1
|
Zhu Z, Wang Q, Zeng X, Zhu S, Chen J. Validation and identification of anoikis-related lncRNA signatures for improving prognosis in clear cell renal cell carcinoma. Aging (Albany NY) 2024; 16:3915-3933. [PMID: 38385949 PMCID: PMC10929799 DOI: 10.18632/aging.205568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Clear cell carcinoma (ccRCC) usually has a high metastasis rate and high mortality rate. To enable precise risk stratification, there is a need for novel biomarkers. As one form of apoptosis, anoikis results from the disruption of cell-cell connection or cell-ECM attachment. However, the impact of anoikis-related lncRNAs on ccRCC has not yet received adequate attention. METHODS The study utilized univariate Cox regression analysis in order to identify the overall survival (OS) associated anoikis-related lncRNAs (ARLs), followed by the LASSO algorithm for selection. On this basis, a risk model was subsequently established using five anoikis-related lncRNAs. To dig the inner molecular mechanism, KEGG, GO, and GSVA analyses were conducted. Additionally, the immune infiltration landscape was estimated using the ESTIMATE, CIBERSORT, and ssGSEA algorithms. RESULTS The study constructed a novel risk model based on five ARLs (AC092611.2, AC027601.2, AC103809.1, AL133215.2, and AL162586.1). Patients categorized as low-risk exhibited significantly better OS. Notably, the study observed marked different immune infiltration landscapes and drug sensitivity by risk stratification. Additionally, the study preliminarily explored potential signal pathways associated with risk stratification. CONCLUSION The study exhibited the crucial role of ARLs in the carcinogenesis of ccRCC, potentially through differential immune infiltration. Furthermore, the established risk model could serve as a valuable stratification factor for predicting OS prognosis.
Collapse
Affiliation(s)
- Zhenjie Zhu
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qibo Wang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaowei Zeng
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Shaoxing Zhu
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinchao Chen
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
2
|
Li X, Deng X, Liu T, Zhang W, Tao J. Disulfideptosis-associated lncRNAs reveal features of prognostic, immune escape, tumor mutation, and tumor malignant progression in renal clear cell carcinoma. Aging (Albany NY) 2024; 16:3280-3301. [PMID: 38334964 PMCID: PMC10929831 DOI: 10.18632/aging.205534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024]
Abstract
PURPOSE Investigating the role of lncRNAs associated with the latest cell death mode (Disulfideptosis) in renal clear cell carcinoma, as well as their correlation with tumor prognosis, immune escape, immune checkpoints, tumor mutational burden, and malignant tumor progression. Searching for potential biomarkers and targets for renal clear cell carcinoma. METHODS Downloaded the expression profile data and clinical data of 533 cases of renal clear cell carcinoma from the TCGA database, and randomly divided them into a test set (267 cases) and a validation set (266 cases). Based on previous research, 13 genes associated with Disulfideptosis were obtained. Using R software, lncRNAs with a differential expression that is related to the prognosis of renal clear cell carcinoma and associated with Disulfideptosis were screened out. After univariate Cox regression analysis, Lasso regression analysis, and multivariate Cox regression analysis, lncRNAs with independent predictive ability were obtained. A predictive risk model was established based on the risk scores. Verification was carried out between the obtained high-risk and low-risk groups and their subgroups (including Age, Gender, tumor mutational burden (TMB), tumor grading, and staging). Subsequently, a nomogram was established, and a calibration curve was generated for verification. Performed GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) functional enrichment analyses. Downloaded the values of Tumor Immune Dysfunction and Exclusion (TIDE) for all samples and calculated the difference between the high and low-risk groups. Selected human renal tumor cell lines (786-O, OS-RC-2, A-498, ACHN) and human renal cortex proximal tubule epithelial cell line (HK-2). The RNA expression levels of the above lncRNAs in each cell line were analyzed using RT-qPCR (Real-time Quantitative PCR Detecting System). Used siRNA (small interfering RNA) to knock down FAM225B in 786-O and OS-RC-2 cell lines, and then performed in vitro cell experiments to validate the functional characteristics of FAM225B. RESULTS Our constructed predictive model includes 5 lncRNAs with an independent predictive ability (FAM225B, ZNF503-AS1, SPINT1-AS1, WWC2-AS2, LINC01338), which can effectively distinguish between patients in high and low-risk groups and their subgroups. The 1, 3, and 5-year AUC (Area Under the ROC Curve) values of the established nomogram are 0.756, 0.752, and 0.781, respectively. The 5-year AUC value is higher compared to other clinical characteristics (Age: 0.598, Gender: 0.488, Grade: 0.680, Stage: 0.717). After the knockdown of FAM225B, the proliferation, migration, and invasion abilities of renal cancer cell lines OS-RC-2 and 786-O all decreased. CONCLUSION We have constructed and validated a prognostic model based on Disulfideptosis-associated lncRNAs. This model can effectively predict the high or low risk of patient prognosis and can distinguish the tumor cell mutational burden and immune escape capabilities among high-risk and low-risk patients. This predictive model can serve as an independent prognostic factor for renal clear cell carcinoma, providing a new direction for personalized treatment of patients with renal clear cell carcinoma.
Collapse
Affiliation(s)
- Xungang Li
- Department of Urology, Jiu Jiang No. 1 People’s Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Xinxi Deng
- Department of Urology, Jiu Jiang No. 1 People’s Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Taobin Liu
- Department of Urology, Jiu Jiang No. 1 People’s Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Wensheng Zhang
- Department of Urology, Jiu Jiang No. 1 People’s Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Jin Tao
- Department of Pediatric, Jiujiang University Affiliated Hospital, Jiujiang, Jiangxi 332000, P.R. China
| |
Collapse
|
3
|
Wang N, Hu Y, Wang S, Xu Q, Jiao X, Wang Y, Yan L, Cao H, Shao F. Development of a novel disulfidptosis-related lncRNA signature for prognostic and immune response prediction in clear cell renal cell carcinoma. Sci Rep 2024; 14:624. [PMID: 38182642 PMCID: PMC10770353 DOI: 10.1038/s41598-024-51197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Disulfidptosis, a novel form of regulated cell death, occurs due to the aberrant accumulation of intracellular cystine and other disulfides. Moreover, targeting disulfidptosis could identify promising approaches for cancer treatment. Long non-coding RNAs (lncRNAs) are known to be critically implicated in clear cell renal cell carcinoma (ccRCC) development. Currently, the involvement of disulfidptosis-related lncRNAs in ccRCC is yet to be elucidated. This study primarily dealt with identifying and validating a disulfidptosis-related lncRNAs-based signature for predicting the prognosis and immune landscape of individuals with ccRCC. Clinical and RNA sequencing data of ccRCC samples were accessed from The Cancer Genome Atlas (TCGA) database. Pearson correlation analysis was conducted for the identification of the disulfidptosis-related lncRNAs. Additionally, univariate Cox regression analysis, Least Absolute Shrinkage and Selection Operator Cox regression, and stepwise multivariate Cox analysis were executed to develop a novel risk prognostic model. The prognosis-predictive capacity of the model was then assessed using an integrated method. Variation in biological function was noted using GO, KEGG, and GSEA. Additionally, immune cell infiltration, the tumor mutational burden (TMB), and tumor immune dysfunction and exclusion (TIDE) scores were calculated to investigate differences in the immune landscape. Finally, the expression of hub disulfidptosis-related lncRNAs was validated using qPCR. We established a novel signature comprised of eight lncRNAs that were associated with disulfidptosis (SPINT1-AS1, AL121944.1, AC131009.3, AC104088.3, AL035071.1, LINC00886, AL035587.2, and AC007743.1). Kaplan-Meier and receiver operating characteristic curves demonstrated the acceptable predictive potency of the model. The nomogram and C-index confirmed the strong correlation between the risk signature and clinical decision-making. Furthermore, immune cell infiltration analysis and ssGSEA revealed significantly different immune statuses among risk groups. TMB analysis revealed the link between the high-risk group and high TMB. It is worth noting that the cumulative effect of the patients belonging to the high-risk group and having elevated TMB led to decreased patient survival times. The high-risk group depicted greater TIDE scores in contrast with the low-risk group, indicating greater potential for immune escape. Finally, qPCR validated the hub disulfidptosis-related lncRNAs in cell lines. The established novel signature holds potential regarding the prognosis prediction of individuals with ccRCC as well as predicting their responses to immunotherapy.
Collapse
Affiliation(s)
- Ning Wang
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yifeng Hu
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Shasha Wang
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Qin Xu
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaojing Jiao
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yanliang Wang
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Lei Yan
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Huixia Cao
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Fengmin Shao
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Zhu HX, Zheng WC, Chen H, Chen JY, Lin F, Chen SH, Xue XY, Zheng QS, Liang M, Xu N, Chen DN, Sun XL. Exploring Novel Genome Instability-associated lncRNAs and their Potential Function in Pan-Renal Cell Carcinoma. Comb Chem High Throughput Screen 2024; 27:1788-1807. [PMID: 37957851 DOI: 10.2174/0113862073258779231020052115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE Genomic instability can drive clonal evolution, continuous modification of tumor genomes, and tumor genomic heterogeneity. The molecular mechanism of genomic instability still needs further investigation. This study aims to identify novel genome instabilityassociated lncRNAs (GI-lncRNAs) and investigate the role of genome instability in pan-Renal cell carcinoma (RCC). MATERIALS AND METHODS A mutator hypothesis was employed, combining the TCGA database of somatic mutation (SM) information, to identify GI-lncRNAs. Subsequently, a training cohort (n = 442) and a testing cohort (n = 439) were formed by randomly dividing all RCC patients. Based on the training cohort dataset, a multivariate Cox regression analysis lncRNAs risk model was created. Further validations were performed in the testing cohort, TCGA cohort, and different RCC subtypes. To confirm the relative expression levels of lncRNAs in HK-2, 786-O, and 769-P cells, qPCR was carried out. Functional pathway enrichment analyses were performed for further investigation. RESULTS A total of 170 novel GI-lncRNAs were identified. The lncRNA prognostic risk model was constructed based on LINC00460, AC073218.1, AC010789.1, and COLCA1. This risk model successfully differentiated patients into distinct risk groups with significantly different clinical outcomes. The model was further validated in multiple independent patient cohorts. Additionally, functional and pathway enrichment analyses revealed that GI-lncRNAs play a crucial role in GI. Furthermore, the assessments of immune response, drug sensitivity, and cancer stemness revealed a significant relationship between GI-lncRNAs and tumor microenvironment infiltration, mutational burden, microsatellite instability, and drug resistance. CONCLUSIONS In this study, we discovered four novel GI-lncRNAs and developed a novel signature that effectively predicted clinical outcomes in pan-RCC. The findings provide valuable insights for pan-RCC immunotherapy and shed light on potential underlying mechanisms.
Collapse
Affiliation(s)
- Hui-Xin Zhu
- Department of Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Wen-Cai Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Hang Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Min Liang
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiong-Lin Sun
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| |
Collapse
|
5
|
Geng B, Liu W, Wang J, Zhang W, Li Z, Zhang N, Hou W, Zhao E, Li X, You B. The categorizations of vasculogenic mimicry in clear cell renal cell carcinoma unveil inherent connections with clinical and immune features. Front Pharmacol 2023; 14:1333507. [PMID: 38178861 PMCID: PMC10765515 DOI: 10.3389/fphar.2023.1333507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) stands as the prevailing variant kidney cancer in humans. Unfortunately, patients with disseminated RCC at diagnosis often have a diminished prognosis. Rapid tumor growth necessitates efficient blood supply for oxygen and nutrients, involving the circulation of blood from vessels to tumor tissues, facilitating tumor cell entry into the extracellular matrix. Vasculogenic mimicry (VM) significantly contributes to tumor growth and metastasis. Within this investigation, we identified vasculogenic mimicry-related genes (VMRGs) by analyzing data from 607 cases of kidney renal clear cell carcinoma (KIRC) in The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). These findings offer insights into ccRCC progression and metastasis. Method: We identified VMRGs-related subtypes using consistent clustering methods. The signature of the VMRGs was created using univariate Cox regression and LASSO Cox regression analyses. To evaluate differences in immune cell infiltration, we employed ssGSEA. Afterwards, we created an innovative risk assessment model, known as the VM index, along with a nomogram to forecast the prognosis of ccRCC. Additionally, we verified the expression of an important gene related to VM, peroxiredoxin 2 (PRDX2), in tissue samples. Furthermore, we assessed the sensitivity to drugs in various groups by utilizing the pRRophetic R package. Results: Significant predictors of survival rates in both high- and low-risk groups of KIRC patients were identified as VMRGs. The independent prognostic factors for RCC were confirmed by both univariate and multivariate Cox regression analyses, validating VMRG risk signatures. Differences were observed in drug sensitivity, immune checkpoint expression, and responses to immune therapy between patients classified into high- and low-VMRG-risk groups. Our nomograms consistently demonstrated precise predictive capabilities. Finally, we experimentally verified PRDX2 expression levels and their impact on prognosis. Conclusion: The signature predicts patient prognosis and therapy response, laying the groundwork for future clinical strategies in treating ccRCC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Enyang Zhao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuedong Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bosen You
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Bohosova J, Kozelkova K, Al Tukmachi D, Trachtova K, Naar O, Ruckova M, Kolarikova E, Stanik M, Poprach A, Slaby O. Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:7587-7600. [PMID: 36988708 PMCID: PMC10374689 DOI: 10.1007/s00432-023-04700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients. METHODS Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients. RESULTS Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%. CONCLUSION In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.
Collapse
Affiliation(s)
- Julia Bohosova
- Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Katerina Kozelkova
- Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Dagmar Al Tukmachi
- Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Karolina Trachtova
- Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Ondrej Naar
- Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Michaela Ruckova
- Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Eva Kolarikova
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Zluty Kopec 543/7, 602 00, Brno, Czech Republic
| | - Michal Stanik
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Zluty Kopec 543/7, 602 00, Brno, Czech Republic
| | - Alexandr Poprach
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Zluty Kopec 543/7, 602 00, Brno, Czech Republic
| | - Ondrej Slaby
- Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic.
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Ma Z, Liang H, Cui R, Ji J, Liu H, Liu X, Shen P, Wang H, Wang X, Song Z, Jiang Y. Construction of a risk model and prediction of prognosis and immunotherapy based on cuproptosis-related LncRNAs in the urinary system pan-cancer. Eur J Med Res 2023; 28:198. [PMID: 37370148 DOI: 10.1186/s40001-023-01173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Urinary pan-cancer system is a general term for tumors of the urinary system including renal cell carcinoma (RCC), prostate cancer (PRAD), and bladder cancer (BLCA). Their location, physiological functions, and metabolism are closely related, making the occurrence and outcome of these tumors highly similar. Cuproptosis is a new type of cell death that is different from apoptosis and plays an essential role in tumors. Therefore, it is necessary to study the molecular mechanism of cuproptosis-related lncRNAs to urinary system pan-cancer for the prognosis, clinical diagnosis, and treatment of urinary tumors. METHOD In our study, we identified 35 co-expression cuproptosis-related lncRNAs (CRLs) from the urinary pan-cancer system. 28 CRLs were identified as prognostic-related CRLs by univariate Cox regression analysis. Then 12 CRLs were obtained using lasso regression and multivariate cox analysis to construct a prognostic model. We divided patients into high- and low-risk groups based on the median risk scores. Next, Kaplan-Meier analysis, principal component analysis (PCA), functional rich annotations, and nomogram were used to compare the differences between the high- and low-risk groups. Finally, the prediction of tumor immune dysfunction and rejection, gene mutation, and drug sensitivity were discussed. CONCLUSION Finally, the candidate molecules of the urinary system pan-cancer were identified. This CRLs risk model may be promising for clinical prediction of prognosis and immunotherapy response in urinary system pan-cancer patients.
Collapse
Affiliation(s)
- Zhihui Ma
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Haining Liang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Rongjun Cui
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jinli Ji
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Hongfeng Liu
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaoxue Liu
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Ping Shen
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Huan Wang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xingyun Wang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Zheyao Song
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Ying Jiang
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China.
| |
Collapse
|
8
|
Wang Y, Zhang D, Li Y, Wu Y, Ma H, Jiang X, Fu L, Zhang G, Wang H, Liu X, Cai H. Constructing a novel signature and predicting the immune landscape of colon cancer using N6-methylandenosine-related lncRNAs. Front Genet 2023; 14:906346. [PMID: 37396046 PMCID: PMC10313068 DOI: 10.3389/fgene.2023.906346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/28/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Colon cancer (CC) is a prevalent malignant tumor that affects people all around the world. In this study, N6-methylandenosine-related long non-coding RNAs (m6A-related lncRNAs) in 473 colon cancers and 41 adjacent tissues of CC patients from The Cancer Genome Atlas (TCGA) were investigated. Method: The Pearson correlation analysis was conducted to examine the m6A-related lncRNAs, and the univariate Cox regression analysis was performed to screen 38 prognostic m6A-related lncRNAs. The least absolute shrinkage and selection operator (LASSO) regression analysis were carried out on 38 prognostic lncRNAs to develop a 14 m6A-related lncRNAs prognostic signature (m6A-LPS) in CC. The availability of the m6A-LPS was evaluated using the Kaplan-Meier and Receiver Operating Characteristic (ROC) curves. Results: Three m6A modification patterns with significantly different N stages, survival time, and immune landscapes were identified. It has been discovered that the m6A-LPS, which is based on 14 m6A-related lncRNAs (TNFRSF10A-AS1, AC245041.1, AL513550.1, UTAT33, SNHG26, AC092944.1, ITGB1-DT, AL138921.1, AC099850.3, NCBP2-AS1, AL137782.1, AC073896.3, AP006621.2, AC147651.1), may represent a new, promising biomarker with great potential. It was re-evaluated in terms of survival rate, clinical features, tumor infiltration immune cells, biomarkers related to Immune Checkpoint Inhibitors (ICIs), and chemotherapeutic drug efficacy. The m6A-LPS has been revealed to be a novel potential and promising predictor for evaluating the prognosis of CC patients. Conclusion: This study revealed that the risk signature is a promising predictive indicator that may provide more accurate clinical applications in CC therapeutics and enable effective therapy strategies for clinicians.
Collapse
Affiliation(s)
- Yongfeng Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Dongzhi Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Yuxi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yue Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Haizhong Ma
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Xianglai Jiang
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
| | - Liangyin Fu
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Guangming Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Haolan Wang
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xingguang Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Hui Cai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
9
|
He Y, Cao N, Tian Y, Wang X, Xiao Q, Tang X, Huang J, Zhu T, Hu C, Zhang Y, Deng J, Yu H, Duan P. Development and validation of two redox-related genes associated with prognosis and immune microenvironment in endometrial carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:10339-10357. [PMID: 37322935 DOI: 10.3934/mbe.2023453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In recent studies, the tumourigenesis and development of endometrial carcinoma (EC) have been correlated significantly with redox. We aimed to develop and validate a redox-related prognostic model of patients with EC to predict the prognosis and the efficacy of immunotherapy. We downloaded gene expression profiles and clinical information of patients with EC from the Cancer Genome Atlas (TCGA) and the Gene Ontology (GO) dataset. We identified two key differentially expressed redox genes (CYBA and SMPD3) by univariate Cox regression and utilised them to calculate the risk score of all samples. Based on the median of risk scores, we composed low-and high-risk groups and performed correlation analysis with immune cell infiltration and immune checkpoints. Finally, we constructed a nomogram of the prognostic model based on clinical factors and the risk score. We verified the predictive performance using receiver operating characteristic (ROC) and calibration curves. CYBA and SMPD3 were significantly related to the prognosis of patients with EC and used to construct a risk model. There were significant differences in survival, immune cell infiltration and immune checkpoints between the low-and high-risk groups. The nomogram developed with clinical indicators and the risk scores was effective in predicting the prognosis of patients with EC. In this study, a prognostic model constructed based on two redox-related genes (CYBA and SMPD3) were proved to be independent prognostic factors of EC and associated with tumour immune microenvironment. The redox signature genes have the potential to predict the prognosis and the immunotherapy efficacy of patients with EC.
Collapse
Affiliation(s)
- Yan He
- Postgraduate Union Training Base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Nannan Cao
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Yanan Tian
- Postgraduate Union Training Base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Xuelin Wang
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Qiaohong Xiao
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Xiaojuan Tang
- Department of Radiography center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jiaolong Huang
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Tingting Zhu
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Chunhui Hu
- Department of Clinical Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Ying Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150000, China
| | - Jie Deng
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Han Yu
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
- Department of Pathology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Peng Duan
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| |
Collapse
|
10
|
Liu K, Huang T, Zhang H, Deng H, Tang M. Establishment and validation of a redox-related long non-coding RNAs prognostic signature in head and neck squamous cell carcinoma. Sci Rep 2022; 12:22040. [PMID: 36543836 PMCID: PMC9772388 DOI: 10.1038/s41598-022-26490-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Reduction and oxidation (redox) reactions occur in living organisms as part of normal cellular metabolism. Here, we established a novel redox-related long non-coding RNAs (rrlncRNAs) signature to predict the prognosis and therapeutic response in Head and neck squamous cell carcinoma (HNSCC). The expression profile and clinical information were obtained from the TCGA project. In total, 10 differently expressed rrlncRNAs associated with prognosis were identified and involved in a prognostic risk score signature by the least absolute shrinkage and selection operator penalized Cox analysis. The area under the receiver operating characteristic curves of the survival rates predicted by the rrlncRNAs signature over one, two, and three years were found to be 0.651, 0.670, and 0.679. Following the completion of the Kaplan-Meier survival study, we discovered that the lower-risk cohort exhibited a much longer overall survival period in contrast with the higher-risk cohort. Univariate and multivariable Cox regression analyses demonstrated that the risk score independently served as a significant predictive factor. GO annotation and KEGG pathway analyses illustrated that the rrlncRNAs signature was strongly associated with immune-related functions as well as signaling pathways. The tumor-infiltrating immune cells, tumor microenvironment, immune-related functions, HLA gene family expression, immune checkpoint genes expression, and somatic variants differed substantially between the low- and high-risk cohorts. Moreover, patients in low-risk group were predicted to present a favorable immunotherapy responsiveness, while in contrast, the high-risk group patients might have a stronger sensitivity to "docetaxel". According to our findings, the rrlncRNAs signature showed an excellent prognosis predictive value and might indicate therapeutic response to immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Kaitai Liu
- grid.507012.10000 0004 1798 304XDepartment of Radiation Oncology, The Lihuili Hospital, Ningbo Medical Center, Ningbo, Zhejiang China
| | - Tianyi Huang
- grid.507012.10000 0004 1798 304XDepartment of Radiation Oncology, The Lihuili Hospital, Ningbo Medical Center, Ningbo, Zhejiang China
| | - Hui Zhang
- grid.507012.10000 0004 1798 304XDepartment of Radiation Oncology, The Lihuili Hospital, Ningbo Medical Center, Ningbo, Zhejiang China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, The Lihuili Hospital, Ningbo Medical Center, Ningbo, Zhejiang China
| | - Ming Tang
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang China
| |
Collapse
|
11
|
Tang F, Tang Z, Lu Z, Cai Y, Lai Y, Mai Y, Li Z, Lu Z, Zhang J, Li Z, He Z. A novel autophagy-related long non-coding RNAs prognostic risk score for clear cell renal cell carcinoma. BMC Urol 2022; 22:203. [PMID: 36496360 PMCID: PMC9741795 DOI: 10.1186/s12894-022-01148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND As the main histological subtype of renal cell carcinoma, clear cell renal cell carcinoma (ccRCC) places a heavy burden on health worldwide. Autophagy-related long non-coding RNAs (ARlncRs) have shown tremendous potential as prognostic signatures in several studies, but the relationship between them and ccRCC still has to be demonstrated. METHODS The RNA-sequencing and clinical characteristics of 483 ccRCC patients were downloaded download from the Cancer Genome Atlas and International Cancer Genome Consortium. ARlncRs were determined by Pearson correlation analysis. Univariate and multivariate Cox regression analyses were applied to establish a risk score model. A nomogram was constructed considering independent prognostic factors. The Harrell concordance index calibration curve and the receiver operating characteristic analysis were utilized to evaluate the nomogram. Furthermore, functional enrichment analysis was used for differentially expressed genes between the two groups of high- and low-risk scores. RESULTS A total of 9 SARlncRs were established as a risk score model. The Kaplan-Meier survival curve, principal component analysis, and subgroup analysis showed that low overall survival of patients was associated with high-risk scores. Age, M stage, and risk score were identified as independent prognostic factors to establish a nomogram, whose concordance index in the training cohort, internal validation, and external ICGC cohort was 0.793, 0.671, and 0.668 respectively. The area under the curve for 5-year OS prediction in the training cohort, internal validation, and external ICGC cohort was 0.840, 0.706, and 0.708, respectively. GO analysis and KEGG analysis of DEGs demonstrated that immune- and inflammatory-related pathways are likely to be critically involved in the progress of ccRCC. CONCLUSIONS We established and validated a novel ARlncRs prognostic risk model which is valuable as a potential therapeutic target and prognosis indicator for ccRCC. A nomogram including the risk model is a promising clinical tool for outcomes prediction of ccRCC patients and further formulation of individualized strategy.
Collapse
Affiliation(s)
- Fucai Tang
- grid.12981.330000 0001 2360 039XDepartment of Urology, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Zhong Road, Shenzhen, 518033 China
| | - Zhicheng Tang
- grid.410737.60000 0000 8653 1072The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436 Guangdong China
| | - Zechao Lu
- grid.12981.330000 0001 2360 039XDepartment of Urology, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Zhong Road, Shenzhen, 518033 China
| | - Yueqiao Cai
- grid.410737.60000 0000 8653 1072The First Clinical College of Guangzhou Medical University, Guangzhou, 511436 Guangdong China
| | - Yongchang Lai
- grid.12981.330000 0001 2360 039XDepartment of Urology, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Zhong Road, Shenzhen, 518033 China
| | - Yuexue Mai
- grid.410737.60000 0000 8653 1072The Sixth Clinical College of Guangzhou Medical University, Guangzhou, 511436 Guangdong China
| | - Zhibiao Li
- grid.12981.330000 0001 2360 039XDepartment of Urology, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Zhong Road, Shenzhen, 518033 China
| | - Zeguang Lu
- grid.410737.60000 0000 8653 1072The Second Clinical College of Guangzhou Medical University, Guangzhou, 511436 Guangdong China
| | - Jiahao Zhang
- grid.410737.60000 0000 8653 1072The Sixth Clinical College of Guangzhou Medical University, Guangzhou, 511436 Guangdong China
| | - Ze Li
- grid.410737.60000 0000 8653 1072The First Clinical College of Guangzhou Medical University, Guangzhou, 511436 Guangdong China
| | - Zhaohui He
- grid.12981.330000 0001 2360 039XDepartment of Urology, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025, Shennan Zhong Road, Shenzhen, 518033 China
| |
Collapse
|
12
|
Tang H, Chen H, Yuan H, Jin X, Chen G. Comprehensive analysis of necroptosis-related long noncoding RNA to predict prognosis, immune status, and immunotherapeutic response in clear cell renal cell carcinoma. Transl Cancer Res 2022; 11:4254-4271. [PMID: 36644185 PMCID: PMC9834578 DOI: 10.21037/tcr-22-1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022]
Abstract
Background Necroptosis has been found to be associated with tumorigenesis and tumor progression. However, the prognostic effect of long noncoding RNAs (lncRNAs) associated with necroptosis in clear cell renal cell carcinoma (ccRCC) is still unclear. Methods Pearson correlation analysis was used to identify necroptosis-related genes and lncRNAs obtained from The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) dataset. Least absolute shrinkage and selection operator (LASSO) regression and Cox regression analyses were used to identify a novel necroptosis-associated lncRNAs signature that significantly correlated with survival of ccRCC. Next, single sample gene set enrichment analysis (ssGSEA) was employed to assess the extent of infiltration with immune cells. Analyses to predict the half-maximal inhibitory concentration (IC50) of patients in different risk groups were also conducted. Moreover, follow-up data of an immunotherapy cohort were used to test for differences in the immunotherapeutic efficiency between two risk groups. Finally, patients with ccRCC were divided into two groups based on 6 prognostic lncRNAs. Results We developed a signature of necroptosis-related lncRNAs, which was verified as an independent prognostic factor that can predict prognosis up to 7 years. Patients with higher risk scores were shown to have higher immune suppressive cell infiltration levels and expression of immune checkpoint genes, which suggests that these patients were in a state of immunosuppression. Patients in the low-risk group were found to have an increased response to immunotherapy. A prognostic prediction nomogram was conducted to predict long-term survival of patients. Cluster A tumors were considered hot tumors, since they were correlated with higher levels of immune infiltration and were more sensitive to immunotherapy. Conclusions A comprehensive bioinformatics analysis was conducted, which found that the necroptosis-associated lncRNA signature might be a potent prognostic factor for patients with ccRCC, which could contribute to improved prognosis of these patients.
Collapse
Affiliation(s)
- Haibin Tang
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hualin Chen
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heng Yuan
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxiang Jin
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Chen
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Zhang X, Qin X, Yu T, Wang K, Chen Y, Xing Q. Chromatin regulators-related lncRNA signature predicting the prognosis of kidney renal clear cell carcinoma and its relationship with immune microenvironment: A study based on bioinformatics and experimental validation. Front Genet 2022; 13:974726. [PMID: 36338996 PMCID: PMC9630733 DOI: 10.3389/fgene.2022.974726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Kidney Renal Clear cell carcinoma (KIRC) is a major concern in the urinary system. A lot of researches were focused on Chromatin Regulators (CRs) in tumors. In this study, CRs-related lncRNAs (CRlncRNAs) were investigated for their potential impact on the prognosis of KIRC and the immune microenvironment. Methods: The TCGA database was used to obtain transcriptome and related clinical information. CRs were obtained from previous studies, whereas CRlncRNAs were obtained by differential and correlation analysis. We screened the lncRNAs for the signature construction using regression analysis and LASSO regression analysis. The effectiveness of the signature was evaluated using the Kaplan-Meier (K-M) curve and Receiver Operating Characteristic curve (ROC). Additionally, we examined the associations between the signature and Tumor Microenvironment (TME), and the efficacy of drug therapy. Finally, we further verified whether these lncRNAs could affect the biological function of KIRC cells by functional experiments such as CCK8 and transwell assay. Results: A signature consisting of 8 CRlncRNAs was constructed to predict the prognosis of KIRC. Quantitative Real-Time PCR verified the expression of 8 lncRNAs at the cell line and tissue level. The signature was found to be an independent prognostic indicator for KIRC in regression analysis. This signature was found to predict Overall Survival (OS) better for patients in the subgroups of age, gender, grade, stage, M, N0, and T. Furthermore, a significant correlation was found between riskScore and immune cell infiltration and immune checkpoint. Finally, we discovered several drugs with different IC50 values in different risk groups using drug sensitivity analysis. And functional experiments showed that Z97200.1 could affect the proliferation, migration and invasion of KIRC cells. Conclusion: Overall, the signature comprised of these 8 lncRNAs were reliable prognostic biomarkers for KIRC. Moreover, the signature had significant potential for assessing the immunological landscape of tumors and providing individualized treatment.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinyue Qin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Tiannan Yu
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Kexin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yinhao Chen
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- *Correspondence: Qianwei Xing, ; Yinhao Chen,
| | - Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- *Correspondence: Qianwei Xing, ; Yinhao Chen,
| |
Collapse
|
14
|
Integrative Analysis Reveals a Nine TP53 Pathway-Related lncRNA Prognostic Signature in Endometrial Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5432806. [PMID: 36262972 PMCID: PMC9576376 DOI: 10.1155/2022/5432806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/19/2021] [Accepted: 09/24/2022] [Indexed: 12/24/2022]
Abstract
Background TP53 mutation is a common mutation gene in uterine corpus endometrial carcinoma (UCEC), and the TP53 signaling pathway plays an essential role in the tumorigenesis, progression, and immune infiltration in UCEC. We aimed to discover TP53 pathway-related lncRNAs in UCEC. Materials and methods. 528 UCEC patients with 587 transcriptional profiles were enrolled in this study. We first investigated the differential status of TP53 signaling pathway between tumor and normal tissues by GSEA analysis, then identified TP53 pathway-related lncRNAs, accordingly establishing a nine TP53 pathway related to the lncRNA signature in the training set and verified this signature in the test set. Besides, the interaction network was constructed; the immune infiltration, drug response to cisplatin and paclitaxel, and mutation atlas were investigated. Finally, we performed a subgroup analysis to check the universality of this signature. Results A nine TP53 pathway-related lncRNA prognostic signature was constructed and verified superior accuracy in predicting the overall survival of UCEC patients. Besides, high-risk patients showed a poor prognosis, but they were more sensitive to the cisplatin and paclitaxel. Notably, M2 macrophages were higher infiltrated in high-risk patients, and TP53 showed a significantly higher mutation in high-risk patients than low-risk patients. Conclusions We constructed and verified a nine TP53 pathway-related lncRNA prognostic signature in UCEC, which also contributes to the decision-making of the chemotherapy.
Collapse
|
15
|
Feng L, Yang J, Zhang W, Wang X, Li L, Peng M, Luo P. Prognostic significance and identification of basement membrane-associated lncRNA in bladder cancer. Front Oncol 2022; 12:994703. [PMID: 36300088 PMCID: PMC9590283 DOI: 10.3389/fonc.2022.994703] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Based on the importance of basement membrane (BM) in cancer invasion and metastasis, we constructed a BM-associated lncRNA risk model to group bladder cancer (BCa) patients. Transcriptional and clinical data of BCa patients were downloaded from The Cancer Genome Atlas (TCGA), and the expressed genes of BM-related proteins were obtained from the BM-BASE database. We download the GSE133624 chip data from the GEO database as an external validation dataset. We screened for statistically different BM genes between tumors and adjacent normal tissues. Co-expression analysis of lncRNAs and differentially expressed BM genes was performed to identify BM-related lncRNAs. Then, differentially expressed BM-related lncRNAs (DEBMlncRNAs) between tumor and normal tissues were identified. Univariate/multivariate Cox regression analysis was performed to select lncRNAs for risk assessment. LASSO analysis was performed to build a prognostic model. We constructed a model containing 8 DEBMlncRNAs (AC004034.1, AL662797.1, NR2F1-AS1, SETBP1-DT, AC011503.2, AC093010.2, LINC00649 and LINC02321). The prognostic risk model accurately predicted the prognosis of BCa patients and revealed that tumor aggressiveness and distant metastasis were associated with higher risk scores. In this model, we constructed a nomogram to assist clinical decision-making based on clinicopathological characteristics such as age, T, and N. The model also showed good predictive power for the tumor microenvironment and mutational burden. We validated the expression of eight lncRNAs using the dataset GSE133624 and two human bladder cancer cell lines (5637, BIU-87) and examined the expression and cellular localization of LINC00649 and AC011503.2 using a human bladder cancer tissue chip. We found that knockdown of LINC00649 expression in 5637 cells promoted the proliferation of 5637 cells.Our eight DEBMlncRNA risk models provide new insights into predicting prognosis, tumor invasion, and metastasis in BCa patients.
Collapse
Affiliation(s)
- Lixiang Feng
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Yang
- Department of Urology, Wuhan Third Hospital, Wuhan, China
| | - Wei Zhang
- Department of Urology, Wuhan Third Hospital, Wuhan, China
| | - Xiong Wang
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Pengcheng Luo, ; Min Peng, ; Lili Li,
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Pengcheng Luo, ; Min Peng, ; Lili Li,
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Pengcheng Luo, ; Min Peng, ; Lili Li,
| |
Collapse
|
16
|
Huang L, Li Y, Wang P, Xie Y, Liu F, Mao J, Miao J. Integrated analysis of immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network in children with Henoch Schönlein purpura nephritis. Transl Pediatr 2022; 11:1682-1696. [PMID: 36345450 PMCID: PMC9636465 DOI: 10.21037/tp-22-437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play important roles in the regulation of immunological and apoptotic function. This study aimed to explore the critical immune- and apoptosis-related lncRNAs in the occurrence and development of Henoch-Schönlein purpura nephritis (HSPN) in children. METHODS Differential analysis was employed to identify the differentially expressed lncRNAs, as well as the immune- and apoptosis-related mRNAs in children with HSPN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to validate the immunological and apoptotic roles of the differentially expressed immune- and apoptosis-related lncRNAs and mRNAs. Spearman's correlation analysis was performed to analyze the differentially expressed lncRNAs and immune- and apoptosis-related messenger RNAs (mRNAs). Based on the competing endogenous RNA (ceRNA) mechanism, the immune- and apoptosis-related lncRNA-microRNA (miRNA)-mRNA regulatory network was then constructed in children with HSPN. The expression levels of the lncRNAs in the lncRNA-miRNA-mRNA regulatory network were further confirmed by quantitative real-time polymerase chain in the peripheral blood samples of children with HSPN. RESULTS By intersecting the differentially expressed immune-related and apoptosis-related genes through GO and KEGG analyses, a total of 43 genes were identified in children with HSPN, and 100 lncRNAs highly correlated with the above genes were identified by correlation analysis. The immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network was then established based on ceRNA mechanism. Dysregulation of a total of 11 lncRNAs were discovered, including upregulated SNHG3, LINC00152, TUG1, GAS5, FGD5-AS1, DLEU2, and SCARNA9; and downregulated SNHG1, NEAT1, DISC1-IT1, and PVT1. The validation conducted in the clinical samples also suggested that the above lncRNAs in the specific regulatory network may act as potential biomarkers with prognosis in children with HSPN. CONCLUSIONS LncRNAs may play essential regulatory roles in the occurrence and development of HSPN in children, and the immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network might be the underlying molecular mechanism that dissects the disease pathogenesis. In addition, the dysregulated lncRNAs in the regulatory network may be novel biomarkers for the diagnosis and therapy of HSPN in children.
Collapse
Affiliation(s)
- Lingfei Huang
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Yanhong Li
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Pu Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yi Xie
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jing Miao
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Zhou Z, Hu F, Huang D, Chi Q, Tang NLS. Nonsense-Mediated Decay Targeted RNA (ntRNA): Proposal of a ntRNA–miRNA–lncRNA Triple Regulatory Network Usable as Biomarker of Prognostic Risk in Patients with Kidney Cancer. Genes (Basel) 2022; 13:genes13091656. [PMID: 36140823 PMCID: PMC9498815 DOI: 10.3390/genes13091656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
The most prevalent subtype of renal cell carcinoma (RCC), kidney renal clear cell carcinoma (KIRC) may be associated with a poor prognosis in a high number of cases, with a stage-specific prognostic stratification currently in use. No reliable biomarkers have been utilized so far in clinical practice despite the efforts in biomarker research in the last years. Nonsense-mediated mRNA decay (NMD) is a critical safeguard against erroneous transcripts, particularly mRNA transcripts containing premature termination codons (called nonsense-mediated decay targeted RNA, ntRNA). In this study, we first characterized 296 differentially expressed ntRNAs that were independent of the corresponding gene, 261 differentially expressed miRNAs, and 4653 differentially expressed lncRNAs. Then, we constructed a hub ntRNA–miRNA–lncRNA triple regulatory network associated with the prognosis of KIRC. Moreover, the results of immune infiltration analysis indicated that this network may influence the changes of the tumor immune microenvironment. A prognostic model derived from the genes and immune cells associated with the network was developed to distinguish between high- and low-risk patients, which was a better prognostic than other models, constructed using different biomarkers. Additionally, correlation of methylation and ntRNAs in the network suggested that some ntRNAs were regulated by methylation, which is helpful to further study the causes of abnormal expression of ntRNAs. In conclusion, this study highlighted the possible clinical implications of ntRNA functions in KIRC, proposing potential significant biomarkers that could be utilized to define the prognosis and design personalized treatment plans in kidney cancer management in the next future.
Collapse
Affiliation(s)
- Zhiyue Zhou
- Department of Statistics, School of Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Fuyan Hu
- Department of Statistics, School of Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Correspondence: (F.H.); (N.L.S.T.)
| | - Dan Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingjia Chi
- Department of Engineering Structure and Mechanics, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Nelson L. S. Tang
- Department of Chemical Pathology and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Functional Genomics and Biostatistical Computing Laboratory, CUHK Shenzhen Research Institute, Shenzhen 518000, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Correspondence: (F.H.); (N.L.S.T.)
| |
Collapse
|
18
|
Cheng Z, Wang J, Xu Y, Jiang T, Xue Z, Li S, Zhao Y, Song H, Song J. N7-methylguanosine-related lncRNAs: Distinction between hot and cold tumors and construction of predictive models in colon adenocarcinoma. Front Oncol 2022; 12:951452. [PMID: 36185235 PMCID: PMC9520617 DOI: 10.3389/fonc.2022.951452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Colon adenocarcinoma (COAD) is a prevalent malignant tumor that severely threatens human health across the globe. Immunotherapy is an essential need for patients with COAD. N7-methylguanosine (m7G) has been associated with human diseases, and non-coding RNAs (lncRNAs) regulate various tumor-related biological processes. Nonetheless, the m7G-related lncRNAs involved in COAD regulation are limited. This study aims to construct the clustering features and prognostic model of m7G-related lncRNAs in COAD. First, The Cancer Genome Atlas (TCGA) database was used to identify m7G-related differentially expressed lncRNAs (DELs), based on which COAD cases could be classified into two subtypes. Subsequently, univariate Cox analysis was used to identify 9 prognostic m7G-related lncRNAs. Further, Five candidates were screened by LASSO-Cox regression to develop new models. The patients were divided into high-risk and low-risk groups based on the median risk score. Consequently, the Kaplan-Meier survival curve demonstrated a statistically significant overall survival (OS) between the high- and low-risk groups (P<0.001). Multivariate Cox regression analysis revealed that risk score is an independent prognostic factor in COAD patients (P<0.001). This confirms the clinical applicability of the model. Additionally, we performed Gene Set Enrichment Analysis (GSEA), which uncovered the biological and functional differences between risk subgroups, i.e., enrichment of immune-related diseases in the high-risk group and enrichment of metabolic-related pathways in the low-risk group. In a drug sensitivity analysis, high-risk group were more sensitive to some chemotherapeutics and targeted drugs than low-risk group. Eventually, the stability of the model was confirmed by qRT-PCR. Our study unraveled the features of different immune states of COAD and established a prognostic model, including five m7G-related lncRNAs for COAD patients. These results will bolster clinical treatment and survival prediction of COAD.
Collapse
Affiliation(s)
- Zhichao Cheng
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaqi Wang
- Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenyu Xue
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuai Li
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Zhao
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Jun Song, ; Hu Song,
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Jun Song, ; Hu Song,
| |
Collapse
|
19
|
Reactive Oxygen Species and Long Non-Coding RNAs, an Unexpected Crossroad in Cancer Cells. Int J Mol Sci 2022; 23:ijms231710133. [PMID: 36077530 PMCID: PMC9456385 DOI: 10.3390/ijms231710133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Long non-coding RNAs (lncRNA) have recently been identified as key regulators of oxidative stress in several malignancies. The level of reactive oxygen species (ROS) must be constantly regulated to maintain cancer cell proliferation and chemoresistance and to prevent apoptosis. This review will discuss how lncRNAs alter the ROS level in cancer cells. We will first describe the role of lncRNAs in the nuclear factor like 2 (Nrf-2) coordinated antioxidant response of cancer cells. Secondly, we show how lncRNAs can promote the Warburg effect in cancer cells, thus shifting the cancer cell’s “building blocks” towards molecules important in oxidative stress regulation. Lastly, we explain the role that lncRNAs play in ROS-induced cancer cell apoptosis and proliferation.
Collapse
|
20
|
Zhu M, Huang C, Wu X, Gu Y, Hu X, Ma D, Zhong W. Aging-based molecular classification and score system in ccRCC uncovers distinct prognosis, tumor immunogenicity, and treatment sensitivity. Front Immunol 2022; 13:877076. [PMID: 36032073 PMCID: PMC9402984 DOI: 10.3389/fimmu.2022.877076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Aging is a complex biological process and a major risk factor for cancer development. This study was conducted to develop a novel aging-based molecular classification and score system in clear cell renal cell carcinoma (ccRCC). Methods Integrative analysis of aging-associated genes was performed among ccRCC patients in the TCGA and E-MTAB-1980 cohorts. In accordance with the transcriptional expression matrix of 173 prognostic aging-associated genes, aging phenotypes were clustered with the consensus clustering approach. The agingScore was generated to quantify aging phenotypes with principal component analysis. Tumor-infiltrating immune cells and the cancer immunity cycle were quantified with the ssGSEA approach. Immunotherapy response was estimated through the TIDE algorithm, and a series of tumor immunogenicity indicators were computed. Drug sensitivity analysis was separately conducted based on the GDSC, CTRP, and PRISM analyses. Results Three aging phenotypes were established for ccRCC, with diverse prognosis, clinical features, immune cell infiltration, tumor immunogenicity, immunotherapeutic response, and sensitivity to targeted drugs. The agingScore was developed, which enabled to reliably and independently predict ccRCC prognosis. Low agingScore patients presented more undesirable survival outcomes. Several small molecular compounds and three therapeutic targets, namely, CYP11A1, SAA1, and GRIK4, were determined for the low agingScore patients. Additionally, the high agingScore patients were more likely to respond to immunotherapy. Conclusion Overall, our findings introduced an aging-based molecular classification and agingScore system into the risk stratification and treatment decision-making in ccRCC.
Collapse
Affiliation(s)
- Maoshu Zhu
- Department of Central Laboratory, the Fifth Hospital of Xiamen, Xiamen, China
| | - Chaoqun Huang
- Department of Central Laboratory, the Fifth Hospital of Xiamen, Xiamen, China
| | - Xinhong Wu
- Department of Central Laboratory, the Fifth Hospital of Xiamen, Xiamen, China
| | - Ying Gu
- Department of Pharmacy, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoxu Hu
- Affiliated Primary School to Renmin University of China, Beijing, China
| | - Dongna Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- *Correspondence: Weimin Zhong, ; Dongna Ma,
| | - Weimin Zhong
- Department of Central Laboratory, the Fifth Hospital of Xiamen, Xiamen, China
- *Correspondence: Weimin Zhong, ; Dongna Ma,
| |
Collapse
|
21
|
Wang G, Zhao M, Li J, Li G, Zheng F, Xu G, Hong X. m7G-Associated subtypes, tumor microenvironment, and validation of prognostic signature in lung adenocarcinoma. Front Genet 2022; 13:954840. [PMID: 36046251 PMCID: PMC9422053 DOI: 10.3389/fgene.2022.954840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
Background: 7-Methylguanosine (m7G) is an important posttranscriptional modification that regulates gene expression and is involved in tumorigenesis and development. Tumor microenvironment has been proven to be highly involved in tumor progression and prognosis. However, how m7G-associated genes affect the tumor microenvironment of patients with lung adenocarcinoma (LUAD) remains to be further clarified. Methods: The genetic alterations of m7G-associated genes and their associations with the prognosis and tumor microenvironment in LUAD patients were systemically analyzed. An m7G-Riskscore was established and analyzed for its performance in disease prognosis and association with patient response to immunotherapy. Expression of the model genes at the protein level was investigated through ex vivo experiments. A nomogram was finally obtained based on the m7G-Riskscore and several significant clinical pathological features. Results: m7G-Associated genes were obtained from five LUAD datasets from The Cancer Genome Atlas and Gene Expression Omnibus databases, and their expression pattern was determined. Based on the m7G-associated genes, three LUAD clusters were defined. The differentially expressed genes from the three clusters were screened and used to further divide the LUAD patients into two gene clusters. It was demonstrated that the alterations of m7G-associated genes were associated with the clinical pathological features, prognosis, and tumor immune infiltration in LUAD patients. An m7G-Riskscore including CAND1, RRM2, and SLC2A1 was obtained with robust and accurate prognostic performance. WB and cell immunofluorescence also showed significant dysregulation of CAND1, RRM2, and SLC2A1 in LUAD. In addition, a nomogram was established to improve the clinical feasibility of the m7G-Riskscore. Correlation analysis revealed that patients with a lower m7G-Riskscore had higher immune and stromal scores, responded well to chemotherapeutics and multiple targeted drugs, and survived longer. Patients with a higher m7G-Riskscore tended to suffer from a higher tumor mutation burden. Furthermore, the m7G-Riskscore exhibited significant associations with immune cell infiltration and cancer stemness. Conclusion: This study systemically analyzed m7G-associated genes and identified their potential role in tumor microenvironment and prognosis in patients with LUAD. The findings of the present study may help better understand LUAD from the m7G perspective and also provide a new thought toward the prognosis and treatment of LUAD.
Collapse
Affiliation(s)
- Guangyao Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Mei Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jiao Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Guosheng Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Fukui Zheng
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Guanglan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Guanglan Xu, ; Xiaohua Hong,
| | - Xiaohua Hong
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Guanglan Xu, ; Xiaohua Hong,
| |
Collapse
|
22
|
Novel Prognosis and Therapeutic Response Model of Immune-Related lncRNA Pairs in Clear Cell Renal Cell Carcinoma. Vaccines (Basel) 2022; 10:vaccines10071161. [PMID: 35891325 PMCID: PMC9325030 DOI: 10.3390/vaccines10071161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/13/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal carcinoma. It is particularly important to accurately judge the prognosis of patients. Since most tumor prediction models depend on the specific expression level of related genes, a better model therefore needs to be constructed. To provide an immune-related lncRNA (irlncRNAs) tumor prognosis model that is independent of the specific gene expression levels, we first downloaded and sorted out the data on ccRCC in the TCGA database and screened irlncRNAs using co-expression analysis and then obtained the differently expressed irlncRNA (DEirlncRNA) pairs by means of univariate analysis. In addition, we modified LASSO penalized regression. Subsequently, the ROC curve was drawn, and we compared the area under the curve, calculated the Akaike information standard value of the 5-year receiver operating characteristic curve, and determined the cut-off point to establish the best model to distinguish the high- or low-disease-risk group of ccRCC. Subsequently, we reassessed the model from the perspectives of survival, clinic-pathological characteristics, tumor-infiltrating immune cells, chemotherapeutics efficacy, and immunosuppressed biomarkers. A total of 17 DEirlncRNAs pairs (AL031710.1|AC104984.5, AC020907.4|AC127-24.4,AC091185.1|AC005104.1, AL513218.1|AC079015.1, AC104564.3|HOXB-AS3, AC003070.1|LINC01355, SEMA6A-AS1|CR936218.1, AL513327.1|AS005785.1, AC084876.1|AC009704.2, IGFL2-AS1|PRDM16-DT, AC011462.4|MMP25-AS1, AL662844.3I|TGB2-AS1, ARHGAP27P1|AC116914.2, AC093788.1|AC007098.1, MCF2L-AS1|AC093001.1, SMIM25|AC008870.2, and AC027796.4|LINC00893) were identified, all of which were included in the Cox regression model. Using the cut-off point, we can better distinguish patients according to different factors, such as survival status, invasive clinic-pathological features, tumor immune infiltration, whether they are sensitive to chemotherapy or not, and expression of immunosuppressive biomarkers. We constructed the irlncRNA model by means of pairing, which can better eliminate the dependence on the expression level of the target genes. In other words, the signature established by pairing irlncRNA regardless of expression levels showed promising clinical prediction value.
Collapse
|
23
|
Liu K, Li Z, Ruan D, Wang H, Wang W, Zhang G. Systematic Investigation of Immune-Related lncRNA Landscape Reveals a Potential Long Non-Coding RNA Signature for Predicting Prognosis in Renal Cell Carcinoma. Front Genet 2022; 13:890641. [PMID: 35860468 PMCID: PMC9289211 DOI: 10.3389/fgene.2022.890641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Renal cell carcinoma (RCC) is the predominant type of malignant tumor in kidney cancer. Finding effective biomarkers, particularly those based on the tumor immune microenvironments (TIME), is critical for the prognosis and diagnosis of RCC. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) play a crucial role in cancer immunity. However, the comprehensive landscape of immune infiltration-associated lncRNAs and their potential roles in the prognosis and diagnosis of RCC remain largely unexplored.Methods: Based on transcriptomic data of 261 RCC samples, novel lncRNAs were identified using a custom pipeline. RCC patients were classified into different immune groups using unsupervised clustering algorithms. Immune-related lncRNAs were obtained according to the immune status of RCC. Competing endogenous RNAs (ceRNA) regulation network was constructed to reveal their functions. Expression patterns and several tools such as miRanda, RNAhybrid, miRWalk were used to define lncRNAs-miRNAs-mRNAs interactions. Univariate Cox, LASSO, and multivariate Cox regression analyses were performed on the training set to construct a tumorigenesis-immune-infiltration-related (TIR)-lncRNA signature for predicting the prognosis of RCC. Independent datasets involving 531 RCC samples were used to validate the TIR-lncRNA signature.Results: Tens of thousands of novel lncRNAs were identified in RCC samples. Comparing tumors with controls, 1,400 tumorigenesis-related (TR)-lncRNAs, 1269 TR-mRNAs, and 192 TR-miRNAs were obtained. Based on the infiltration of immune cells, RCC patients were classified into three immune clusters. By comparing immune-high with immune-low groups, 241 TIR-lncRNAs were identified, many of which were detected in urinary samples. Based on lncRNA-miRNA-mRNA interactions, we constructed a ceRNA network, which included 25 TR-miRNAs, 28 TIR-lncRNAs, and 66 TIR-mRNAs. Three TIR lncRNAs were identified as a prognostic signature for RCC. RCC patients in the high-risk group exhibited worse OS than those in the low-risk group in the training and testing sets (p < 0.01). The AUC was 0.9 in the training set. Univariate and multivariate Cox analyses confirmed that the TIR-lncRNA signature was an independent prognostic factor in the training and testing sets.Conclusion: Based on the constructed immune-related lncRNA landscape, 241 TIR-lncRNAs were functionally characterized, three of which were identified as a novel TIR-lncRNA signature for predicting the prognosis of RCC.
Collapse
Affiliation(s)
- Kepu Liu
- Department of Urology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Zhibin Li
- Department of Urology, Xi’an People’s Hospital (Xi’an Fourth Hospital), Xi’an, China
| | - Dongli Ruan
- Department of Urology and Nephropathy, Xi’an People’s Hospital (Xi’an Forth Hospital), Xi’an, China
| | - Huilong Wang
- Department of Urology, Xi’an People’s Hospital (Xi’an Fourth Hospital), Xi’an, China
| | - Wei Wang
- YuceBio Technology Co., Ltd., Shenzhen, China
| | - Geng Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Geng Zhang,
| |
Collapse
|
24
|
Zhao N, Guo M, Zhang C, Wang C, Wang K. Pan-Cancer Methylated Dysregulation of Long Non-coding RNAs Reveals Epigenetic Biomarkers. Front Cell Dev Biol 2022; 10:882698. [PMID: 35721492 PMCID: PMC9200062 DOI: 10.3389/fcell.2022.882698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Different cancer types not only have common characteristics but also have their own characteristics respectively. The mechanism of these specific and common characteristics is still unclear. Pan-cancer analysis can help understand the similarities and differences among cancer types by systematically describing different patterns in cancers and identifying cancer-specific and cancer-common molecular biomarkers. While long non-coding RNAs (lncRNAs) are key cancer modulators, there is still a lack of pan-cancer analysis for lncRNA methylation dysregulation. In this study, we integrated lncRNA methylation, lncRNA expression and mRNA expression data to illuminate specific and common lncRNA methylation patterns in 23 cancer types. Then, we screened aberrantly methylated lncRNAs that negatively regulated lncRNA expression and mapped them to the ceRNA relationship for further validation. 29 lncRNAs were identified as diagnostic biomarkers for their corresponding cancer types, with lncRNA AC027601 was identified as a new KIRC-associated biomarker, and lncRNA ACTA2-AS1 was regarded as a carcinogenic factor of KIRP. Two lncRNAs HOXA-AS2 and AC007228 were identified as pan-cancer biomarkers. In general, the cancer-specific and cancer-common lncRNA biomarkers identified in this study may aid in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ning Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Chunlong Zhang
- College of Information and Computer Engineering, Northeast Forest University, Harbin, China
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.,School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
25
|
Li J, Wei S, Zhang Y, Lu S, Zhang X, Wang Q, Yan J, Yang S, Chen L, Liu Y, Huang Z. Comprehensive Analyses of Mutation-Derived Long-Chain Noncoding RNA Signatures of Genome Instability in Kidney Renal Papillary Cell Carcinoma. Front Genet 2022; 13:874673. [PMID: 35547247 PMCID: PMC9082950 DOI: 10.3389/fgene.2022.874673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The role of long-chain noncoding RNA (lncRNA) in genomic instability has been demonstrated to be increasingly importance. Therefore, in this study, lncRNAs associated with genomic instability were identified and kidney renal papillary cell carcinoma (KIRP)-associated predictive features were analysed to classify high-risk patients and improve individualised treatment. Methods: The training (n = 142) and test (n = 144) sets were created using raw RNA-seq and patient’s clinical data of KIRP obtained from The Cancer Genome Atlas (TCGA).There are 27 long-chain noncoding RNAs (lncRNAs) that are connected with genomic instability, these lncRNAs were identified using the ‘limma’ R package based on the numbers of somatic mutations and lncRNA expression profiles acquired from KIRP TCGA cohort. Furthermore, Cox regression analysis was carried out to develop a genome instability-derived lncRNA-based gene signature (GILncSig), whose prognostic value was confirmed in the test cohort as well as across the entire KIRP TCGA dataset. Results: A GILncSig derived from three lncRNAs (BOLA3-AS1, AC004870, and LINC00839), which were related with poor KIRP survival, was identified, which was split up into high- and low-risk groups. Additionally, the GILncSig was found to be an independent prognostic predictive index in KIRP using univariate and multivariate Cox analysis. Furthermore, the prognostic significance and characteristics of GilncSig were confirmed in the training test and TCGA sets. GilncSig also showed better predictive performance than other prognostic lncRNA features. Conclusion: The function of lncRNAs in genomic instability and the genetic diversity of KIRP were elucidated in this work. Moreover, three lncRNAs were screened for prediction of the outcome of KIRP survival and novel insights into identifying cancer biomarkers related to genomic instability were discussed.
Collapse
Affiliation(s)
- Jian Li
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shimei Wei
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yan Zhang
- Department of Pediatrics, Shanxi Children's Hospital, Taiyuan, China
| | - Shuangshuang Lu
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiaoxu Zhang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qiong Wang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jiawei Yan
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Sanju Yang
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Liying Chen
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Yunguang Liu
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhijing Huang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
26
|
Dandapani MC, Venkatesan V, Charmine P, Geminiganesan S, Ekambaram S. Differential urinary microRNA expression analysis of miR-1, miR-215, miR-335, let-7a in childhood nephrotic syndrome. Mol Biol Rep 2022; 49:6591-6600. [PMID: 35553329 DOI: 10.1007/s11033-022-07500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Recently, urinary exosomal miRNAs are gaining increasing attention as their expression profiles are often associated with specific diseases and they exhibit great potential as noninvasive biomarkers for the diagnosis of various diseases. The present study was aimed to evaluate the expression status of selected miRNAs (miR-1, miR-215-5p, miR-335-5p and let-7a-5p) in urine samples from children with NS [steroid sensitive (SSNS)] and [steroid resistant (SRNS)] along with healthy control group. METHODS MicroRNA isolation was carried out in urine samples collected from SSNS (100 nos), SRNS (100 nos), and healthy controls (50 nos) using MiRNeasy Mini Kit, followed by cDNA conversion for all the four selected miRNAs using Taqman advanced miRNA cDNA synthesis kit and their expression was quantified by Taqman Advanced miRNA assay kits using Real Time PCR Machine and Rotogen-Q in SSNS and SRNS patients and healthy control subjects. RESULTS Quantification of all the four miRNAs (miR-1, mir-215, miR-335, let-7a) were found to be upregulated in both SSNS and SRNS as compared to control group. Further, the comparison of microRNAs within the case groups revealed significant downregulation of three microRNAs-miR-1, miR-215, miR- 335 and upregulation of let-7a in SRNS group as compared to SSNS. The t-test performed for all the four miRNAs was found to be statistically significant. CONCLUSIONS The aberrant expression of all the four microRNAs in both SSNS and SRNS as compared to healthy subjects may serve as novel biomarkers to distinguish between NS and healthy controls. The differential expression of microRNA let-7a is useful to discriminate SSNS and SRNS.
Collapse
Affiliation(s)
- Mohanapriya Chinambedu Dandapani
- Central Research Facility, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, No.1 Ramachandra Nagar, Porur, Chennai, Tamil Nadu, 600 116, India.
| | - Vettriselvi Venkatesan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600 116, India
| | - Pricilla Charmine
- Central Research Facility, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, No.1 Ramachandra Nagar, Porur, Chennai, Tamil Nadu, 600 116, India
| | - Sangeetha Geminiganesan
- Department of Pediatric Medicine, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600 116, India
| | - Sudha Ekambaram
- Department of Pediatric Nephrology, Dr. Mehta's Hospital, Chetpet, Chennai, 600031, India
| |
Collapse
|
27
|
Identification of a Twelve Epithelial-Mesenchymal Transition-Related lncRNA Prognostic Signature in Kidney Clear Cell Carcinoma. DISEASE MARKERS 2022; 2022:8131007. [PMID: 35371341 PMCID: PMC8967576 DOI: 10.1155/2022/8131007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/31/2021] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT) plays a vital role in tumor metastasis and drug resistance. It has been reported that EMT is regulated by several long noncoding RNAs (lncRNAs). We aimed to identify EMT-related lncRNAs and develop an EMT-related lncRNA prognostic signature in kidney renal clear cell carcinoma (KIRC). Materials and Methods In total, 530 ccRCC patients with 611 transcriptome profiles were included in this study. We first identified differentially expressed EMT-related lncRNAs. Then, all the samples with transcriptional data and clinical survival information were randomly split into training/test sets at a ratio of 1 : 1. Accordingly, we further developed a twelve differentially expressed EMT-related lncRNA prognostic signature in the training set. Following this, risk analysis, survival analysis, subgroup analysis, and the construction of the ROC curves were applied to verify the efficacy of the signature in the training set, test set, and all patients. Besides, we further investigated the differential immune infiltration, immune checkpoint expression, and immune-related functions between high-risk patients. Finally, we explored the different drug responses to targeted therapy (sunitinib and sorafenib) and immunotherapy (anti-PD1 and anti-CTLA4). Results A twelve differentially expressed EMT-related lncRNA prognostic signature performed superior in predicting the overall survival of KIRC patients. High-risk patients were observed with a significantly higher immune checkpoint expression and showed better responses to the targeted therapy and immunotherapy. Conclusions Our study demonstrates that the twelve differentially expressed EMT-related lncRNA prognostic signature could act as an efficient prognostic indicator for KIRC, which also contributes to the decision-making of the further treatment.
Collapse
|
28
|
Li MP, Hao ZC, Yan MQ, Xia CL, Wang ZH, Feng YQ. Possible causes of atherosclerosis: lncRNA COLCA1 induces oxidative stress in human coronary artery endothelial cells and impairs wound healing. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:286. [PMID: 35434044 PMCID: PMC9011302 DOI: 10.21037/atm-22-507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/04/2022] [Indexed: 11/06/2022]
Abstract
Background Atherosclerosis is the most common cause of cardiovascular disease, accompanied by high mortality and poor prognosis. Low-density lipoprotein (LDL) and its oxidized form oxidized low-density lipoprotein (oxLDL) play an important role in atherosclerosis. This article will explore the role of the lncRNA COLCA1 (colorectal cancer associated 1)/hsa-miR-371a-5p/SPP1 (secreted phosphoprotein 1) pathway in oxLDL in causing human coronary artery endothelial cells (HCAECs) inflammation and related biological function changes. Methods OxLDL was used to stimulate HCAECs. The inflammatory response and biological function changes of HCAECs were analyzed, total RNA-seq was performed on HCAECs before and after stimulation, and RT-Qpcr (real-time quantitative PCR) was used to verify the differential genes. Interference of the expression of COLCA1 in HCAECs was performed by siRNA interference technology to verify the role of COLCA1 in the biological function changes of HCAECs after oxLDL stimulation, and further prove that COLCA1 affects SPP1 through hsa-miR-371a-5p. Results OxLDL can affect the oxidative stress response of HCAECs, which in turn affects the apoptosis and wound healing ability of HCAECs. COLCA1 and SPP1 were highly expressed after oxLDL stimulation, while hsa-miR-371a-5p was the opposite. After COLCA1 interference, the oxidative stress level of HCAECs stimulated by oxLDL decreased, the apoptosis level also significantly decreased, and the wound healing ability was enhanced. After simultaneous COLCA1 interference and recovery of the expression of hsa-miR-371a-5p, these improved functions disappeared. The dual-luciferase assay confirmed that hsa-miR-371a-5p and COLCA1, hsa-miR-371a-5p and SPP1 has binding targets. Conclusions OxLDL can up-regulate the expression of COLCA1 in HCAECs, which in turn affects the intracellular COLCA1/hsa-miR-371a-5p/SPP1 pathway to regulate the level of oxidative stress in cells. This in turn affects the level of apoptosis and wound healing ability, which causes cells to produce a continuous inflammatory response.
Collapse
Affiliation(s)
- Ming-Peng Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Cardiovascular, Chenzhou No. 1 People's Hospital, The First Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Zi-Chen Hao
- Department of Cardiovascular, Chenzhou No. 1 People's Hospital, The First Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Meng-Qi Yan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun-Li Xia
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhong-Hua Wang
- Department of Cardiovascular, Chenzhou No. 1 People's Hospital, The First Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Ying-Qing Feng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
29
|
Fang Y, Yang Q. Specificity protein 1-induced serine peptidase inhibitor, Kunitz Type 1 antisense RNA1 regulates colorectal cancer cell proliferation, migration, invasion and apoptosis through targeting heparin binding growth factor via sponging microRNA-214. Bioengineered 2022; 13:3309-3322. [PMID: 35068341 PMCID: PMC8973735 DOI: 10.1080/21655979.2022.2026859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ying Fang
- Department of Gastroenterology, The Affiliated Yangming Hospital of Ningbo University, Yuyao People’s Hospital of Zhejiang Province, Yuyao, China
| | - Qianqian Yang
- Department of Gastroenterology, The Affiliated Yangming Hospital of Ningbo University, Yuyao People’s Hospital of Zhejiang Province, Yuyao, China
| |
Collapse
|
30
|
Wei X, Deng W, Dong Z, Luo Y, Hu X, Zhang J, Xie Z, Zheng T, Tan Y, Tang Z, Li H, Na N. Redox Metabolism-Associated Molecular Classification of Clear Cell Renal Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5831247. [PMID: 35096270 PMCID: PMC8799361 DOI: 10.1155/2022/5831247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/17/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma. Redox metabolism has been recognized as the hallmark of cancer. But the concrete role of redox-related genes in patient stratification of ccRCC remains unknown. Herein, we aimed to characterize the molecular features of ccRCC based on the redox gene expression profiles from The Cancer Genome Atlas. Differentially expressed redox genes (DERGs) and vital genes in metabolism regulation were identified and analyzed in the ccRCC. Consensus clustering was performed to divide patients into three clusters (C1, C2, and C3) based on 139 redox genes with median FPKM value > 1. We analyzed the correlation of clusters with clinicopathological characteristics, immune infiltration, gene mutation, and response to immunotherapy. Subclass C1 was metabolic active with moderate prognosis and associated with glucose, lipid, and protein metabolism. C2 had intermediate metabolic activity with worse prognosis and correlated with more tumor mutation burden, neoantigen, and aneuploidy, indicating possible drug sensitivities towards immune checkpoint inhibitors. Metabolic exhausted subtype C3 showed high cytolytic activity score, suggesting better prognosis than C1 and C2. Moreover, the qRT-PCR was performed to verify the expression of downregulated DERGs including ALDH6A1, ALDH1L1, GLRX5, ALDH1A3, and GSTM3, and upregulated SHMT1 in ccRCC. Overall, our study provides an insight into the characteristics of molecular classification of ccRCC patients based on redox genes, thereby deepening the understanding of heterogeneity of ccRCC and allowing prediction of prognosis of ccRCC patients.
Collapse
Affiliation(s)
- Xiangling Wei
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Weiming Deng
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhanwen Dong
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - You Luo
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiao Hu
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jinhua Zhang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhenwei Xie
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tong Zheng
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuqin Tan
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zuofu Tang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Heng Li
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
31
|
Yuan X, Dong Z, Shen S. LncRNA GACAT3: A Promising Biomarker and Therapeutic Target in Human Cancers. Front Cell Dev Biol 2022; 10:785030. [PMID: 35127682 PMCID: PMC8811307 DOI: 10.3389/fcell.2022.785030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of functional RNA molecules that do not encode proteins and are composed of more than 200 nucleotides. LncRNAs play important roles in epigenetic and gene expression regulation. The oncogenic lncRNA GACAT3 was recently discovered to be dysregulated in many tumors. Aberrant expression of GACAT3 contributes to clinical characteristics and regulates multiple oncogenic processes. The association of GACAT3 with a variety of tumors makes it a promising biomarker for diagnosis, prognosis, and targeted therapy. In this review, we integrate the current understanding of the pathological features, biological functions, and molecular mechanisms of GACAT3 in cancer. Additionally, we provide insight into the utility of GACAT3 as an effective diagnostic and prognostic marker for specific tumors, which offers novel opportunities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zihui Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affifiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shen Shen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affifiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Shen Shen,
| |
Collapse
|
32
|
Li FW, Luo SK. Identification and Construction of a Predictive Immune-Related lncRNA Signature Model for Melanoma. Int J Gen Med 2021; 14:9227-9235. [PMID: 34880662 PMCID: PMC8647169 DOI: 10.2147/ijgm.s340025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023] Open
Abstract
Objective The occurrence and development mechanisms of melanoma are related to immunity and lncRNAs. Therefore, it is necessary to systematically explore immune-related lncRNA profiles to help improve the prognosis of melanoma. Methods We integrated immune-related lncRNAs and the basic clinical information of melanoma patients in the TCGA dataset. Immune-associated lncRNAs were selected by differential expression screening and enriched for analysis. After univariate and multivariate Cox regression analyses, a new prognostic indicator based on immune-associated lncRNAs was established. Results Overall, differentially expressed immune-related lncRNAs were significantly associated with clinical outcomes in patients with melanoma. A prognostic model was then established based on 14 immune-associated lncRNAs (LRRC8C-DT, AC021188.1, MALINC1, CCR5AS, EIF2AK3-DT, AC022306.2, AC242842.1, AL034376.1, AL662844.4, AC009065.3, AC099811.3, AC125807.2, SPINT1-AS1 and AC009495.2). Melanoma patients in the high-risk group had worse overall survival than those in the low-risk group. The AUC of the risk score was 0.786. Conclusion This study identified several clinically significant immune-related lncRNAs and established a relevant prognostic model, which provided a molecular analysis of immunity in melanoma and potential prognostic lncRNAs for melanoma.
Collapse
Affiliation(s)
- Fang-Wei Li
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou City, Guangdong Province, 510317, People's Republic of China
| | - Sheng-Kang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou City, Guangdong Province, 510317, People's Republic of China
| |
Collapse
|
33
|
An autophagy-related lncRNA prognostic risk model for thyroid cancer. Eur Arch Otorhinolaryngol 2021; 279:1621-1631. [PMID: 34724113 DOI: 10.1007/s00405-021-07134-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Thyroid cancer (TC) is the most common malignancy of the endocrine system and its incidence is gradually rising. Research has demonstrated a close link between autophagy and thyroid cancer. We constructed a prognostic model of autophagy-related long non-coding RNA (lncRNA) in thyroid cancer and explored its prognostic value. METHODS The data used in this study were all obtained from The Cancer Genome Atlas (TCGA) database and the Human Autophagy Database (HADb). We construct a co-expression network by autophagy-related genes and lncRNA to obtain autophagy-related lncRNAs. After univariate Cox regression analysis and multivariate Cox regression analysis, autophagy-related lncRNAs significantly associated with prognosis were identified. Based on the risk score of lncRNA, thyroid cancer patients are divided into high-risk group and low-risk group. RESULTS A total of 14,142 lncRNAs and 212 autophagy-related genes (ATGs) were obtained from the TCGA database and the HADb, respectively. We performed lncRNA-ATGs correlation analysis and finally obtained 1,166 autophagy-associated lncRNAs. Subsequently, we conducted univariate Cox regression analysis and multivariate Cox regression analysis, nine autophagy-related lncRNAs (AC092279.1, AC096677.1, DOCK9-DT, LINC02454, AL136366.1, AC008063.1, AC004918.3, LINC02471 and AL162231.2) significantly associated with prognosis were identified. Based on these autophagy-related lncRNAs, a risk model was constructed. The area under the curve (AUC) of the risk score was 0.905, proving that the accuracy of risk signature was superior. In addition, multiple regression analysis showed that risk score was a significant independent prognostic risk factor for thyroid cancer. CONCLUSION In this study, nine autophagy-related lncRNAs in thyroid cancer were established to predict the prognosis of thyroid cancer patients.
Collapse
|
34
|
Luo H, Tao C, Long X, Zhu X, Huang K. Early 2 factor (E2F) transcription factors contribute to malignant progression and have clinical prognostic value in lower-grade glioma. Bioengineered 2021; 12:7765-7779. [PMID: 34617871 PMCID: PMC8806968 DOI: 10.1080/21655979.2021.1985340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Early 2 factor (E2F) genes encoding a family of transcription factors are significantly associated with apoptosis, metabolism, and angiogenesis in several tumor types. However, the biological functions of E2F transcription factors (E2Fs) and their potential involvement in the malignancy of lower-grade glioma (LGG) remain unclear. We explored the effects of the expression of eight E2F family members on the clinical characteristics of LGG based on the Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and GSE16011 datasets. Two LGG subgroups were identified according to the consensus clustering of the eight E2Fs. We employed the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm for further functional experiments and the development of a potential risk score. Two categories of patients with LGG were identified based on the median risk scores. We then developed a nomogram based on the results of the multivariate analysis. Real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were performed to validate the bioinformatics results. Our results indicated that E2F family members were significantly involved in the malignancy of LGG and might serve as effective prognostic biomarkers of the disease.
Collapse
Affiliation(s)
- Haitao Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Chuming Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.,Scientific Research Center, East China Institute of Digital Medical Engineering, Shangrao, Jiangxi Province, China
| | - Xiaoyan Long
- Scientific Research Center, East China Institute of Digital Medical Engineering, Shangrao, Jiangxi Province, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.,Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.,Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
35
|
Construction of a Novel Immune-Related lncRNA Pair Signature with Prognostic Significance for Kidney Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2021; 2021:8800358. [PMID: 34512816 PMCID: PMC8429034 DOI: 10.1155/2021/8800358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Background Renal cell carcinoma (RCC) is one of the most common aggressive malignant tumors in the urinary system, among which the clear cell renal cell carcinoma (ccRCC) is the most common subtype. The immune-related long noncoding ribonucleic acids (irlncRNAs) which are abundant in immune cells and immune microenvironment (IME) have potential significance in evaluating the prognosis and effects of immunotherapy. The signature based on irlncRNA pairs and independent of the exact expression level seems to have a latent predictive significance for the prognosis of patients with malignant tumors but has not been applied in ccRCC yet. Method In this article, we retrieved The Cancer Genome Atlas (TCGA) database for the transcriptome profiling data of the ccRCC and performed coexpression analysis between known immune-related genes (ir-genes) and lncRNAs to find differently expressed irlncRNA (DEirlncRNA). Then, we adopted a single-factor test and a modified LASSO regression analysis to screen out ideal DEirlncRNAs and constructed a Cox proportional hazard model. We have sifted 28 DEirlncRNA pairs, 12 of which were included in this model. Next, we compared the area under the curve (AUC), found the cutoff point by using the Akaike information criterion (AIC) value, and distinguished the patients with ccRCC into a high-risk group and a low-risk group using this value. Finally, we tested this model by investigating the relationship between risk score and survival, clinical pathological characteristics, cells in tumor immune microenvironment, chemotherapy, and targeted checkpoint biomarkers. Results A novel immune-related lncRNA pair signature consisting of 12 DEirlncRNA pairs was successfully constructed and tightly associated with overall survival, clinical pathological characteristics, cells in tumor immune microenvironment, and reactiveness to immunotherapy and chemotherapy in patients with ccRCC. Besides, the efficacy of this signature was verified in some commonly used clinicopathological subgroups and could serve as an independent prognostic factor in patients with ccRCC. Conclusions This signature was proven to have a potential predictive significance for the prognosis of patients with ccRCC and the efficacy of immunotherapy.
Collapse
|
36
|
Identification of a glycolysis-related lncRNA prognostic signature for clear cell renal cell carcinoma. Biosci Rep 2021; 41:229592. [PMID: 34402862 PMCID: PMC8403747 DOI: 10.1042/bsr20211451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The present study investigated the independent prognostic value of glycolysis-related long noncoding (lnc)RNAs in clear cell renal cell carcinoma (ccRCC). Methods: A coexpression analysis of glycolysis-related mRNAs–long noncoding RNAs (lncRNAs) in ccRCC from The Cancer Genome Atlas (TCGA) was carried out. Clinical samples were randomly divided into training and validation sets. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were performed to establish a glycolysis risk model with prognostic value for ccRCC, which was validated in the training and validation sets and in the whole cohort by Kaplan–Meier, univariate and multivariate Cox regression, and receiver operating characteristic (ROC) curve analyses. Principal component analysis (PCA) and functional annotation by gene set enrichment analysis (GSEA) were performed to evaluate the risk model. Results: We identified 297 glycolysis-associated lncRNAs in ccRCC; of these, 7 were found to have prognostic value in ccRCC patients by Kaplan–Meier, univariate and multivariate Cox regression, and ROC curve analyses. The results of the GSEA suggested a close association between the 7-lncRNA signature and glycolysis-related biological processes and pathways. Conclusion: The seven identified glycolysis-related lncRNAs constitute an lncRNA signature with prognostic value for ccRCC and provide potential therapeutic targets for the treatment of ccRCC patients.
Collapse
|
37
|
Zhang X, Cao Y, Chen L. Construction of a prognostic signature of autophagy-related lncRNAs in non-small-cell lung cancer. BMC Cancer 2021; 21:921. [PMID: 34391383 PMCID: PMC8364711 DOI: 10.1186/s12885-021-08654-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/29/2021] [Indexed: 01/18/2023] Open
Abstract
Background Autophagy inhibits tumorigenesis by limiting inflammation. LncRNAs regulate gene expression at various levels as RNAs; thus, both autophagy and lncRNAs are closely related to the occurrence and development of tumours. Methods A total of 232 autophagy-related genes were used to construct a coexpression network to extract autophagy-related lncRNAs. A prognostic signature was constructed by multivariate regression analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was applied to analyse enrichment in cancer-related pathways. Immune infiltration analysis was used to analyse the relationship between the prognostic signature and the tumour microenvironment. Results Nine autophagy-related lncRNAs were used to construct a prognostic model for non-small-cell lung cancer. The median risk score was used to discriminate the high- and low-risk groups, and the low-risk group was found to have better survival. Because KEGG pathway analysis showed that the prognostic signature was enriched in some immune pathways, further analysis of immune infiltration was conducted, and it was found that the prognostic signature did play a unique role in the immune microenvironment. Additionally, the prognostic signature was associated with clinical factors. Conclusion We constructed a prognostic model of autophagy-related lncRNAs that can predict the prognosis of non-small-cell lung cancer.
Collapse
Affiliation(s)
- Xinyang Zhang
- Department of Pathology Anatomy, Medical College of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yu Cao
- Third People's Hospital of Nantong, Nantong, 226001, Jiangsu, China
| | - Li Chen
- Department of Pathology Anatomy, Medical College of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
38
|
Ren J, Wang A, Liu J, Yuan Q. Identification and validation of a novel redox-related lncRNA prognostic signature in lung adenocarcinoma. Bioengineered 2021; 12:4331-4348. [PMID: 34338158 PMCID: PMC8806475 DOI: 10.1080/21655979.2021.1951522] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the main causes of cancer deaths globally. Redox is emerging as a crucial contributor to the pathophysiology of LUAD, which can be regulated by long non-coding RNAs (lncRNAs). The aim of our research is to identify a novel redox-related lncRNA prognostic signature (redox-LPS) for better prediction of LUAD prognosis. 535 LUAD samples from The Cancer Genome Atlas (TCGA) database and 226 LUAD samples from the Gene Expression Omnibus (GEO) database were included in our study. 67 redox genes and 313 redox-related lncRNAs were identified. After performing LASSO-Cox regression analysis, a redox-LPS consisting of four lncRNAs (i.e., CRNDE, CASC15, LINC01137, and CYP1B1-AS1) was developed and validated. Our redox-LPS was superior to another three established models in predicting survival probability of LUAD patients. Univariate and multivariate Cox regression analysis revealed that risk score and stage were independent prognostic indicators. A nomogram plot including risk score and stage was constructed to predict survival probability of LUAD patients; this was further verified by calibration curves. Functional enrichment analysis and gene set enrichment analysis, were performed to determine the differences in cellular processes and signaling pathways between the high – and low-risk subgroups. A variety of algorithms (such as single-sample gene set enrichment analysis and CIBERSOFT) were conducted to uncover the landscape of tumor immune microenvironment in the high- and low-risk subgroups. In conclusion, a novel independent redox-LPS was constructed and validated for LUAD patients, which might provide new insights for clinical decision-making and precision medicine.
Collapse
Affiliation(s)
- Jie Ren
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Aman Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
39
|
Song H, Liu Y, Liang H, Jin X, Liu L. SPINT1-AS1 Drives Cervical Cancer Progression via Repressing miR-214 Biogenesis. Front Cell Dev Biol 2021; 9:691140. [PMID: 34350182 PMCID: PMC8326843 DOI: 10.3389/fcell.2021.691140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidences have revealed the dysregulated expressions and critical roles of non-coding RNAs in various malignancies, including cervical cancer. Nevertheless, our knowledge about the vast majority of non-coding RNAs is still lacking. Here we identified long non-coding RNA (lncRNA) SPINT1-AS1 as a novel cervical cancer-associated lncRNA. SPINT1-AS1 was increased in cervical cancer and correlated with advanced stage and poor prognosis. SPINT1-AS1 was a direct downstream target of miR-214, a well-known tumor suppressive microRNA (miRNA) in cervical cancer. Intriguingly, SPINT1-AS1 was also found to repress miR-214 biogenesis via binding DNM3OS, the primary transcript of miR-214. The interaction between SPINT1-AS1 and DNM3OS repressed the binding of DROSHA and DGCR8 to DNM3OS, blocked DNM3OS cleavage, and therefore repressed mature miR-214 biogenesis. The expression of SPINT1-AS1 was significantly negatively correlated with miR-214 in cervical cancer tissues, supporting the reciprocal repression between SPINT1-AS1 and miR-214 in vivo. Through downregulating mature miR-214 level, SPINT1-AS1 upregulated the expression of β-catenin, a target of miR-214. Thus, SPINT1-AS1 further activated Wnt/β-catenin signaling in cervical cancer. Functionally, SPINT1-AS1 drove cervical cancer cellular proliferation, migration, and invasion in vitro, and also tumorigenesis in vivo. Deletion of the region mediating the interaction between SPINT1-AS1 and DNM3OS, overexpression of miR-214, and inhibition of Wnt/β-catenin signaling all reversed the roles of SPINT1-AS1 in cervical cancer. Collectively, these findings identified SPINT1-AS1 as a novel cervical cancer-associated oncogenic lncRNA which represses miR-214 biogenesis and activates Wnt/β-catenin signaling, highlighting its potential as prognostic biomarker and therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Hongjuan Song
- Department of Gynecology, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China.,Department of Gynecology, Xuzhou Renci Hospital, Xuzhou, China
| | - Yuan Liu
- Department of Gynecology, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China
| | - Hui Liang
- Department of Cervical Disease, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China
| | - Xin Jin
- Medical Department, Xuzhou Central Hospital, Xuzhou, China
| | - Liping Liu
- Department of Research and Development, Shanghai Lichun Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
40
|
Yuan Q, Ren J, Li L, Li S, Xiang K, Shang D. Development and validation of a novel N6-methyladenosine (m6A)-related multi- long non-coding RNA (lncRNA) prognostic signature in pancreatic adenocarcinoma. Bioengineered 2021; 12:2432-2448. [PMID: 34233576 PMCID: PMC8806915 DOI: 10.1080/21655979.2021.1933868] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has unveiled the pivotal roles of N6-methyladenosine (m6A) in pancreatic adenocarcinoma (PAAD). However, there are not many researches to predict the prognosis of PAAD using m6A-related long non-coding RNAs (lncRNAs). Raw data from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and the Genotype-Tissue Expression project (GTEx) were utilized to comprehensively analyze the expression and prognostic performances of 145 m6A-related lncRNAs in PAAD and to develop and validate a novel m6A-related multi-lncRNA prognostic signature (m6A-LPS) for PAAD patients. In total, 57 differentially expressed m6A-related lncRNAs with prognostic values were identified. Based on LASSO-Cox regression analysis, m6A-LPS was constructed and verified by using five-lncRNA expression profiles for TCGA and ICGC cohorts. PAAD patients were then divided into high- and low-risKBIE_A_1933868k subgroups with different clinical outcomes according to the median risk score; this was further verified by time-dependent receiver operating characteristic curves. Risk scores were significantly associated with clinical parameters such as histological grade and cancer status among PAAD patients. A nomogram consisting of risk score, grade, and cancer status was generated to predict the survival probability of PAAD patients, as also demonstrated by calibration curves. Discrepancies in cellular processes, signaling pathways, and immune status between the high- and low-risk subgroups were investigated by functional and single-sample gene set enrichment analyses. In conclusion, the novel m6A-LPS for PAAD patients was developed and validated, which might provide new insight into clinical decision-making and precision medicine.
Collapse
Affiliation(s)
- Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Ren
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lunxu Li
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Li
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kailai Xiang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
41
|
Dou Q, Gao S, Gan H, Kang Z, Zhang H, Yang Y, Tong H. A Metastasis-Related lncRNA Signature Correlates With the Prognosis in Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:692535. [PMID: 34150667 PMCID: PMC8209488 DOI: 10.3389/fonc.2021.692535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022] Open
Abstract
To explore the role of metastasis-related long noncoding RNA (lncRNA) signature for predicting the prognosis of clear cell renal cell carcinoma (ccRCC) patients. Firstly, metastasis-associated genes were identified to establish a metastasis-related lncRNA signature by statistical analysis. Secondly, the ccRCC patients were grouped into high-risk or low-risk group according to the established signature, and the different pathways between the 2 groups were identified by gene set enrichment analysis (GSEA). Finally, investigations involving PCR, transwell migration and invasion assay were carried out to further confirm our findings. The metastasis-related lncRNA signature was successfully constructed according to 7-metastasis-related genes (ADAM12, CD44, IL6, TFPI2, TGF-β1, THBS2, TIMP3). The diagnostic efficacy and the clinically predictive capacity of the signature were evaluated. Most of the values of the area under the time‐dependent receiver‐operating characteristic (ROC) were greater than 0.70. The nomogram constructed by integrating clinical data and risk scores confirmed that the risk score calculated from our signature was a good prognosis predictor. GSEA analysis showed that some tumor-related pathways were enriched in the high-risk group, while metabolism-related pathways were enriched in the low-risk group. In carcinoma tissues, the SSR3-6, WISP1-2 were highly expressed, but the expression of UBAC2-6 was low there. Knocking down SSR3-6 decreased the ability of migration and invasion in ccRCC cells. In conclusion, we successfully constructed a metastasis-related lncRNA signature, which could accurately predict the survival and prognosis of ccRCC patients.
Collapse
Affiliation(s)
- Qian Dou
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shun Gao
- Department of Urology, Mianyang Central Hospital, Mianyang, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhao Kang
- Department of Oncology, Mianyang Fulin Hospital, Mianyang, China
| | - Han Zhang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yichun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Tong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
42
|
Yu J, Mao W, Sun S, Hu Q, Wang C, Xu Z, Liu R, Chen S, Xu B, Chen M. Identification of an m6A-Related lncRNA Signature for Predicting the Prognosis in Patients With Kidney Renal Clear Cell Carcinoma. Front Oncol 2021; 11:663263. [PMID: 34123820 PMCID: PMC8187870 DOI: 10.3389/fonc.2021.663263] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose This study aimed to construct an m6A-related long non-coding RNAs (lncRNAs) signature to accurately predict the prognosis of kidney clear cell carcinoma (KIRC) patients using data obtained from The Cancer Genome Atlas (TCGA) database. Methods The KIRC patient data were downloaded from TCGA database and m6A-related genes were obtained from published articles. Pearson correlation analysis was implemented to identify m6A-related lncRNAs. Univariate, Lasso, and multivariate Cox regression analyses were used to identifying prognostic risk-associated lncRNAs. Five lncRNAs were identified and used to construct a prognostic signature in training set. Kaplan-Meier curves and receiver operating characteristic (ROC) curves were applied to evaluate reliability and sensitivity of the signature in testing set and overall set, respectively. A prognostic nomogram was established to predict the probable 1-, 3-, and 5-year overall survival of KIRC patients quantitatively. GSEA was performed to explore the potential biological processes and cellular pathways. Besides, the lncRNA/miRNA/mRNA ceRNA network and PPI network were constructed based on weighted gene co-expression network analysis (WGCNA). Functional Enrichment Analysis was used to identify the biological functions of m6A-related lncRNAs. Results We constructed and verified an m6A-related lncRNAs prognostic signature of KIRC patients in TCGA database. We confirmed that the survival rates of KIRC patients with high-risk subgroup were significantly poorer than those with low-risk subgroup in the training set and testing set. ROC curves indicated that the prognostic signature had a reliable predictive capability in the training set (AUC = 0.802) and testing set (AUC = 0.725), respectively. Also, we established a prognostic nomogram with a high C-index and accomplished good prediction accuracy. The lncRNA/miRNA/mRNA ceRNA network and PPI network, as well as functional enrichment analysis provided us with new ways to search for potential biological functions. Conclusions We constructed an m6A-related lncRNAs prognostic signature which could accurately predict the prognosis of KIRC patients.
Collapse
Affiliation(s)
- JunJie Yu
- Medical College, Southeast University, Nanjing, China
| | - WeiPu Mao
- Medical College, Southeast University, Nanjing, China
| | - Si Sun
- Medical College, Southeast University, Nanjing, China
| | - Qiang Hu
- Medical College, Southeast University, Nanjing, China
| | - Can Wang
- Medical College, Southeast University, Nanjing, China
| | - ZhiPeng Xu
- Medical College, Southeast University, Nanjing, China
| | - RuiJi Liu
- Medical College, Southeast University, Nanjing, China
| | - SaiSai Chen
- Medical College, Southeast University, Nanjing, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Department of Urology, Affiliated Lishui People's Hospital of Southeast University, Nanjing, China
| |
Collapse
|