD-L1 activity signature along with other immune checkpoint markers correlate positively with a partial EMT and an elevated glycolysis signature but a reduced OXPHOS signature in many carcinomas. These trends were also recapitulated in single-cell, RNA-seq, time-course EMT induction data across cell lines. Furthermore, across multiple cancer types, concurrent enrichment of glycolysis and PD-L1 results in worse outcomes in terms of overall survival as compared to enrichment for only PD-L1 activity or expression. These results highlight potential functional synergy among these interconnected axes of cellular plasticity in enabling metastasis and multi-drug resistance in cancer.
Collapse
|
7
|
Lu L, Wang H, Fang J, Zheng J, Liu B, Xia L, Li D. Overexpression of OAS1 Is Correlated With Poor Prognosis in Pancreatic Cancer. Front Oncol 2022; 12:944194. [PMID: 35898870 PMCID: PMC9309611 DOI: 10.3389/fonc.2022.944194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background OAS1 expression in pancreatic cancer has been confirmed by many studies. However, the prognostic value and mechanism of OAS1 in pancreatic cancer have not been analyzed. Methods The RNA-seq in pancreatic cancer were obtained by UCSC XENA and GEO database. In addition, immunohistochemical validation and analysis were performed using samples from the 900th hospital. The prognosis of OAS1 was evaluated by timeROC package, Cox regression analysis, and Kaplan-Meier survival curves. Then, the main functional and biological signaling pathways enrichment and its relationship with the abundance of immune cells were analyzed by bioinformatics. Results OAS1 was highly expressed in pancreatic cancer compared with normal pancreatic tissue. High OAS1 expression was associated with poor overall survival (p<0.05). The OAS1 was significantly correlated to TNM staging (p=0.014). The timeROC analysis showed that the AUC of OAS1 was 0.734 for 3-year OS. In addition, the expression of OAS1 was significantly correlated with the abundance of a variety of immune markers. GSEA showed that enhanced signaling pathways associated with OAS1 include Apoptosis, Notch signaling pathway, and P53 signaling pathway. Conclusions OAS1 is a valuable prognostic factor in pancreatic cancer. Moreover, it may be a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Lingling Lu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Huaxiang Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, China
| | - Jian Fang
- Department of Hepatobiliary Medicine, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiaolong Zheng
- Department of Hepatobiliary Disease, The 900th Hospital of the People’s Liberation Army Joint Logistics Support Force, Fuzhou, China
| | - Bang Liu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lei Xia
- Department of Hepatobiliary Medicine, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dongliang Li
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary Disease, The 900th Hospital of the People’s Liberation Army Joint Logistics Support Force, Fuzhou, China
- *Correspondence: Dongliang Li,
| |
Collapse
|
8
|
Shen K, Liu T. Comprehensive Analysis of the Prognostic Value and Immune Function of Immune Checkpoints in Stomach Adenocarcinoma. Int J Gen Med 2021; 14:5807-5824. [PMID: 34557032 PMCID: PMC8455902 DOI: 10.2147/ijgm.s325467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Background Stomach adenocarcinoma (STAD) is one of the most prevalent malignances and ranks fifth in incidence and third in the cancer-related deaths among all malignances. The prognosis of STAD is poor. Immunotherapy based on immune checkpoint blockade is ever-increasingly suggested as the most promising therapy strategy for STAD. However, the prognosis and therapy value of immune checkpoints in STAD is far from clarified. Methods In our study, bioinformatics methods were performed to explore the expression and prognosis value of immune checkpoints in STAD and their association with immune infiltration. qRT-PCR was performed to verify our result. Results Most of the immune checkpoints were upregulated in STAD. There were lots of genetic mutations among immune checkpoints in STAD, including missense_mutation, frame_shift_del et al. Interestingly, most of immune checkpoints were associated with drug sensitivity and drug resistance. Moreover, CD274, PVR, LGALS9, ICOSLG and CD70 were associated with the overall survival, post progression survival and first progression in STAD. The univariate and multivariate analysis revealed that CD70, ICOSLG, age, pTNM stage, and radiation therapy were independent factors affecting the prognosis of STAD patients. The expression of ICOSLG and CD70 was correlated with immune cells as well as immune biomarkers, including CD8+ T cells, CD4+ T cells, macrophage, neutrophils and dendritic cells. Conclusion All in all, our study performed a comprehensive analysis of the prognostic value and immune function of immune checkpoints in STAD, and our result suggested that immune checkpoint ICOSLG and CD70 serve as prognostic biomarkers and associate with immune infiltration in STAD.
Collapse
Affiliation(s)
- Kai Shen
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Tong Liu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
9
|
Shan L, Hou X. Circular RNA hsa_circ_0026552 inhibits the proliferation, migration and invasion of trophoblast cells via the miR‑331‑3p/TGF‑βR1 axis in pre‑eclampsia. Mol Med Rep 2021; 24:798. [PMID: 34523694 PMCID: PMC8456345 DOI: 10.3892/mmr.2021.12438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/24/2021] [Indexed: 12/01/2022] Open
Abstract
Globally, pre-eclampsia (PE) is a gestational disorder that causes increased morbidity of the fetus and mortality induced by pregnancy. Despite various studies, the understanding of the causes or mechanism of the development of PE remains elusive. Thus, the present study aimed to investigate the role of circular (circ)RNA hsa_circ_0026552 (hsa_circ_0026552) in the development of PE and its mechanism of regulation. hsa_circ_0026552 differential expression in PE tissue data and clinical samples were analyzed and it was observed that hsa_circ_0026552 is highly upregulated in PE samples. Furthermore, miR-331-3p was detected as an hsa_circ_0026552 target miRNA and TGF-βR1 gene as a target of miR-331-3p. These results were confirmed using various assays, including dual-luciferase reporter, reverse transcription-quantitative PCR and RNA pull-down assay. It was observed that miR-331-3p expression was negatively correlated to hsa_circ_0026552 relative expression, while TGF-βR1 expression was positively correlated to hsa_circ_0026552 expression evaluated by Pearson's correlation test. The functional experiments, including Cell Counting Kit-8, colony formation and Transwell assay, showed that silencing hsa_circ_0026552 could significantly strengthen the proliferation, migration and invasion of the trophoblastic HTR-8/SVneo cells, but the subsequent overexpression of hsa_circ_0026552 reversed this. Mechanistically, it was concluded that hsa_circ_0026552 acts as a miR-331-3p sponge to upregulate TGF-βR1 expression in trophoblasts and is involved significantly in PE development and progression in pregnant women. The circRNA hsa_circ_0026552 could be a novel therapeutic target and prognostic biomarker for PE.
Collapse
Affiliation(s)
- Li Shan
- Department of Obstetrics, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiaofei Hou
- Department of Prenatal Screening Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
10
|
Guo L, Li B, Lu Z, Liang H, Yang H, Chen Y, Zhu S, Zeng M, Wei Y, Liu T, Jiang T, Xuan M, Tang H. CCDC137 Is a Prognostic Biomarker and Correlates With Immunosuppressive Tumor Microenvironment Based on Pan-Cancer Analysis. Front Mol Biosci 2021; 8:674863. [PMID: 34055889 PMCID: PMC8155610 DOI: 10.3389/fmolb.2021.674863] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Background The coiled-coil domain containing (CCDC) family proteins have important biological functions in various diseases. However, the coiled-coil domain containing 137 (CCDC137) was rarely studied. We aim to investigate the role of CCDC137 in pan-cancer. Methods CCDC137 expression was evaluated in RNA sequence expression profilers of pan-cancer and normal tissues from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. The influence of CCDC137 on the prognosis of tumor patients was analyzed using clinical survival data from TCGA. Function and pathway enrichment analysis was performed to explore the role of CCDC137 using the R package “clusterProfiler.” We further analyzed the correlation of immune cell infiltration score of TCGA samples and CCDC137 expression using TIMER2 online database. Results CCDC137 was over-expressed and associated with worse survival status in various tumor types. CCDC137 expression was positively correlated with tumor associated macrophages (TAMs) and cancer associated fibroblasts (CAFs) in Lower Grade Glioma (LGG) and Uveal Melanoma (UVM). In addition, high CCDC137 expression was positively correlated with most immunosuppressive genes, including TGFB1, PD-L1, and IL10RB in LGG and UVM. Conclusions Our study identified CCDC137 as an oncogene and predictor of worse survival in most tumor types. High CCDC137 may contribute to elevated infiltration of TAMs and CAFs and be associated with tumor immunosuppressive status.
Collapse
Affiliation(s)
- Lihao Guo
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Boxin Li
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zhaohong Lu
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hui Yang
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shiheng Zhu
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Minjuan Zeng
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yixian Wei
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Tonggong Liu
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Tikeng Jiang
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Mei Xuan
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
11
|
Sohrabi E, Rezaie E, Heiat M, Sefidi-Heris Y. An Integrated Data Analysis of mRNA, miRNA and Signaling Pathways in Pancreatic Cancer. Biochem Genet 2021; 59:1326-1358. [PMID: 33813720 DOI: 10.1007/s10528-021-10062-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
Although many genes and miRNAs have been reported for various cancers, pancreatic cancer's specific genes or miRNAs have not been studied precisely yet. Therefore, we have analyzed the gene and miRNA expression profile of pancreatic cancer data in the gene expression omnibus (GEO) database. The microarray-derived miRNAs and mRNAs were annotated by gene ontology (GO) and signaling pathway analysis. We also recognized mRNAs that were targeted by miRNA through the mirDIP database. An integrated analysis of the microarray revealed that only 6 out of 43 common miRNAs had significant differences in their expression profiles between the tumor and normal groups (P value < 0.05 and |log Fold Changes (logFC)|> 1). The hsa-miR-210 had upregulation, whereas hsa-miR-375, hsa-miR-216a, hsa-miR-217, hsa-miR-216b and hsa-miR-634 had downregulation in pancreatic cancer (PC). The analysis results also revealed 109 common mRNAs by microarray and mirDIP 4.1 databases. Pathway analysis showed that amoebiasis, axon guidance, PI3K-Akt signaling pathway, absorption and focal adhesion, adherens junction, platelet activation, protein digestion, human papillomavirus infection, extracellular matrix (ECM) receptor interaction, and riboflavin metabolism played important roles in pancreatic cancer. GO analysis revealed the significant enrichment in the three terms of biological process, cellular component, and molecular function, which were identified as the most important processes associated strongly with pancreatic cancer. In conclusion, DTL, CDH11, COL5A1, ITGA2, KIF14, SMC4, VCAN, hsa-mir-210, hsa-mir-217, hsa-mir-216a, hsa-mir-216b, hsa-mir-375 and hsa-mir-634 can be reported as the novel diagnostic or even therapeutic markers for the future studies. Also, the hsa-mir-107 and hsa-mir-125a-5p with COL5A1, CDH11 and TGFBR1 genes can be introduced as major miRNA and genes on the miRNA-drug-mRNA network. The new regulatory network created in our study could give a deeper knowledge of the pancreatic cancer.
Collapse
Affiliation(s)
- Ehsan Sohrabi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Ehsan Rezaie
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, P.O. Box 19395-5487, Tehran, Iran.
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Yousef Sefidi-Heris
- Division of Molecular Cell Biology, Department of Biology, Shiraz University, Shiraz, Iran
| |
Collapse
|