1
|
Xu X, Li M, Xu W, Wang M, Wu Y, Cheng L, Li J, Qin Y, Liu S, Yang G, Sun K, Zhang P. A Combination of Biocatalysis and Fenton-Like Reaction Induced OH • Burst for Cascade Amplification of Cancer Chemodynamic Therapy. Mol Pharm 2024; 21:3434-3446. [PMID: 38781419 DOI: 10.1021/acs.molpharmaceut.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Chemodynamic therapy (CDT) is a novel antitumor strategy that employs Fenton or Fenton-like reactions to generate highly toxic hydroxyl radical (OH•) from hydrogen peroxide (H2O2) for inducing tumor cell death. However, the antitumor efficacy of the CDT strategy is harshly limited by the redox homeostasis of tumor cells; especially the OH • is easily scavenged by glutathione (GSH) and the intracellular H2O2 level is insufficient in the tumor cells. Herein, we propose the Mn2+-menadione (also known as vitamin K3, MK3) cascade biocatalysis strategy to disrupt the redox homeostasis of tumor cells and induce a OH• storm, resulting in enhanced CDT effect. A nanoliposome encapsulating Mn-MK3 (Mn-MK3@LP) was prepared for the treatment of hepatic tumors in this study. After Mn-MK3@LPs were taken up by tumor cells, menadione could facilitate the production of intracellular H2O2 via redox cycling, and further the cytotoxic OH • burst was induced by Mn2+-mediated Fenton-like reaction. Moreover, high-valent manganese ions were reduced by GSH and the depletion of GSH further disrupted the redox homeostasis of tumor cells, thus achieving synergistically enhanced CDT. Overall, both cellular and animal experiments confirmed that the Mn-MK3@LP cascade biocatalysis nanoliposome exhibited excellent biosafety and tumor suppression efficacy. This study may provide deep insights for developing novel CDT-based strategies for tumor therapy.
Collapse
Affiliation(s)
- Xiaopeng Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Minghui Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Wenjia Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Min Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Yan Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Liying Cheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Jinyang Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Yang Qin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Sha Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Gangqiang Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| |
Collapse
|
2
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
3
|
Inacio KK, Pessoa ADS, Tokuhara CK, Pagnan AL, Sanches MLR, Fakhoury VS, Oliveira GSND, Oliveira FAD, Ximenes VF, Oliveira RCD. Menadione and protocatechuic acid: A drug combination with antitumor effects in murine osteosarcoma cells. Arch Biochem Biophys 2024; 751:109840. [PMID: 38040223 DOI: 10.1016/j.abb.2023.109840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that has an abnormal expression of oncogenesis and tumor suppressors and causes dysregulation of various signaling pathways. Thus, novel therapeutic strategies for OS are needed to overcome the resistance of traditional treatments. This study evaluated the cytotoxic and anticancer effects of the association between menadione (MEN) and protocatechuic acid (PCA) in murine OS cells (UMR-106). The concentrations were 3.12 μM of isolated MEN, 500 μM of isolated PCA, and their associations. We performed cell viability assays, morphology modification analysis, cell migration by the wound-healing method, apoptosis by flow cytometry, reactive oxygen species (ROS) production, gene expression of NOX by RT-qPCR, and degradation of MMP-2 and 9 by zymography. Our results showed that the association of MEN+PCA was more effective in OS cells than the compounds alone. The association decreased cell viability, delayed cell migration, and decreased the expression of NOX-2 and ROS. In addition, the MEN+PCA association induced a slight increase in the apoptotic process. In summary, the association can enhance the compound's antitumor effects and establish a higher selectivity for tumor cells, possibly caused by significant mitochondrial damage and antioxidant properties.
Collapse
Affiliation(s)
- Kelly Karina Inacio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Adriano de Souza Pessoa
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Cintia Kazuko Tokuhara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Ana Lígia Pagnan
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Brazil
| | | | | | | | - Flavia Amadeu de Oliveira
- Sanford Children's Health Research Center. Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, UNESP, São Paulo State University, Bauru, São Paulo, Brazil
| | | |
Collapse
|
4
|
Sumiyoshi A, Shibata S, Lazarova D, Zhelev Z, Aoki I, Bakalova R. Tolerable treatment of glioblastoma with redox-cycling 'mitocans': a comparative study in vivo. Redox Rep 2023; 28:2220531. [PMID: 37581329 PMCID: PMC10435007 DOI: 10.1080/13510002.2023.2220531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Objectives: The present study describes a pharmacological strategy for the treatment of glioblastoma by redoxcycling 'mitocans' such as quinone/ascorbate combination drugs, based on their tumor-selective redox-modulating effects and tolerance to normal cells and tissues.Methods: Experiments were performed on glioblastoma mice (orthotopic model) treated with coenzyme Q0/ascorbate (Q0/A). The drug was injected intracranially in a single dose. The following parameters were analyzed in vivo using MRI orex vivo using conventional assays: tumor growth, survival, cerebral and tumor perfusion, tumor cell density, tissue redox-state, and expression of tumor-associated NADH oxidase (tNOX).Results: Q0/A markedly suppressed tumor growth and significantly increased survival of glioblastoma mice. This was accompanied by increased oxidative stress in the tumor but not in non-cancerous tissues, increased tumor blood flow, and downregulation of tNOX. The redox-modulating and anticancer effects of Q0/A were more pronounced than those of menadione/ascorbate (M/A) obtained in our previous study. No adverse drug-related side-effects were observed in glioblastoma mice treated with Q0/A.Discussion: Q0/A differentiated cancer cells and tissues, particularly glioblastoma, from normal ones by redox targeting, causing a severe oxidative stress in the tumor but not in non-cancerous tissues. Q0/A had a pronounced anticancer activity and could be considered safe for the organism within certain concentration limits. The results suggest that the rate of tumor resorption and metabolism of toxic residues must be controlled and maintained within tolerable limits to achieve longer survival, especially at intracranial drug administration.
Collapse
Affiliation(s)
- Akira Sumiyoshi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Sayaka Shibata
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Dessislava Lazarova
- Faculty of Medicine, Sofia University, “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Zhivko Zhelev
- Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Rumiana Bakalova
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Faculty of Medicine, Sofia University, “St. Kliment Ohridski”, Sofia, Bulgaria
| |
Collapse
|
5
|
Pal C. Small-molecule redox modulators with anticancer activity: A comprehensive mechanistic update. Free Radic Biol Med 2023; 209:211-227. [PMID: 37898387 DOI: 10.1016/j.freeradbiomed.2023.10.406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The pursuit of effective anticancer therapies has led to a burgeoning interest in the realm of redox modulation. This review provides a comprehensive exploration of the intricate mechanisms by which diverse anticancer molecules leverage redox pathways for therapeutic intervention. Redox modulation, encompassing the fine balance of oxidation-reduction processes within cells, has emerged as a pivotal player in cancer treatment. This review delves into the multifaceted mechanisms of action employed by various anticancer compounds, including small molecules and natural products, to disrupt cancer cell proliferation and survival. Beginning with an examination of the role of redox signaling in cancer development and resistance, the review highlights how aberrant redox dynamics can fuel tumorigenesis. It then meticulously dissects the strategies employed by anticancer agents to induce oxidative stress, perturb redox equilibrium, and trigger apoptosis within cancer cells. Furthermore, the review explores the challenges and potential side effects associated with redox-based treatments, along with the development of novel redox-targeted agents. In summary, this review offers a profound understanding of the dynamic interplay between redox modulation and anticancer molecules, presenting promising avenues to revolutionize cancer therapy and enhance patient outcomes.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
6
|
Sakai N, Kamimura K, Terai S. Repurposable Drugs for Immunotherapy and Strategies to Find Candidate Drugs. Pharmaceutics 2023; 15:2190. [PMID: 37765160 PMCID: PMC10536625 DOI: 10.3390/pharmaceutics15092190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Conventional drug discovery involves significant steps, time, and expenses; therefore, novel methods for drug discovery remain unmet, particularly for patients with intractable diseases. For this purpose, the drug repurposing method has been recently used to search for new therapeutic agents. Repurposed drugs are mostly previously approved drugs, which were carefully tested for their efficacy for other diseases and had their safety for the human body confirmed following careful pre-clinical trials, clinical trials, and post-marketing surveillance. Therefore, using these approved drugs for other diseases that cannot be treated using conventional therapeutic methods could save time and economic costs for testing their clinical applicability. In this review, we have summarized the methods for identifying repurposable drugs focusing on immunotherapy.
Collapse
Affiliation(s)
- Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
- Department of General Medicine, Niigata University School of Medicine, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
| |
Collapse
|
7
|
Ivanova D, Nikolova G, Karamalakova Y, Semkova S, Marutsova V, Yaneva Z. Water-Soluble Alkali Lignin as a Natural Radical Scavenger and Anticancer Alternative. Int J Mol Sci 2023; 24:12705. [PMID: 37628882 PMCID: PMC10454704 DOI: 10.3390/ijms241612705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Several phytochemicals, which display antioxidant activity and inhibit cancer cell phenotypes, could be used for cancer treatment and prevention. Lignin, as a part of plant biomass, is the second most abundant natural biopolymer worldwide, and represents approximately 30% of the total organic carbon content of the biosphere. Historically, lignin-based products have been viewed as waste materials of limited industrial usefulness, but modern technologies highlight the applicability of lignin in a variety of industrial branches, including biomedicine. The aims of our preliminary study were to compare the antioxidant properties of water-soluble alkali lignin solutions, before and after UV-B irradiation, as well as to clarify their effect on colon cancer cell viability (Colon 26), applied at low (tolerable) concentrations. The results showed a high antioxidant capacity of lignin solutions, compared to a water-soluble control antioxidant standard (Trolox) and remarkable radical scavenging activity was observed after their UV-B irradiation. Diminishment of cell viability as well as inhibition of the proliferative activity of the colon cancer cell line with an increase in alkali lignin concentrations were observed. Our results confirmed that, due to its biodegradable and biocompatible nature, lignin could be a potential agent for cancer therapy, especially in nanomedicine as a drug delivery system.
Collapse
Affiliation(s)
- Donika Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Student Campus, 6000 Stara Zagora, Bulgaria;
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 “Armeyska” St., 6000 Stara Zagora, Bulgaria; (G.N.); (Y.K.)
| | - Galina Nikolova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 “Armeyska” St., 6000 Stara Zagora, Bulgaria; (G.N.); (Y.K.)
| | - Yanka Karamalakova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 “Armeyska” St., 6000 Stara Zagora, Bulgaria; (G.N.); (Y.K.)
| | - Severina Semkova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria;
| | - Vania Marutsova
- Department of Internal Diseases, Faculty of Veterinary Medicine, Trakia University, Student Campus, 6000 Stara Zagora, Bulgaria;
| | - Zvezdelina Yaneva
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Student Campus, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
8
|
Bakalova R, Lazarova D, Sumiyoshi A, Shibata S, Zhelev Z, Nikolova B, Semkova S, Vlaykova T, Aoki I, Higashi T. Redox-Cycling "Mitocans" as Effective New Developments in Anticancer Therapy. Int J Mol Sci 2023; 24:ijms24098435. [PMID: 37176145 PMCID: PMC10179378 DOI: 10.3390/ijms24098435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Our study proposes a pharmacological strategy to target cancerous mitochondria via redox-cycling "mitocans" such as quinone/ascorbate (Q/A) redox-pairs, which makes cancer cells fragile and sensitive without adverse effects on normal cells and tissues. Eleven Q/A redox-pairs were tested on cultured cells and cancer-bearing mice. The following parameters were analyzed: cell proliferation/viability, mitochondrial superoxide, steady-state ATP, tissue redox-state, tumor-associated NADH oxidase (tNOX) expression, tumor growth, and survival. Q/A redox-pairs containing unprenylated quinones exhibited strong dose-dependent antiproliferative and cytotoxic effects on cancer cells, accompanied by overproduction of mitochondrial superoxide and accelerated ATP depletion. In normal cells, the same redox-pairs did not significantly affect the viability and energy homeostasis, but induced mild mitochondrial oxidative stress, which is well tolerated. Benzoquinone/ascorbate redox-pairs were more effective than naphthoquinone/ascorbate, with coenzyme Q0/ascorbate exhibiting the most pronounced anticancer effects in vitro and in vivo. Targeted anticancer effects of Q/A redox-pairs and their tolerance to normal cells and tissues are attributed to: (i) downregulation of quinone prenylation in cancer, leading to increased mitochondrial production of semiquinone and, consequently, superoxide; (ii) specific and accelerated redox-cycling of unprenylated quinones and ascorbate mainly in the impaired cancerous mitochondria due to their redox imbalance; and (iii) downregulation of tNOX.
Collapse
Affiliation(s)
- Rumiana Bakalova
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
- Faculty of Medicine, Sofia University, St. Kliment Ohridski, 1407 Sofia, Bulgaria
| | - Dessislava Lazarova
- Faculty of Medicine, Sofia University, St. Kliment Ohridski, 1407 Sofia, Bulgaria
| | - Akira Sumiyoshi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Sayaka Shibata
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Zhivko Zhelev
- Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Biliana Nikolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Severina Semkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Tatyana Vlaykova
- Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| |
Collapse
|
9
|
Zinovkin RA, Lyamzaev KG, Chernyak BV. Current perspectives of mitochondria-targeted antioxidants in cancer prevention and treatment. Front Cell Dev Biol 2023; 11:1048177. [PMID: 37009472 PMCID: PMC10060896 DOI: 10.3389/fcell.2023.1048177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Oxidative stress nearly always accompanies all stages of cancer development. At the early stages, antioxidants may help to reduce reactive oxygen species (ROS) production and exhibit anticarcinogenic effects. In the later stages, ROS involvement becomes more complex. On the one hand, ROS are necessary for cancer progression and epithelial-mesenchymal transition. On the other hand, antioxidants may promote cancer cell survival and may increase metastatic frequency. The role of mitochondrial ROS in cancer development remains largely unknown. This paper reviews experimental data on the effects of both endogenous and exogenous antioxidants on cancerogenesis focusing on the development and application of mitochondria-targeted antioxidants. We also discuss the prospects for antioxidant cancer therapy, focusing on the use of mitochondria-targeted antioxidants.
Collapse
Affiliation(s)
- Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
10
|
Kaźmierczak-Barańska J, Karwowski BT. Vitamin K Contribution to DNA Damage—Advantage or Disadvantage? A Human Health Response. Nutrients 2022; 14:nu14204219. [PMID: 36296903 PMCID: PMC9611527 DOI: 10.3390/nu14204219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 01/27/2023] Open
Abstract
Vitamin K is the common name for a group of compounds recognized as essential for blood clotting. The group comprises phylloquinone (K1)—a 2-methyl-3-phytyl-1,4-naphthoquinone; menaquinone (K2, MK)—a group of compounds with an unsaturated side chain in position 3 of a different number of isoprene units and a 1,4-naphthoquinone group and menadione (K3, MD)—a group of synthetic, water-soluble compounds 2-methyl-1,4-naphthoquinone. However, recent epidemiological studies suggest that vitamin K has various benefits that go beyond blood coagulation processes. A dietary intake of K1 is inversely associated with the risk of pancreatic cancer, K2 has the potential to induce a differentiation in leukemia cells or apoptosis of various types of cancer cells, and K3 has a documented anti-cancer effect. A healthy diet rich in fruit and vegetables ensures an optimal supply of K1 and K2, though consumers often prefer supplements. Interestingly, the synthetic form of vitamin K—menadione—appears in the cell during the metabolism of phylloquinone and is a precursor of MK-4, a form of vitamin K2 inaccessible in food. With this in mind, the purpose of this review is to emphasize the importance of vitamin K as a micronutrient, which not only has a beneficial effect on blood clotting and the skeleton, but also reduces the risk of cancer and other pro-inflammatory diseases. A proper diet should be a basic and common preventive procedure, resulting in a healthier society and reduced burden on healthcare systems.
Collapse
|
11
|
Antioxidant Properties and Aldehyde Reactivity of PD-L1 Targeted Aryl-Pyrazolone Anticancer Agents. Molecules 2022; 27:molecules27103316. [PMID: 35630791 PMCID: PMC9143004 DOI: 10.3390/molecules27103316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Small molecules targeting the PD-1/PD-L1 checkpoint are actively searched to complement the anticancer arsenal. Different molecular scaffolds have been reported, including phenyl-pyrazolone derivatives which potently inhibit binding of PD-L1 to PD-1. These molecules are structurally close to antioxidant drug edaravone (EDA) used to treat amyotrophic lateral sclerosis. For this reason, we investigated the capacity of five PD-L1-binding phenyl-pyrazolone compounds (1–5) to scavenge the formation of oxygen free radicals using electron spin resonance spectroscopy with DPPH/DMPO probes. In addition, the reactivity of the compounds toward the oxidized base 5-formyluracil (5fU) was assessed using chromatography coupled to mass spectrometry and photodiode array detectors. The data revealed that the phenyl-pyrazolone derivatives display antioxidant properties and exhibit a variable reactivity toward 5fU. Compound 2 with a N-dichlorophenyl-pyrazolone moiety cumulates the three properties, being a potent PD-L1 binder, a robust antioxidant and an aldehyde-reactive compound. On the opposite, the adamantane derivative 5 is a potent PD-L1 binding with a reduced antioxidant potential and no aldehyde reactivity. The nature of the substituent on the phenyl-pyrazolone core modulates the antioxidant capacity and reactivity toward aromatic aldehydes. The molecular signature of the compound can be adapted at will, to confer additional properties to these PD-L1 binders.
Collapse
|
12
|
Combination of Ascorbic Acid and Menadione Induces Cytotoxic Autophagy in Human Glioblastoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2998132. [PMID: 35368869 PMCID: PMC8967583 DOI: 10.1155/2022/2998132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/08/2022] [Accepted: 02/19/2022] [Indexed: 01/18/2023]
Abstract
We investigated the ability of the ascorbic acid (AA) and menadione (MD) combination, the well-known reactive oxidative species- (ROS-) generating system, to induce autophagy in human U251 glioblastoma cells. A combination of AA and MD (AA+MD), in contrast to single treatments, induced necrosis-like cell death mediated by mitochondrial membrane depolarization and extremely high oxidative stress. AA+MD, and to a lesser extent MD alone, prompted the appearance of autophagy markers such as autophagic vacuoles, autophagosome-associated LC3-II protein, degradation of p62, and increased expression of beclin-1. While both MD and AA+MD increased phosphorylation of AMP-activated protein kinase (AMPK), the well-known autophagy promotor, only the combined treatment affected its downstream targets, mechanistic target of rapamycin complex 1 (mTORC1), Unc 51-like kinase 1 (ULK1), and increased the expression of several autophagy-related genes. Antioxidant N-acetyl cysteine reduced both MD- and AA+MD-induced autophagy, as well as changes in AMPK/mTORC1/ULK1 activity and cell death triggered by the drug combination. Pharmacological and genetic autophagy silencing abolished the toxicity of AA+MD, while autophagy upregulation enhanced the toxicity of both AA+MD and MD. Therefore, by upregulating oxidative stress, inhibiting mTORC1, and activating ULK1, AA converts MD-induced AMPK-dependent autophagy from nontoxic to cytotoxic. These results suggest that AA+MD or MD treatment in combination with autophagy inducers could be further investigated as a novel approach for glioblastoma therapy.
Collapse
|
13
|
A “Weird” Mitochondrial Fatty Acid Oxidation as a Metabolic “Secret” of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2339584. [PMID: 35178152 PMCID: PMC8847026 DOI: 10.1155/2022/2339584] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Cancer metabolism is an extensively studied field since the discovery of the Warburg effect about 100 years ago and continues to be increasingly intriguing and enigmatic so far. It has become clear that glycolysis is not the only abnormally activated metabolic pathway in the cancer cells, but the same is true for the fatty acid synthesis (FAS) and mevalonate pathway. In the last decade, a lot of data have been accumulated on the pronounced mitochondrial fatty acid oxidation (mFAO) in many types of cancer cells. In this article, we discuss how mFAO can escape normal regulation under certain conditions and be overactivated. Such abnormal activation of mitochondrial β-oxidation can also be combined with mutations in certain enzymes of the Krebs cycle that are common in cancer. If overactivated β-oxidation is combined with other common cancer conditions, such as dysfunctions in the electron transport complexes, and/or hypoxia, this may alter the redox state of the mitochondrial matrix. We propose the idea that the altered mitochondrial redox state and/or inhibited Krebs cycle at certain segments may link mitochondrial β-oxidation to the citrate-malate shuttle instead to the Krebs cycle. We call this abnormal metabolic condition “β-oxidation shuttle”. It is unconventional mFAO, a separate metabolic pathway, unexplored so far as a source of energy, as well as a source of cataplerosis, leading to biomass accumulation, accelerated oxygen consumption, and ultimately a source of proliferation. It is inefficient as an energy source and must consume significantly more oxygen per mole of ATP produced when combined with acetyl-CoA consuming pathways, such as the FAS and mevalonate pathway.
Collapse
|
14
|
Semkova S, Ivanova D, Nikolova B, Zlateva G, Bakalova R, Zhelev Z, Aoki I. Inhibition of ATP-synthase potentiates cytotoxicity of combination drug menadione/ascorbate in leukaemia lymphocytes. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2021.1996268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Severina Semkova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Donika Ivanova
- Department of Pharmacology, Physiology of Animals and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
- Department of Medicinal Chemistry and Biochemistry, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Biliana Nikolova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Genoveva Zlateva
- Department of Physics, Biophysics and Radiology, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Rumiana Bakalova
- Department of Physics, Biophysics and Radiology, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Zhivko Zhelev
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Medicinal Chemistry and Biochemistry, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
15
|
Targeting Glioblastoma via Selective Alteration of Mitochondrial Redox State. Cancers (Basel) 2022; 14:cancers14030485. [PMID: 35158753 PMCID: PMC8833725 DOI: 10.3390/cancers14030485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Glioblastoma is characterized by a pronounced redox imbalance due to elevated glycolytic and mitochondrial oxidative metabolism. New therapeutic strategies have been developed to modulate glioblastoma redox signaling to effectively suppress growth and prolong survival. However, drug selectivity and therapeutic relapse prove to be the major challenges. We describe a pharmacological strategy for the selective targeting and treatment of glioblastoma using the redox active combination drug menadione/ascorbate, which is characterized by tolerance to normal cells and tissues. Menadione/ascorbate treatment of glioblastoma mice suppressed tumor growth and significantly increased survival without adverse side effects. This is accompanied by increased oxidative stress, decreased reducing capacity and decreased cellular density in the tumor alone, as well as increased brain perfusion and decreased regulation of several oncoproteins and oncometabolites, which implies modulation of the immune response and reduced drug resistance. We believe that this therapeutic strategy is feasible and promising and deserves the attention of clinicians. Abstract Glioblastoma is one of the most aggressive brain tumors, characterized by a pronounced redox imbalance, expressed in a high oxidative capacity of cancer cells due to their elevated glycolytic and mitochondrial oxidative metabolism. The assessment and modulation of the redox state of glioblastoma are crucial factors that can provide highly specific targeting and treatment. Our study describes a pharmacological strategy for targeting glioblastoma using a redox-active combination drug. The experiments were conducted in vivo on glioblastoma mice (intracranial model) and in vitro on cell lines (cancer and normal) treated with the redox cycling pair menadione/ascorbate (M/A). The following parameters were analyzed in vivo using MRI or ex vivo on tissue and blood specimens: tumor growth, survival, cerebral perfusion, cellular density, tissue redox state, expression of tumor-associated NADH oxidase (tNOX) and transforming growth factor-beta 1 (TGF-β1). Dose-dependent effects of M/A on cell viability, mitochondrial functionality, and redox homeostasis were evaluated in vitro. M/A treatment suppressed tumor growth and significantly increased survival without adverse side effects. This was accompanied by increased oxidative stress, decreased reducing capacity, and decreased cellular density in the tumor only, as well as increased cerebral perfusion and down-regulation of tNOX and TGF-β1. M/A induced selective cytotoxicity and overproduction of mitochondrial superoxide in isolated glioblastoma cells, but not in normal microglial cells. This was accompanied by a significant decrease in the over-reduced state of cancer cells and impairment of their “pro-oncogenic” functionality, assessed by dose-dependent decreases in: NADH, NAD+, succinate, glutathione, cellular reducing capacity, mitochondrial potential, steady-state ATP, and tNOX expression. The safety of M/A on normal cells was compromised by treatment with cerivastatin, a non-specific prenyltransferase inhibitor. In conclusion, M/A differentiates glioblastoma cells and tissues from normal cells and tissues by redox targeting, causing severe oxidative stress only in the tumor. The mechanism is complex and most likely involves prenylation of menadione in normal cells, but not in cancer cells, modulation of the immune response, a decrease in drug resistance, and a potential role in sensitizing glioblastoma to conventional chemotherapy.
Collapse
|
16
|
Anticancer Activity of Aqueous Extracts from Asparagus officinalis L. Byproduct on Breast Cancer Cells. Molecules 2021; 26:molecules26216369. [PMID: 34770777 PMCID: PMC8588164 DOI: 10.3390/molecules26216369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Cultivation of asparagus (Asparagus officinalis L.; Asp) for food and medicinal use has taken place since the early Roman Empire. Today, Asp represents a worldwide diffuse perennial crop. Lower portions of the spears represent a food industry waste product that can be used to extract bioactive molecules. In this study, aqueous extracts derived from the non-edible portion of the plant (hard stem) were prepared and characterized for chemical content. Furthermore, the biocompatibility and bioactivity of Asp aqueous extracts were assessed in vitro on normal fibroblasts and on breast cancer cell lines. Results showed no interference with fibroblast viability, while a remarkable cytostatic concentration-dependent activity, with significant G1/S cell cycle arrest, was specifically observed in breast cancer cells without apoptosis induction. Asp extracts were also shown to significantly inhibit cell migration. Further analyses showed that Asp extracts were characterized by specific pro-oxidant activity against tumoral cells, and, importantly, that their combination with menadione resulted in a significant enhancement of oxidants production with respect to menadione alone in breast cancer cells but not in normal cells. This selectivity of action on tumoral cells, together with the easiness of their preparation, makes the aqueous Asp extracts very attractive for further investigation in breast cancer research, particularly to investigate their role as possible co-adjuvant agents of clinical drug therapies.
Collapse
|