1
|
Zheng K, Lin S, Gao J, Chen S, Su J, Liu Z, Duan S. Novel compound heterozygous MYO15A splicing variants in autosomal recessive non-syndromic hearing loss. BMC Med Genomics 2024; 17:4. [PMID: 38167320 PMCID: PMC10763153 DOI: 10.1186/s12920-023-01777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Hereditary hearing loss is a highly heterogeneous disorder. This study aimed to identify the genetic cause of a Chinese family with autosomal recessive non-syndromic sensorineural hearing loss (ARNSHL). METHODS Clinical information and peripheral blood samples were collected from the proband and its parents. Two-step high-throughput next-generation sequencing on the Ion Torrent platform was applied to detect variants as follows. First, long-range PCR was performed to amplify all the regions of the GJB2, GJB3, SLC26A4, and MT-RNR1 genes, followed by next-generation sequencing. If no candidate pathogenetic variants were found, the targeted exon sequencing with AmpliSeq technology was employed to examine another 64 deafness-associated genes. Sanger sequencing was used to identify variants and the lineage co-segregation. The splicing of the MYO15A gene was assessed by in silico bioinformatics prediction and minigene assays. RESULTS Two candidate MYO15A gene (OMIM, #602,666) heterozygous splicing variants, NG_011634.2 (NM_016239.3): c.6177 + 1G > T and c.9690 + 1G > A, were identified in the proband, and these two variants were both annotated as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Further bioinformatic analysis predicted that the c.6177 + 1G > T variant might cause exon skipping and that the c.9690 + 1G > A variant might activate a cryptic splicing donor site in the downstream intronic region. An in vitro minigene assay confirmed the above predictions. CONCLUSIONS We identified a compound heterozygous splicing variant in the MYO15A gene in a Han Chinese family with ARNSHL. Our results broaden the spectrum of MYO15A variants, potentially benefiting the early diagnosis, prevention, and treatment of the disease.
Collapse
Affiliation(s)
- Kaifeng Zheng
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Jian Gao
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Shiguo Chen
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jindi Su
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhiqiang Liu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Shan Duan
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
2
|
Yang JY, Wang WQ, Han MY, Huang SS, Wang GJ, Su Y, Xu JC, Fu Y, Kang DY, Yang K, Zhang X, Liu X, Gao X, Yuan YY, Dai P. Addition of an affected family member to a previously ascertained autosomal recessive nonsyndromic hearing loss pedigree and systematic phenotype-genotype analysis of splice-site variants in MYO15A. BMC Med Genomics 2022; 15:241. [PMCID: PMC9673454 DOI: 10.1186/s12920-022-01368-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Pathogenic variants in MYO15A are known to cause autosomal recessive nonsyndromic hearing loss (ARNSHL), DFNB3. We have previously reported on one ARNSHL family including two affected siblings and identified MYO15A c.5964+3G > A and c.8375 T > C (p.Val2792Ala) as the possible deafness-causing variants. Eight year follow up identified one new affected individual in this family, who also showed congenital, severe to profound sensorineural hearing loss. By whole exome sequencing, we identified a new splice-site variant c.5531+1G > C (maternal allele), in a compound heterozygote with previously identified missense variant c.8375 T > C (p.Val2792Ala) (paternal allele) in MYO15A as the disease-causing variants. The new affected individual underwent unilateral cochlear implantation at the age of 1 year, and 5 year follow-up showed satisfactory speech and language outcomes. Our results further indicate that MYO15A-associated hearing loss is good candidates for cochlear implantation, which is in accordance with previous report. In light of our findings and review of the literatures, 58 splice-site variants in MYO15A are correlated with a severe deafness phenotype, composed of 46 canonical splice-site variants and 12 non-canonical splice-site variants.
Collapse
Affiliation(s)
- Jin-Yuan Yang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Wei-Qian Wang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China ,grid.488137.10000 0001 2267 2324Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Ming-Yu Han
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Sha-Sha Huang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Guo-Jian Wang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Yu Su
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital Affiliated Hainan Hospital, Jianglin Road, Sanya, 572013 People’s Republic of China ,Hainan Province Clinical Research Center for Otolaryngologic and Head and Neck Diseases, Jianglin Road, Sanya, 572013 People’s Republic of China
| | - Jin-Cao Xu
- grid.488137.10000 0001 2267 2324Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Ying Fu
- grid.27255.370000 0004 1761 1174Department of Otorhinolaryngology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035 Shandong People’s Republic of China
| | - Dong-Yang Kang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Kun Yang
- grid.488137.10000 0001 2267 2324Postgraduate Training Base of Jinzhou Medical University, The PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Xin Zhang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Xing Liu
- grid.488137.10000 0001 2267 2324Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Xue Gao
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China ,grid.488137.10000 0001 2267 2324Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Yong-Yi Yuan
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Pu Dai
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Liu M, Liang Y, Huang B, Sun J, Chen K. Report of rare and novel mutations in candidate genes in a cohort of hearing-impaired patients. Mol Genet Genomic Med 2022; 10:e1887. [PMID: 35106950 PMCID: PMC9000930 DOI: 10.1002/mgg3.1887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/24/2021] [Accepted: 01/14/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Many hearing-impaired patients carry mutations in rare or novel genes undetected in regular genetic hot regions/genes screening. METHODS We collected clinical and genetic data from subjects with hearing loss who visited our department for genetic counseling. Next-generation sequencing was conducted after 154 deafness-related genes were captured using a designed genes panels in 14 unrelated families (37 participants). The results were filtered and assessed with in silico tools, in combination with pedigree mapping. RESULTS Ten mutations in regular deafness genes (GJB2, SLC26A4) and uncommon genes (OTOF, MYO7A, MYO15A, and KARS) were detected, which constituted 57.2% of yielded rate. In particular, two patients with nonsyndromic deafness carried biallelic KARS mutations. In addition, we identified an unreported digenic mutational inheritance in GRP98/USH2A genes in a proband with isolated hearing loss. Functional analyses and molecular modeling suggested the damaging consequence of these variants on encoded proteins. According to the variant pathogenicity guidelines, the 17 identified variants in total were classified as "pathogenic" or "likely pathogenic." CONCLUSION The candidate mutations in deafness genes were suggested to be co-segregated in at least 57.2% of the studied pedigrees. This is the new report of rare/novel mutations causing inherited hearing loss in Chinese.
Collapse
Affiliation(s)
- Min Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, China
| | - Yue Liang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, China
| | - Bixue Huang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, China
| | - Jincangjian Sun
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, China
| | - Kaitian Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|