1
|
Liu Y, Jin B. Mechanism of Traditional Chinese Medicine extract in the treatment of diabetic erectile dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119332. [PMID: 39778785 DOI: 10.1016/j.jep.2025.119332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/28/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic erectile dysfunction (DED) is a prevalent but often overlooked microvascular complication of type 2 diabetes mellitus (T2DM), with strong associations to cardiovascular disease. The pathophysiology of erectile dysfunction (ED) in T2DM patients is more intricate than in non-diabetic individuals, likely involving multiple pathogenic mechanisms such as endothelial dysfunction, vascular alterations, neuropathy, and oxidative stress. Traditional Chinese Medicine (TCM) has long been utilized in the management of DED, drawing on an extensive body of clinical experience. In TCM, DED is typically attributed to imbalances such as renal yang deficiency or insufficiencies in qi and blood. Herbal therapies within the TCM framework offer a multifaceted approach to treatment, targeting not only the replenishment of kidney yang and the regulation of qi and blood but also incorporating strategies for glycemic control and renal protection. This holistic approach has demonstrated effectiveness in alleviating erectile dysfunction in diabetic patients, thereby improving quality of life. However, the complexity of Chinese herbal formulations, with their diverse bioactive constituents, complicates the identification of specific active compounds and the mechanistic understanding of their therapeutic actions. This complexity has contributed to ongoing skepticism regarding the clinical utility of TCM and herbal remedies in the treatment of DED. AIM OF THE STUDY This study aimed to investigate the pathological mechanisms underlying the therapeutic effects of TCM in the treatment of DED, with a specific focus on the associated signaling pathways. By elucidating these mechanisms, the study seeks to provide a scientific basis for novel therapeutic strategies and enhance the viability of TCM-based approaches for DED management. Future research should prioritize the development of efficacious Chinese patent medicines tailored for the treatment of DED. METHODS This study utilizes keywords such as "diabetic erectile dysfunction", "signaling pathways", "traditional Chinese Medicine", "bioactive compounds", "herbal", "herbal monomers", and "herbal extracts" to conduct a comprehensive literature search in databases including Embase, PubMed, Web of Science, CNKI, Wanfang, and VIP, spanning all relevant publications up to February 2024. RESULTS It has been demonstrated that TCM extract can treat the DED by influencing the signaling pathways involved. CONCLUSION A comprehensive literature review was conducted across multiple databases, followed by rigorous screening, exclusion, summarization, synthesis, and analysis of relevant studies. The results indicate that TCM for DED primarily targets key pathological features, including endothelial dysfunction, vascular and neural abnormalities, and oxidative stress. The underlying mechanisms involve the NO/cGMP, eNOS, and PI3K/Akt/mTOR signaling pathways, contributing to significant improvements in erectile function. These findings provide a scientific basis for the use of TCM in DED, offering viable therapeutic options and innovative strategies to advance TCM-based treatment approaches. Furthermore, TCM exhibits notable potential in mitigating the pathological progression of DED. The pharmacological mechanisms and molecular signaling pathways of TCM extracts have been extensively investigated, underscoring their high value for clinical research and therapeutic development.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Medicine, Southeast University, Nanjing, 210003, China
| | - Baofang Jin
- Department of Integrative Medicine and Andrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Jin Z, Lan Y, Li J, Wang P, Xiong X. The role of Chinese herbal medicine in the regulation of oxidative stress in treating hypertension: from therapeutics to mechanisms. Chin Med 2024; 19:150. [PMID: 39468572 PMCID: PMC11520704 DOI: 10.1186/s13020-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Although the pathogenesis of essential hypertension is not clear, a large number of studies have shown that oxidative stress plays an important role in the occurrence and development of hypertension and target organ damage. PURPOSE This paper systematically summarizes the relationship between oxidative stress and hypertension, and explores the potential mechanisms of Chinese herbal medicine (CHM) in the regulation of oxidative stress in hypertension, aiming to establish a scientific basis for the treatment of hypertension with CHM. METHODS To review the efficacy and mechanism by which CHM treat hypertension through targeting oxidative stress, data were searched from PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database from their inception up to January 2024. NPs were classified and summarized by their mechanisms of action. RESULTS In hypertension, the oxidative stress pathway of the body is abnormally activated, and the antioxidant system is inhibited, leading to the imbalance between the oxidative and antioxidative capacity. Meanwhile, excessive production of reactive oxygen species can lead to endothelial damage and vascular dysfunction, resulting in inflammation and immune response, thereby promoting the development of hypertension and damaging the heart, brain, kidneys, blood vessels, and other target organs. Numerous studies suggested that inhibiting oxidative stress may be the potential therapeutic target for hypertension. In recent years, the clinical advantages of traditional Chinese medicine (TCM) in the treatment of hypertension have gradually attracted attention. TCM, including active ingredients of CHM, single Chinese herb, TCM classic formula and traditional Chinese patent medicine, can not only reduce blood pressure, improve clinical symptoms, but also improve oxidative stress, thus extensively affect vascular endothelium, renin-angiotensin-aldosterone system, sympathetic nervous system, target organ damage, as well as insulin resistance, hyperlipidemia, hyperhomocysteinemia and other pathological mechanisms and hypertension related risk factors. CONCLUSIONS CHM display a beneficial multi-target, multi-component, overall and comprehensive regulation characteristics, and have potential value for clinical application in the treatment of hypertension by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Zixuan Jin
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Yu Lan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Junying Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
3
|
Peng Y, Yang Y, Tian Y, Zhang M, Cheng K, Zhang X, Zhou M, Hui M, Zhang Y. Extraction, Characterization, and Antioxidant Activity of Eucommia ulmoides Polysaccharides. Molecules 2024; 29:4793. [PMID: 39459162 PMCID: PMC11510736 DOI: 10.3390/molecules29204793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Herein, the ultrasound-assisted extraction conditions affecting the yield of EUPS (Eucommia ulmoides polysaccharide) were analyzed using a Box-Behnken response surface design. The alleviation effect of EUPS on diquat-induced oxidative stress in mice was also studied. A maximum EUPS yield of 2.60% was obtained under the following optimized conditions: an extraction temperature of 63 °C, extraction time of 1 h, and ratio of liquid to raw materials of 22:1. EUPS exhibited strong 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical-scavenging ability (87.05%), 2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radical-scavenging ability (101.17%), and hydroxyl radical-scavenging ability (62.92%). The administration of EUPS increased the activities of superoxide dismutase, catalase, and glutathione peroxidase and decreased malondialdehyde levels in the livers of mice exposed to diquat. EUPS may inhibit the downregulation of NAD(P)H:quinoneoxidoreductase 1 and heme oxygenase 1 mRNA expression in the livers of diquat-administered mice through the Nrf2-Keap1 signaling pathway. Moreover, the abundance of Firmicutes and Ligilactobacillus was enhanced, whereas that of Helicobacter decreased in the gut of the remaining groups of mice compared with that of the diquat-treated mice. Therefore, EUPS exhibited an antioxidant effect and improved oxidative stress and intestinal flora abundance in mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.P.); (Y.Y.); (Y.T.); (M.Z.); (K.C.); (X.Z.); (M.Z.); (M.H.)
| |
Collapse
|
4
|
Li Y, Wang H, Leng X, Gao J, Li C, Huang D. Polysaccharides from Eucommia ulmoides Oliv. Leaves Alleviate Acute Alcoholic Liver Injury by Modulating the Microbiota-Gut-Liver Axis in Mice. Foods 2024; 13:1089. [PMID: 38611393 PMCID: PMC11011369 DOI: 10.3390/foods13071089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The interplay among gut microbiota, intestines, and liver is crucial in preventing acute alcoholic liver injury. In this study, the hepatoprotective potential of polysaccharides from Eucommia ulmoides Oliv. leaves (EULP) on acute alcoholic liver injury in Kunming male mice was investigated. The structural features suggested that the EULP appeared as a heterogeneous mixture of polysaccharides with a molecular weight of 186132 Da. A 14-day pretreatment of EULP ameliorated acute alcoholic-induced hepatic inflam mation (TNF-α, IL-6, and IL-10), oxidative stress (GSH, SOD, and T-AOC), and liver damage (ALT and AST) via enhancing intestinal barrier (Occludin, Claudin 1, and ZO-1) and modulating microbiome, which subsequently inhibiting endotoxemia and balancing the homeostasis of the gut-liver axis. EULP restored the composition of intestinal flora with an increase in the relative abundance of Lactobacillaceae and a decrease in Lachnospiraceae and Verrucomicrobiaceae. Notably, prolonged EULP pretreatment (14 days) but no single gavage of EULP achieved excellent hepatoprotection. These findings endorsed the potential of EULP as a functional food for mitigating acute alcoholic-induce d liver damage, attributed to its anti-inflammatory, antioxidant, and prebiotic properties facilitated by the microbiota-gut-liver axis.
Collapse
Affiliation(s)
- Yingzhi Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (Y.L.); (H.W.); (X.L.); (J.G.); (C.L.)
| | - Huimei Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (Y.L.); (H.W.); (X.L.); (J.G.); (C.L.)
| | - Xueping Leng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (Y.L.); (H.W.); (X.L.); (J.G.); (C.L.)
| | - Jiaming Gao
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (Y.L.); (H.W.); (X.L.); (J.G.); (C.L.)
| | - Chang Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (Y.L.); (H.W.); (X.L.); (J.G.); (C.L.)
| | - Danfei Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (Y.L.); (H.W.); (X.L.); (J.G.); (C.L.)
- International Institute of Food Innovation Co., Ltd., Nanchang 330200, China
| |
Collapse
|
5
|
Bao L, Sun Y, Wang J, Li W, Liu J, Li T, Liu Z. A review of "plant gold" Eucommia ulmoides Oliv.: A medicinal and food homologous plant with economic value and prospect. Heliyon 2024; 10:e24851. [PMID: 38312592 PMCID: PMC10834829 DOI: 10.1016/j.heliyon.2024.e24851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/10/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Eucommia ulmoides Oliv. is an ancient and precious plant that has been used as medicine in China for more than 2000 years. Because its bark, leaves, seeds, and male flowers can be used in medicine, it plays an important role in medicine, food, chemical industry, and other fields, so it is also called "plant gold". 246 compounds have been isolated from E. ulmoides, which endow E. ulmoides with many unique pharmacological effects and make it wide to study in the fields of osteoporosis, hypertension, liver protection, and so on. Besides, E. ulmoides also has significant medicinal effects on anti-inflammatory, antioxidant, immunomodulation, and neuroprotection, and is often used in clinical compound medicines of traditional Chinese medicine. In addition to updating its ethnobotany, phytochemistry, pharmacology, and toxicology information, the economic botany of leaves, seeds, and male flowers was also introduced. It hopes hoping to fully understand this economically important Chinese medicine and provide a scientific basis for further development and utilization of E. ulmoides.
Collapse
Affiliation(s)
- Lei Bao
- Heilongjiang University of Chinese Medicine, China
| | - Yinling Sun
- Heilongjiang Academy of Traditional Chinese Medicine, China
| | - Jinming Wang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | | | - Jie Liu
- The Fourth Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | - Tianying Li
- Heilongjiang University of Chinese Medicine, China
| | | |
Collapse
|
6
|
Zhao X, Qu Q, Zhang Y, Zhao P, Qiu J, Zhang X, Duan X, Song X. Research Progress of Eucommia ulmoides Oliv and Predictive Analysis of Quality Markers Based on Network Pharmacology. Curr Pharm Biotechnol 2024; 25:860-895. [PMID: 38902931 DOI: 10.2174/0113892010265000230928060645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 06/22/2024]
Abstract
Du Zhong is a valuable Chinese medicinal herb unique to China. It is a national second- class precious protected tree, known as "plant gold", which has been used to treat various diseases since ancient times. The main active ingredients are lignans, phenylprophetons, flavonoids, iridoids and steroids and terpenoids, which have pharmacological effects such as lowering blood pressure, enhancing immunity, regulating bone metabolism, protecting nerve cells, protecting liver and gallbladder and regulating blood lipids. In this paper, a comprehensive review of Eucommia ulmoides Oliv. was summarized from the processing and its compositional changes, applications, chemical components, pharmacological effects, and pharmacokinetics, and the Q-marker of Eucommia ulmoides Oliv. is preliminarily predicted from the aspects of traditional efficacy, medicinal properties and measurability of chemical composition, and the pharmacodynamic substance basis and potential Q-marker of Eucommia ulmoides Oliv. are further analyzed through network pharmacology. It is speculated that quercetin, kaempferol, β-sitosterol, chlorogenic acid and pinoresinol diglucoside components are selected as quality markers of Eucommia ulmoides Oliv., which provide a basis for the quality control evaluation and follow-up research and development of Eucommia ulmoides Oliv.
Collapse
Affiliation(s)
- Xiaomei Zhao
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Qiong Qu
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Ying Zhang
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Peiyuan Zhao
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Jinqing Qiu
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Xinbo Zhang
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Xi Duan
- Laboratory Department, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, China
| | - Xiao Song
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
- Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing, 100029, China
| |
Collapse
|
7
|
Liu H, Huang Y, Huang X, Li M, Chen D, Geng Y, Ouyang P, Yang T, Dai J, Yang S, Luo W. Eucommia ulmoides Oliver enhances the antioxidant capacity and protects Micropterus salmoides from liver damage and immune function impairment caused by a high starch diet. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
8
|
Xu X, Tian W, Duan W, Pan C, Huang M, Wang Q, Yang Q, Wen Z, Tang Y, Xiong Y, Zhu Z, Liu Y, Wei D, Qi W, Ouyang X, Ying S, Wang X, Zhou Z, Li X, Cui Y, Yang S, Xu H. Quanduzhong capsules for the treatment of grade 1 hypertension patients with low-to-moderate risk: A multicenter, randomized, double-blind, placebo-controlled clinical trial. Front Pharmacol 2023; 13:1014410. [PMID: 36703729 PMCID: PMC9871381 DOI: 10.3389/fphar.2022.1014410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Duzhong [DZ (Eucommia ulmoides Oliv.)] is regarded as a traditional Chinese medicine with a history dating back more than 2000 years. This herb is considered a nourishing herb in China and is commonly used as a tonic to strengthen muscles and bones, nourish the kidneys and liver, and soothe miscarriages. Moreover, there is evidence that DZ is capable of regulating blood pressure (BP), and several compounds isolated from DZ have been shown to have a BP-lowering effect. Quanduzhong capsules contain an extract of DZ [Eucommia ulmoides Oliv. (Eucommiaceae; Eucommiae cortex)] that is effective in treating hypertension. This multicenter, randomized, double-blind, placebo-controlled clinical trial sought to evaluate the clinical efficacy of Quanduzhong capsules in the treatment of low-to-moderate risk grade 1 hypertension patients. Materials and methods: A total of 60 patients from 3 centers with documented low-to-moderate risk grade 1 hypertension were randomly assigned in a 1:1 ratio to the test group or the control group. After a 1 week lead-in period using sham Quanduzhong capsules, all patients who met the entry criteria (29 cases in the test group and 29 cases in the control group) entered the 4 week test period. The test group took Quanduzhong capsules, and the control group continued to take sham Quanduzhong capsules. The primary endpoints [24-h mean systolic blood pressure (SBP) and diastolic blood pressure (DBP) determined via 24-h ambulatory blood pressure monitoring (ABPM); office SBP and DBP] and secondary endpoints [mean arterial pressure; mean pulse; daytime mean SBP and DBP; nocturnal mean SBP and DBP; SBP and DBP load; area under the blood pressure (BP) curve; morning peak BP; early morning SBP and DBP; smoothness index of SBP and DBP; 24 h BP mean coefficient of variation (CV); percentage of patients with circadian restoration in ABPM; home BP; quality of life evaluated by WHO Quality of Life-BREF questionnaire; grading and quantitative evaluation of hypertension symptoms; values of plasmatic renin activity, angiotensin II, aldosterone, β-2 microglobulin and homocysteine] were assessed following the treatment. Drug-related adverse events and adverse drug reactions were also compared. Results: After a 4 week test period, a significant difference in the DBP CV between the two groups was observed (-2.49 ± 4.32 vs. 0.76 ± 4.3; p < .05). Moreover, the mean office SBP change was -7.62 ± 9.32 mmHg, and the mean DBP change was -4.66 ± 6.03 (p < .05). Among the three subjects with abnormal homocysteine levels in the test group, homocysteine levels decreased by 6.23 ± 9.15 μmol/L after treatment. No differences were observed between the two groups in any other indicators. After 4 weeks of treatment, there were no significant differences between the groups in terms of safety indicators (p > .05). No abnormal vital signs (except BP) or severe liver or renal function impairment were observed during the treatment periods; in addition, adverse events and drug reactions were mild. Conclusion: Treatment with Quanduzhong capsules reduced office SBP and DBP as well as DBP CV determined by 24-h ambulatory BP monitoring in patients with grade 1 hypertension at low-to-moderate risk. Clinical Trial Registration: https://www.chictr.org.cn/showproj.aspx?proj=32531, identifier ChiCTR1900021699.
Collapse
Affiliation(s)
- Xuan Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- The Eighth Hospital of Baotou, Baotou, China
| | - Wende Tian
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenhui Duan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chaoxin Pan
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, China
| | - Mingjian Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, China
| | - Qinggao Wang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, China
| | - Qinghua Yang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, China
| | - Zhihao Wen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, China
| | - Yu Tang
- Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Yao Xiong
- Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Zhiyun Zhu
- Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Yuanyuan Liu
- Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Dan Wei
- Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Wenqiang Qi
- Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Xiaochao Ouyang
- Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Shaozhen Ying
- Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Xiaohua Wang
- Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Zhigang Zhou
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Xiaofeng Li
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Yu Cui
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Shuyin Yang
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Li Z, Yang P, Xue S, Yuan S, Yuan L, Yan R, Tang D, Li J. Testosterone promotion effect of Eucommia ulmoides staminate flower via the steroidogenic pathway and potential hormonal mechanism. Sci Rep 2022; 12:18765. [PMID: 36335171 PMCID: PMC9637168 DOI: 10.1038/s41598-022-23578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022] Open
Abstract
Eucommia ulmoides staminate flowers (EUF), a newly approved functional food in China, have great potential for hormonal regulation. Herein, we aim to demonstrate the chemical composition and pharmacological activity of EUF in testosterone production and hormonal regulation. EUF extract and its components, kaempferol and geniposidic acid, exhibited a strong stimulating effect by increasing testosterone secretion, reducing ROS production, or promoting viability in Leydig cells. Meanwhile, the increased testosterone production was related to the upregulation of mRNA and protein expression of the steroidogenic pathway, such as steroidogenic acute-regulatory protein (StAR), 3β -hydroxysteroid dehydrogenase type 1 (HSD3B1), 17α-hydroxylase/17,20-lyase (CYP17A1), and nuclear receptor subfamily 5 group A member 1 (NR5A1). However, PKA inhibitor H89 or adenylyl cyclase inhibitor SQ22536 could block their effect. The results of transgenic yeast models showed the androgenic agonistic effects of kaempferol and naringenin and the estrogenic agonistic effects of rutin. These results indicated that the testosterone promotional effect of EUF was related to the activation of the steroidogenic pathway and potential hormonal regulation. Kaempferol and geniposidic acid might be the key active ingredients.
Collapse
Affiliation(s)
- Zihan Li
- grid.257143.60000 0004 1772 1285Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Huang‑Jia‑Hu West Road 16#, Hongshan District, Wuhan, 430065 Hubei China
| | - Ping Yang
- grid.257143.60000 0004 1772 1285Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Huang‑Jia‑Hu West Road 16#, Hongshan District, Wuhan, 430065 Hubei China ,Central Laboratory, Huanggang Hospital of Traditional Chinese Medicine, Huanggang, Hubei China
| | - Shan Xue
- grid.257143.60000 0004 1772 1285Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Huang‑Jia‑Hu West Road 16#, Hongshan District, Wuhan, 430065 Hubei China
| | - Shijun Yuan
- grid.257143.60000 0004 1772 1285Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Huang‑Jia‑Hu West Road 16#, Hongshan District, Wuhan, 430065 Hubei China
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, 445000 Hubei China
| | - Renyi Yan
- Tianjin Ubasio Technology Group Co., Ltd., Tianjin, China
| | - Ding Tang
- grid.257143.60000 0004 1772 1285Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Huang‑Jia‑Hu West Road 16#, Hongshan District, Wuhan, 430065 Hubei China
| | - Juan Li
- grid.257143.60000 0004 1772 1285Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Huang‑Jia‑Hu West Road 16#, Hongshan District, Wuhan, 430065 Hubei China
| |
Collapse
|
10
|
Toll-Like Receptor 4: A Promising Therapeutic Target for Alzheimer's Disease. Mediators Inflamm 2022; 2022:7924199. [PMID: 36046763 PMCID: PMC9420645 DOI: 10.1155/2022/7924199] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that primarily manifests as memory deficits and cognitive impairment and has created health challenges for patients and society. In AD, amyloid β-protein (Aβ) induces Toll-like receptor 4 (TLR4) activation in microglia. Activation of TLR4 induces downstream signaling pathways and promotes the generation of proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), which also trigger the activation of astrocytes and influence amyloid-dependent neuronal death. Therefore, TLR4 may be an important molecular target for treating AD by regulating neuroinflammation. Moreover, TLR4 regulates apoptosis, autophagy, and gut microbiota and is closely related to AD. This article reviews the role of TLR4 in the pathogenesis of AD and a range of potential therapies targeting TLR4 for AD. Elucidating the regulatory mechanism of TLR4 in AD may provide valuable clues for developing new therapeutic strategies for AD.
Collapse
|
11
|
Yan D, Si W, Zhou X, Yang M, Chen Y, Chang Y, Lu Y, Liu J, Wang K, Yan M, Liu F, Li M, Wang X, Wu M, Tian Z, Sun H, Song X. Eucommia ulmoides bark extract reduces blood pressure and inflammation by regulating the gut microbiota and enriching the Parabacteroides strain in high-salt diet and N(omega)-nitro-L-arginine methyl ester induced mice. Front Microbiol 2022; 13:967649. [PMID: 36060766 PMCID: PMC9434109 DOI: 10.3389/fmicb.2022.967649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022] Open
Abstract
Hypertension is a major threat to human health. Eucommia ulmoides Oliv. (EU) is a small tree and EU extract is widely used to improve hypertension in East Asia. However, its major constituents have poor absorption and stay in the gut for a long time. The role of the gut microbiota in the anti-hypertensive effects of EU is unclear. Here, we examined the anti-hypertensive effects of EU in high-salt diet and N(omega)-nitro-L-arginine methyl ester (L-NAME) induced mice. After receiving EU for 6 weeks, the blood pressure was significantly reduced and the kidney injury was improved. Additionally, EU restored the levels of inflammatory cytokines, such as serum interleukin (IL)-6 and IL-17A, and renal IL-17A. The diversity and composition of the gut microbiota were influenced by administration of EU; 40 significantly upregulated and 107 significantly downregulated amplicon sequence variants (ASVs) were identified after administration of EU. ASV403 (Parabacteroides) was selected as a potential anti-hypertensive ASV. Its closest strain XGB65 was isolated. Furthermore, animal studies confirmed that Parabacteroides strain XGB65 exerted anti-hypertensive effects, possibly by reducing levels of inflammatory cytokines, such as renal IL-17A. Our study is the first to report that EU reduces blood pressure by regulating the gut microbiota, and it enriches the Parabacteroides strain, which exerts anti-hypertensive effects. These findings provide directions for developing novel anti-hypertensive treatments by combining probiotics and prebiotics.
Collapse
Affiliation(s)
- Dong Yan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Wenhao Si
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaoyue Zhou
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Mengjie Yang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuanhang Chen
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yahan Chang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yidan Lu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jieyu Liu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Kaiyue Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Moyu Yan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Feng Liu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Min Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xianliang Wang
- Department of Cardiology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Minna Wu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhongwei Tian
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Haiyan Sun
- Department of Cardiology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- *Correspondence: Haiyan Sun,
| | - Xiangfeng Song
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Xiangfeng Song,
| |
Collapse
|
12
|
Zhao Y, Tan DC, Peng B, Yang L, Zhang SY, Shi RP, Chong CM, Zhong ZF, Wang SP, Liang QL, Wang YT. Neuroendocrine-Immune Regulatory Network of Eucommia ulmoides Oliver. Molecules 2022; 27:molecules27123697. [PMID: 35744822 PMCID: PMC9229650 DOI: 10.3390/molecules27123697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Eucommia ulmoides Oliver (E. ulmoides) is a popular medicinal herb and health supplement in China, Japan, and Korea, and has a variety of pharmaceutical properties. The neuroendocrine-immune (NEI) network is crucial in maintaining homeostasis and physical or psychological functions at a holistic level, consistent with the regulatory theory of natural medicine. This review aims to systematically summarize the chemical compositions, biological roles, and pharmacological properties of E. ulmoides to build a bridge between it and NEI-associated diseases and to provide a perspective for the development of its new clinical applications. After a review of the literature, we found that E. ulmoides has effects on NEI-related diseases including cancer, neurodegenerative disease, hyperlipidemia, osteoporosis, insomnia, hypertension, diabetes mellitus, and obesity. However, clinical studies on E. ulmoides were scarce. In addition, E. ulmoides derivatives are diverse in China, and they are mainly used to enhance immunity, improve hepatic damage, strengthen bones, and lower blood pressure. Through network pharmacological analysis, we uncovered the possibility that E. ulmoides is involved in functional interactions with cancer development, insulin resistance, NAFLD, and various inflammatory pathways associated with NEI diseases. Overall, this review suggests that E. ulmoides has a wide range of applications for NEI-related diseases and provides a direction for its future research and development.
Collapse
Affiliation(s)
- Yi Zhao
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - De-Chao Tan
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Bo Peng
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Lin Yang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Si-Yuan Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Rui-Peng Shi
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Cheong-Meng Chong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Zhang-Feng Zhong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Sheng-Peng Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Qiong-Lin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
- Correspondence: (Q.-L.L.); (Y.-T.W.); Tel.: +86-010-6277-2263 (Q.-L.L.); +853-8822-4691 (Y.-T.W.); Fax: +86-010-6277-2263 (Q.-L.L.); +853-2884-1358 (Y.-T.W.)
| | - Yi-Tao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
- Correspondence: (Q.-L.L.); (Y.-T.W.); Tel.: +86-010-6277-2263 (Q.-L.L.); +853-8822-4691 (Y.-T.W.); Fax: +86-010-6277-2263 (Q.-L.L.); +853-2884-1358 (Y.-T.W.)
| |
Collapse
|
13
|
Xing M, Liu S, Yu Y, Guo L, Wang Y, Feng Y, Fei P, Kang H, Ali MA. Antibacterial Mode of Eucommia ulmoides Male Flower Extract Against Staphylococcus aureus and Its Application as a Natural Preservative in Cooked Beef. Front Microbiol 2022; 13:846622. [PMID: 35350615 PMCID: PMC8957902 DOI: 10.3389/fmicb.2022.846622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/10/2022] [Indexed: 12/05/2022] Open
Abstract
The research was conducted to elucidate the antibacterial performance and mode of action of Eucommia ulmoides male flower extract (EUMFE) against Staphylococcus aureus and its application as a natural preservative in cooked beef. The antibacterial activity was evaluated by determining the diameter of inhibition zone (DIZ), minimum inhibitory concentration (MIC), and minimum bactericide concentration (MBC). The changes in membrane potential, contents of bacterial DNA and protein, integrity and permeability of the cell membrane, and cell morphology were analyzed to reveal the possible mode of action. The effect of EUMFE on the counts of S. aureus, pH, color, total volatile basic nitrogen (TVB-N), and thiobarbituric acid reactive substances (TBARS) of the cooked beef stored at 4°C for 9 days were studied. The results showed that the DIZ, MIC, and MBC of EUMFE against S. aureus were 12.58 ± 0.23 mm, 40 mg/mL, and 80 mg/mL, respectively. The mode of action of EUMFE against S. aureus included hyperpolarization of cell membrane, decrease in bacterial DNA and protein contents, destruction of cell membrane integrity, increase in cell membrane permeability, and damage of cell morphology. After treatments with EUMFE, the growth of S. aureus and lipid oxidation in cooked beef were significantly inhibited (P < 0.05). The pH and TVB-N values of cooked beef treated with EUMFE were significantly reduced as compared to control group (P < 0.05). The color of cooked beef samples containing EUMFE showed decreased L* and b* values, and increased a* and ΔE* values. Therefore, our findings showed that EUMFE had a good antibacterial effect on S. aureus, and provided a theoretical basis for the application of EUMFE as a natural preservative in the preservation of cooked beef.
Collapse
Affiliation(s)
- Min Xing
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Henan University of Science and Technology, Luoyang, China
| | - Shun Liu
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yaping Yu
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ling Guo
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yao Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Henan University of Science and Technology, Luoyang, China
| | - Yage Feng
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Peng Fei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Henan University of Science and Technology, Luoyang, China.,School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Huaibing Kang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Henan University of Science and Technology, Luoyang, China
| | - Md Aslam Ali
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
14
|
Clinical Evaluation of Pinggan Yiqi Yangshen Recipe Combined with Labetalol Hydrochloride and Magnesium Sulfate in the Treatment of PIH. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3135043. [PMID: 34745277 PMCID: PMC8568534 DOI: 10.1155/2021/3135043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022]
Abstract
Background To observe the clinical effect of Pinggan Yiqi Yangshen recipe combined with labetalol hydrochloride and magnesium sulfate in the treatment of pregnancy-induced hypertension (PIH). Methods A total of 126 patients with PIH diagnosed in our hospital from January 2016 to May 2018 were randomly divided into the control group and the experimental group, with 63 cases in each group. The control group was treated with labetalol combined with magnesium sulfate. On the basis of the control group, the experimental group was treated with Pinggan Yiqi Yangshen recipe. Clinical efficacy, blood pressure, renal function, and biochemical indexes were compared between the two groups. Moreover, pregnancy outcomes and adverse reactions were compared between the two groups. Results After treatment, the total effective rate in the experimental group was higher than in the control group. Blood pressure and mean arterial pressure in the experimental group were more significantly downregulated than the control group. Renal function indexes and biochemical indexes in the experimental group were more significant than those in the control group. The incidence of cesarean section, preterm birth, and abnormal fetal heart rate in the experimental group was significantly lower than that in the control group. There was no difference in the incidence of fetal distress, postpartum hemorrhage, neonatal asphyxia, and adverse reactions between the two groups. Conclusion Pinggan Yiqi Yangshen recipe combined with labetalol hydrochloride and magnesium sulfate can effectively reduce the blood pressure of patients with PIH, help patients to return to normal levels of biochemical indexes and renal function indexes, and improve pregnancy outcomes with high safety, which is worthy of further promotion and application in clinical practice.
Collapse
|
15
|
Huang L, Lyu Q, Zheng W, Yang Q, Cao G. Traditional application and modern pharmacological research of Eucommia ulmoides Oliv. Chin Med 2021; 16:73. [PMID: 34362420 PMCID: PMC8349065 DOI: 10.1186/s13020-021-00482-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
As a Traditional Chinese Medicine, Eucommia ulmoides Oliv. has been used for the treatment of various diseases since ancient times, involving lumbar pain, knee pain, osteoporosis, hepatoprotection, paralysis, intestinal haemorrhoids, vaginal bleeding, abortion, spermatorrhoea, foot fungus, anti-aging etc. With the developing discovery of E. ulmoides extracts and its active components in various pharmacological activities, E. ulmoides has gained more and more attention. Up to now, E. ulmoides has been revealed to show remarkable therapeutic effects on hypertension, hyperglycemia, diabetes, obesity, osteoporosis, Parkinson's disease, Alzheimer's disease, sexual dysfunction. E. ulmoides has also been reported to possess antioxidant, anti-inflammatory, neuroprotective, anti-fatigue, anti-aging, anti-cancer and immunoregulation activities etc. Along these lines, this review summarizes the traditional application and modern pharmacological research of E. ulmoides, providing novel insights of E. ulmoides in the treatment of various diseases.
Collapse
Affiliation(s)
- Lichuang Huang
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Qiang Lyu
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Wanying Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
16
|
Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther 2021; 221:107750. [PMID: 33275999 PMCID: PMC7854082 DOI: 10.1016/j.pharmthera.2020.107750] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a global pandemic has prompted scientists to address an urgent need for defining mechanisms of disease pathology and treatment. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, employs angiotensin converting enzyme 2 (ACE2) as its primary target for cell surface attachment and likely entry into the host cell. Thus, understanding factors that may regulate the expression and function of ACE2 in the healthy and diseased body is critical for clinical intervention. Over 66% of all adults in the United States are currently using a prescription drug and while earlier findings have focused on possible upregulation of ACE2 expression through the use of renin angiotensin system (RAS) inhibitors, mounting evidence suggests that various other widely administered drugs used in the treatment of hypertension, heart failure, diabetes mellitus, hyperlipidemias, coagulation disorders, and pulmonary disease may also present a varied risk for COVID-19. Specifically, we summarize mechanisms on how heparin, statins, steroids and phytochemicals, besides their established therapeutic effects, may also interfere with SARS-CoV-2 viral entry into cells. We also describe evidence on the effect of several vitamins, phytochemicals, and naturally occurring compounds on ACE2 expression and activity in various tissues and disease models. This comprehensive review aims to provide a timely compendium on the potential impact of commonly prescribed drugs and pharmacologically active compounds on COVID-19 pathology and risk through regulation of ACE2 and RAS signaling.
Collapse
Key Words
- adam17, a disintegrin and metalloprotease 17
- ace, angiotensin i converting enzyme
- ace-inh., angiotensin i converting enzyme inhibitor
- ampk, amp-activated protein kinase
- ang-ii, angiotensin ii
- arb, angiotensin ii type 1-receptor blocker
- ards, acute respiratory distress syndrome
- at1-r, angiotensin ii type 1-receptor
- βarb, β-adrenergic receptor blockers
- bk, bradykinin
- ccb, calcium channel blockers
- ch25h, cholesterol-25-hydroxylase
- copd, chronic obstructive lung disease
- cox, cyclooxygenase
- covid-19, coronavirus disease-2019
- dabk, [des-arg9]-bradykinin
- erk, extracellular signal-regulated kinase
- 25hc, 25-hydroxycholesterol
- hs, heparan sulfate
- hspg, heparan sulfate proteoglycan
- ibd, inflammatory bowel disease
- map, mitogen-activated protein
- mers, middle east respiratory syndrome
- mrb, mineralocorticoid receptor blocker
- nos, nitric oxide synthase
- nsaid, non-steroid anti-inflammatory drug
- ras, renin-angiotensin system
- sars-cov, severe acute respiratory syndrome coronavirus
- sh, spontaneously hypertensive
- s protein, spike protein
- sirt1, sirtuin 1
- t2dm, type 2 diabetes mellitus
- tcm, traditional chinese medicine
- tmprss2, transmembrane protease, serine 2
- tnf, tumor necrosis factor
- ufh, unfractionated heparin
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|