1
|
Govender P, Ghai M. Population-specific differences in the human microbiome: Factors defining the diversity. Gene 2025; 933:148923. [PMID: 39244168 DOI: 10.1016/j.gene.2024.148923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Differences in microbial communities at different body habitats define the microbiome composition of the human body. The gut, oral, skin vaginal fluid and tissue microbiome, are pivotal for human development and immune response and cross talk between these microbiomes is evident. Population studies reveal that various factors, such as host genetics, diet, lifestyle, aging, and geographical location are strongly associated with population-specific microbiome differences. The present review discusses the factors that shape microbiome diversity in humans, and microbiome differences in African, Asian and Caucasian populations. Gut microbiome studies show that microbial species Bacteroides is commonly found in individuals living in Western countries (Caucasian populations), while Prevotella is prevalent in non-Western countries (African and Asian populations). This association is mainly due to the high carbohydrate, high fat diet in western countries in contrast to high fibre, low fat diets in African/ Asian regions. Majority of the microbiome studies focus on the bacteriome component; however, interesting findings reveal that increased bacteriophage richness, which makes up the virome component, correlates with decreased bacterial diversity, and causes microbiome dysbiosis. An increase of Caudovirales (bacteriophages) is associated with a decrease in enteric bacteria in inflammatory bowel diseases. Future microbiome studies should evaluate the interrelation between bacteriome and virome to fully understand their significance in the pathogenesis and progression of human diseases. With ethnic health disparities becoming increasingly apparent, studies need to emphasize on the association of population-specific microbiome differences and human diseases, to develop microbiome-based therapeutics. Additionally, targeted phage therapy is emerging as an attractive alternative to antibiotics for bacterial infections. With rapid rise in microbiome research, focus should be on standardizing protocols, advanced bioinformatics tools, and reducing sequencing platform related biases. Ultimately, integration of multi-omics data (genomics, transcriptomics, proteomics and metabolomics) will lead to precision models for personalized microbiome therapeutics advancement.
Collapse
Affiliation(s)
- Priyanka Govender
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa.
| |
Collapse
|
2
|
Zeng Q, Shu H, Pan H, Zhang Y, Fan L, Huang Y, Ling L. Associations of vaginal microbiota with the onset, severity, and type of symptoms of genitourinary syndrome of menopause in women. Front Cell Infect Microbiol 2024; 14:1402389. [PMID: 39380726 PMCID: PMC11458563 DOI: 10.3389/fcimb.2024.1402389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Genitourinary syndrome of menopause (GSM) describes the symptoms and signs resulting from the effect of estrogen deficiency on the female genitourinary tract, including genital, urinary, and sexual symptoms. However, besides estrogen deficiency, little is known about the etiology of GSM. The objective of this study was to investigate the effects of vaginal microbiota dysbiosis on the occurrence and development of GSM in perimenopausal and postmenopausal women. Methods In total, 96 women were enrolled in this cross-sectional study and clinical data were collected. GSM symptoms were divided into three types: genital, urological, and sexual symptoms. Full-length 16S rRNA gene sequencing using the third-generation PacBio sequencing technology was performed to analyze the vaginal microbiome using vaginal swabs of non-GSM and GSM women with different types of GSM symptoms. Live Lactobacillus Capsule for Vaginal Use (LLCVU) treatment was used to verify the effects of Lactobacillus on GSM symptoms. Results We found that 83.58% (56/67) of women experienced GSM symptoms in the perimenopausal and postmenopausal stages. Among these women with GSM, 23.21% (13/56), 23.21% (13/56), and 53.57% (30/56) had one type, two types, and three types of GSM symptoms, respectively. The richness and diversity of vaginal microbiota gradually increased from reproductive to postmenopausal women. There were significant differences in vaginal microbial community among non-GSM women and GSM women with different types of symptoms. Lactobacillus was found to be negatively associated with the onset, severity, and type of GSM while some bacteria, such as Escherichia-shigella, Anaerococcus, Finegoldia, Enterococcus, Peptoniphilus_harei, and Streptococcus, were found to be positively associated with these aspects of GSM, and these bacteria were especially associated with the types of genital and sexual symptoms in GSM women. LLCVU significantly relieved genital symptoms and improved the sexual life of GSM women in shortterm observation. Conclusions The onset, severity, and type of GSM symptoms may be associated with changes in vaginal microbiota in perimenopausal and postmenopausal women. Vaginal microbiota dysbiosis probably contributes to the occurrence and development of GSMsymptoms, especially vaginal and sexual symptoms. Lactobacillus used in the vagina may be a possible option for non-hormonal treatment of GSM women with genital and sexual symptoms. Clinical Trial Registration https://www.chictr.org.cn/indexEN.html, identifier ChiCTR2100044237.
Collapse
Affiliation(s)
- Qianru Zeng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Fan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubin Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Sritana N, Phungpinij A. Analysis of Oral Microbiota in Elderly Thai Patients with Alzheimer's Disease and Mild Cognitive Impairment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1242. [PMID: 39338124 PMCID: PMC11431138 DOI: 10.3390/ijerph21091242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that predominantly affects the older adult population. Neuroinflammation may be triggered by the migration of oral microbiota composition changes from the oral cavity to the brain. However, the relationship between oral microbiota composition and neurodegenerative diseases, such as AD, remains poorly understood. Therefore, we conducted a comprehensive comparison of the relative abundance and diversity of bacterial taxa present in saliva among older adults diagnosed with AD, those with mild cognitive impairment (MCI), and healthy controls. Saliva samples and clinical data were collected from 10 AD patients, 46 MCI patients, and 44 healthy older adults. AD patients had lower Clinical Dementia Rating, Montreal Cognitive Assessment, and Mini-mental Status Examination scores, and induced microbial diversity, than the MCI and control groups. Moreover, AD patients exhibited significantly higher levels of Fusobacteriota and Peptostreptococcaceae and lower levels of Veillonella than the MCI and control groups. In conclusion, a high abundance of Fusobacteria at various levels (i.e., phylum, class, family, and genus levels) may serve as a biomarker for AD. The analysis of oral microbiota dysbiosis biomarkers in older adults may be valuable for identifying individuals at risk for AD.
Collapse
Affiliation(s)
- Narongrit Sritana
- Molecular and Genomics Research Laboratory, Centre of Learning and Research in Celebration of HRH Princess Chulabhorn’s 60 th Birthday Anniversary, Chulabhorn Royal Academy, Bangkok 10210, Thailand;
| | | |
Collapse
|
4
|
Estrada R, Porras T, Romero Y, Pérez WE, Vilcara EA, Cruz J, Arbizu CI. Soil depth and physicochemical properties influence microbial dynamics in the rhizosphere of two Peruvian superfood trees, cherimoya and lucuma, as shown by PacBio-HiFi sequencing. Sci Rep 2024; 14:19508. [PMID: 39174594 PMCID: PMC11341828 DOI: 10.1038/s41598-024-69945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
The characterization of soil microbial communities at different depths is essential to understand their impact on nutrient availability, soil fertility, plant growth and stress tolerance. We analyzed the microbial community at three depths (3 cm, 12 cm, and 30 cm) in the native fruit trees Annona cherimola (cherimoya) and Pouteria lucuma (lucuma), which provide fruits in vitamins, minerals, and antioxidants. We used PacBio-HiFi, a long-read high-throughput sequencing to explore the composition, diversity and putative functionality of rhizosphere bacterial communities at different soil depths. Bacterial diversity, encompassing various phyla, families, and genera, changed with depth. Notable differences were observed in the alpha diversity indices, especially the Shannon index. Beta diversity also varied based on plant type and depth. In cherimoya soils, positive correlations with Total Organic Carbon (TOC) and Cation Exchange Capacity (CEC) were observed, but negative ones with certain cations. In lucuma soils, indices like the Shannon index exhibited negative correlations with several metals and specific soil properties. We proposed that differences between the plant rhizosphere environments may explain the variance in their microbial diversity. This study provides insights into the microbial communities present at different soil depths, highlighting the prevalence of decomposer bacteria. Further research is necessary to elucidate their specific metabolic features and overall impact on crop growth and quality.
Collapse
Affiliation(s)
- Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima, 15024, Peru.
| | - Tatiana Porras
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima, 15024, Peru
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima, 15024, Peru
| | - Wendy E Pérez
- Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias, Instituto Nacional de Innovación Agraria (INIA), Lima, 15024, Peru
| | - Edgardo A Vilcara
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima, 15024, Peru
- Facultad de Agronomía, Universidad Nacional Agraria la Molina, Lima, 15024, Peru
| | - Juancarlos Cruz
- Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias, Instituto Nacional de Innovación Agraria (INIA), Lima, 15024, Peru
| | - Carlos I Arbizu
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima, 15024, Peru.
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas, 01001, Peru.
| |
Collapse
|
5
|
Buetas E, Jordán-López M, López-Roldán A, D'Auria G, Martínez-Priego L, De Marco G, Carda-Diéguez M, Mira A. Full-length 16S rRNA gene sequencing by PacBio improves taxonomic resolution in human microbiome samples. BMC Genomics 2024; 25:310. [PMID: 38528457 DOI: 10.1186/s12864-024-10213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Sequencing variable regions of the 16S rRNA gene (≃300 bp) with Illumina technology is commonly used to study the composition of human microbiota. Unfortunately, short reads are unable to differentiate between highly similar species. Considering that species from the same genus can be associated with health or disease it is important to identify them at the lowest possible taxonomic rank. Third-generation sequencing platforms such as PacBio SMRT, increase read lengths allowing to sequence the whole gene with the maximum taxonomic resolution. Despite its potential, full length 16S rRNA gene sequencing is not widely used yet. The aim of the current study was to compare the sequencing output and taxonomic annotation performance of the two approaches (Illumina short read sequencing and PacBio long read sequencing of 16S rRNA gene) in different human microbiome samples. DNA from saliva, oral biofilms (subgingival plaque) and faeces of 9 volunteers was isolated. Regions V3-V4 and V1-V9 were amplified and sequenced by Illumina Miseq and by PacBio Sequel II sequencers, respectively. RESULTS With both platforms, a similar percentage of reads was assigned to the genus level (94.79% and 95.06% respectively) but with PacBio a higher proportion of reads were further assigned to the species level (55.23% vs 74.14%). Regarding overall bacterial composition, samples clustered by niche and not by sequencing platform. In addition, all genera with > 0.1% abundance were detected in both platforms for all types of samples. Although some genera such as Streptococcus tended to be observed at higher frequency in PacBio than in Illumina (20.14% vs 14.12% in saliva, 10.63% vs 6.59% in subgingival plaque biofilm samples) none of the differences were statistically significant when correcting for multiple testing. CONCLUSIONS The results presented in the current manuscript suggest that samples sequenced using Illumina and PacBio are mostly comparable. Considering that PacBio reads were assigned at the species level with higher accuracy than Illumina, our data support the use of PacBio technology for future microbiome studies, although a higher cost is currently required to obtain an equivalent number of reads per sample.
Collapse
Affiliation(s)
- Elena Buetas
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | - Marta Jordán-López
- Department of Periodontics, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Andrés López-Roldán
- Department of Periodontics, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Giuseppe D'Auria
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | - Llucia Martínez-Priego
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | - Griselda De Marco
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | | | - Alex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
- CIBER Center for Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
6
|
Su S, Hong M, Cui MY, Gui Z, Ma SF, Wu L, Xing LL, Mu L, Yu JF, Fu SY, Gao RJ, Qi DD. Microbial diversity of ticks and a novel typhus group Rickettsia species (Rickettsiales bacterium Ac37b) in Inner Mongolia, China. Parasite 2023; 30:58. [PMID: 38084939 PMCID: PMC10714680 DOI: 10.1051/parasite/2023057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Ticks can carry multiple pathogens, and Inner Mongolia's animal husbandry provides excellent environmental conditions for ticks. This study characterized the microbiome of ticks from different geographical locations in Inner Mongolia; 905 Dermacentor nuttalli and 36 Ixodes persulcatus were collected from sheep in three main pasture areas and from bushes within the forested area. Mixed DNA samples were prepared from three specimens from each region and tick species. Microbial diversity was analyzed by 16S rRNA sequencing, and α and β diversity were determined. The predominant bacterial genera were Rickettsia (54.60%), including Rickettsiales bacterium Ac37b (19.33%) and other Rickettsia (35.27%), Arsenophonus (11.21%), Candidatus Lariskella (10.84%), and Acinetobacter (7.17%). Rickettsia bellii was identified in I. persulcatus, while Rickettsiales bacterium Ac37b was found in D. nuttalli from Ordos and Chifeng. Potential Rickettsia and Anaplasma coinfections were observed in the Ordos region. Tick microbial diversity analysis in Inner Mongolia suggests that sheep at the sampling sites were exposed to multiple pathogens.
Collapse
Affiliation(s)
- Si Su
-
Graduate School, Inner Mongolia Medical University Hohhot 010059 Inner Mongolia China
| | - Mei Hong
-
School of Basic Medicine, Inner Mongolia Medical University Hohhot 010110 Inner Mongolia China
| | - Meng-Yu Cui
-
Graduate School, Inner Mongolia Medical University Hohhot 010059 Inner Mongolia China
| | - Zheng Gui
- First Hospital of Jilin University Changchun 130021 China
| | - Shi-Fa Ma
-
Hulunbuir Mental Health Center Hulunbuir 022150 Inner Mongolia China
| | - Lin Wu
-
Beijing Guoke Biotechnology Co., Ltd 102200 Beijing China
| | - Li-Li Xing
-
Department of Infection Control, Second Affiliated Hospital of Inner Mongolia Medical University Hohhot Inner Mongolia Autonomous Region 010000 China
| | - Lan Mu
-
School of Basic Medicine, Inner Mongolia Medical University Hohhot 010110 Inner Mongolia China
| | - Jing-Feng Yu
-
School of Basic Medicine, Inner Mongolia Medical University Hohhot 010110 Inner Mongolia China
| | - Shao-Yin Fu
-
Inner Mongolia Academy of Agricultural & Animal Husbandry Science Hohhot 010031 Inner Mongolia China
| | - Rui-Juan Gao
-
School of Basic Medicine, Inner Mongolia Medical University Hohhot 010110 Inner Mongolia China
| | - Dong-Dong Qi
-
Hulunbuir Mental Health Center Hulunbuir 022150 Inner Mongolia China
| |
Collapse
|
7
|
Kalabiska I, Annar D, Keki Z, Borbas Z, Bhattoa HP, Zsakai A. The Oral Microbiome Profile of Water Polo Players Aged 16-20. Sports (Basel) 2023; 11:216. [PMID: 37999433 PMCID: PMC10674641 DOI: 10.3390/sports11110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVES Chlorine has a strong antibacterial property and is the disinfectant most frequently used in swimming pools. Therefore, the microbiota community in the oral cavity of those who practice water sports is assumed to be special due to their regular immersion in water. Adverse changes in the composition of oral cavity microbiota may have serious health consequences. We aimed to compare the oral microbiome between water polo players and non-athletes. We hypothesized that the oral cavity microbiota community differed between water polo players and non-athletes. MATERIALS AND METHODS Altogether, 124 water polo players (62 males and 62 females, aged between 9 and 20 years) and 16 non-athlete youths (control group, eight males and eight females, aged between 16 and 20 years, mean age + SD = 17.1 + 1.4 years) who participated in body structure examinations voluntarily agreed to participate in the study. In a randomly selected subsample of water polo players (n: 29, aged between 16 and 20 years, mean age + SD = 17.3 + 1.0 years), saliva samples were also collected. Saliva samples were collected from all non-athlete youths (n: 16, aged between 16 and 20 years). The oral microbiome was determined from a saliva sample, and DNA was isolated using the QIAmp DNA Blood Mini Kit. The 16S rRNA gene amplicon sequencing method was used to analyze the microbiome community. PCR primers were trimmed from the sequence reads with Cutadapt. R library DADA2 was used to process reads in the abundance analysis. RESULTS In general, Streptococcus, Veilonella, and Prevotella genera constituted more than 50% of the oral microbiome community in the two participant groups combined (n = 45). The oral microbial profile had significant sexual dimorphism and differed between water polo players and the non-athletes. Compared to females, males had a higher (p < 0.05) relative abundance of the Atopobium (medium effect size) and Pravotella_7 (very large effect size) genera and a lower (p < 0.05) relative abundance of the Fusobacterium (large effect size), Gemella (large effect size), and Streptococcus (large effect size) genera. Compared to non-athletes, water polo players had higher (p < 0.05, medium effect size) relative abundance of the genus Veillonella and lower (p < 0.05, large effect size) relative abundance of the genus Gemella. CONCLUSIONS The results suggest that regular water training can unfavorably alter the composition of the oral microbial community.
Collapse
Affiliation(s)
- Irina Kalabiska
- Research Center for Sport Physiology, Hungarian University of Sports Science, Alkotas u. 44, 1123 Budapest, Hungary; (I.K.); (D.A.); (Z.B.)
| | - Dorina Annar
- Research Center for Sport Physiology, Hungarian University of Sports Science, Alkotas u. 44, 1123 Budapest, Hungary; (I.K.); (D.A.); (Z.B.)
- Doctoral School of Biology, Eotvos Lorand University, Pazmany P. s. 1/c, 1117 Budapest, Hungary
| | - Zsuzsa Keki
- Biomi Ltd., Szent-Gyorgyi Albert u. 4, 2100 Godollo, Hungary;
| | - Zoltan Borbas
- Research Center for Sport Physiology, Hungarian University of Sports Science, Alkotas u. 44, 1123 Budapest, Hungary; (I.K.); (D.A.); (Z.B.)
| | - Harjit Pal Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Blvd. 98, 4032 Debrecen, Hungary;
| | - Annamaria Zsakai
- Department of Biological Anthropology, Eotvos Lorand University, Pazmany P. s. 1/c, 1117 Budapest, Hungary
- Health Promotion and Education Research Team, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| |
Collapse
|
8
|
Xiao X, Liu S, Deng H, Song Y, Zhang L, Song Z. Advances in the oral microbiota and rapid detection of oral infectious diseases. Front Microbiol 2023; 14:1121737. [PMID: 36814562 PMCID: PMC9939651 DOI: 10.3389/fmicb.2023.1121737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Several studies have shown that the dysregulation of the oral microbiota plays a crucial role in human health conditions, such as dental caries, periodontal disease, oral cancer, other oral infectious diseases, cardiovascular diseases, diabetes, bacteremia, and low birth weight. The use of traditional detection methods in conjunction with rapidly advancing molecular techniques in the diagnosis of harmful oral microorganisms has expanded our understanding of the diversity, location, and function of the microbiota associated with health and disease. This review aimed to highlight the latest knowledge in this field, including microbial colonization; the most modern detection methods; and interactions in disease progression. The next decade may achieve the rapid diagnosis and precise treatment of harmful oral microorganisms.
Collapse
Affiliation(s)
- Xuan Xiao
- Department of Oral Mucosa, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Hua Deng
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yuhan Song
- Department of Oral Mucosa, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Liang Zhang
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China,Liang Zhang,
| | - Zhifeng Song
- Department of Oral Mucosa, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,*Correspondence: Zhifeng Song,
| |
Collapse
|
9
|
Benz S, Mitra S. From Genomics to Metagenomics in the Era of Recent Sequencing Technologies. Methods Mol Biol 2023; 2649:1-20. [PMID: 37258855 DOI: 10.1007/978-1-0716-3072-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Metagenomics, also known as environmental genomics, is the study of the genomic content of a sample of organisms obtained from a common habitat. Metagenomics and other "omics" disciplines have captured the attention of researchers for several decades. The effect of microbes in our body is a relevant concern for health studies. Through sampling the sequences of microbial genomes within a certain environment, metagenomics allows study of the functional metabolic capacity of a community as well as its structure based upon distribution and richness of species. Exponentially increasing number of microbiome literatures illustrate the importance of sequencing techniques which have allowed the expansion of microbial research into areas, including the human gut, antibiotics, enzymes, and more. This chapter illustrates how metagenomics field has evolved with the progress of sequencing technologies.Further, from this chapter, researchers will be able to learn about all current options for sequencing techniques and comparison of their cost and read statistics, which will be helpful for planning their own studies.
Collapse
Affiliation(s)
- Saskia Benz
- School of medicine, University of Leeds, Leeds, UK
| | - Suparna Mitra
- Leeds Institute of Medical Research, University of Leeds, Leeds General Infirmary, Leeds, UK.
| |
Collapse
|
10
|
Microbial Richness of Marine Biofilms Revealed by Sequencing Full-Length 16S rRNA Genes. Genes (Basel) 2022; 13:genes13061050. [PMID: 35741812 PMCID: PMC9223118 DOI: 10.3390/genes13061050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Marine biofilms are a collective of microbes that can grow on many different surfaces immersed in marine environments. Estimating the microbial richness and specificity of a marine biofilm community is a challenging task due to the high complexity in comparison with seawater. Here, we compared the resolution of full-length 16S rRNA gene sequencing technique of a PacBio platform for microbe identification in marine biofilms with the results of partial 16S rRNA gene sequencing of traditional Illumina PE250 platform. At the same time, the microbial richness, diversity, and composition of adjacent seawater communities in the same batch of samples were analyzed. Both techniques revealed higher species richness, as reflected by the Chao1 index, in the biofilms than that in the seawater communities. Moreover, compared with Illumina sequencing, PacBio sequencing detected more specific species for biofilms and less specific species for seawater. Members of Vibrio, Arcobacter, Photobacterium, Pseudoalteromonas, and Thalassomonas were significantly enriched in the biofilms, which is consistent with the previous understanding of species adapted to a surface-associated lifestyle and validates the taxonomic analyses in the current study. To conclude, the full-length sequencing of 16S rRNA genes has probably a stronger ability to analyze more complex microbial communities, such as marine biofilms, the species richness of which has probably been under-estimated in previous studies.
Collapse
|
11
|
Lourenco JM, Welch CB. Using microbiome information to understand and improve animal performance. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2077147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Liang Y, Gong Z, Wang J, Zheng J, Ma Y, Min L, Chen Q, Li Z, Qu Y, Chen Q, Li X. Nanopore-Based Comparative Transcriptome Analysis Reveals the Potential Mechanism of High-Temperature Tolerance in Cotton (Gossypium hirsutum L.). PLANTS 2021; 10:plants10112517. [PMID: 34834881 PMCID: PMC8618236 DOI: 10.3390/plants10112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Extreme high temperatures are threatening cotton production around the world due to the intensification of global warming. To cope with high-temperature stress, heat-tolerant cotton cultivars have been bred, but the heat-tolerant mechanism remains unclear. This study selected heat-tolerant (‘Xinluzao36′) and heat-sensitive (‘Che61-72′) cultivars of cotton treated with high-temperature stress as plant materials and performed comparative nanopore sequencing transcriptome analysis to reveal the potential heat-tolerant mechanism of cotton. Results showed that 120,605 nonredundant sequences were generated from the raw reads, and 78,601 genes were annotated. Differentially expressed gene (DEG) analysis showed that a total of 19,600 DEGs were screened; the DEGs involved in the ribosome, heat shock proteins, auxin and ethylene signaling transduction, and photosynthesis pathways may be attributed to the heat tolerance of the heat-tolerant cotton cultivar. This study also predicted a total of 5118 long non-coding RNAs (lncRNAs)and 24,462 corresponding target genes. Analysis of the target genes revealed that the expression of some ribosomal, heat shock, auxin and ethylene signaling transduction-related and photosynthetic proteins may be regulated by lncRNAs and further participate in the heat tolerance of cotton. This study deepens our understandings of the heat tolerance of cotton.
Collapse
Affiliation(s)
- Yajun Liang
- Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830001, China; (Y.L.); (Q.C.); (Y.Q.)
- Xinjiang Academy of Agricultural Science, Urumqi 830001, China; (Z.G.); (J.W.); (J.Z.)
| | - Zhaolong Gong
- Xinjiang Academy of Agricultural Science, Urumqi 830001, China; (Z.G.); (J.W.); (J.Z.)
| | - Junduo Wang
- Xinjiang Academy of Agricultural Science, Urumqi 830001, China; (Z.G.); (J.W.); (J.Z.)
| | - Juyun Zheng
- Xinjiang Academy of Agricultural Science, Urumqi 830001, China; (Z.G.); (J.W.); (J.Z.)
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (Y.M.); (L.M.)
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (Y.M.); (L.M.)
| | - Qin Chen
- Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830001, China; (Y.L.); (Q.C.); (Y.Q.)
| | - Zhiqiang Li
- Adsen Biotechnology Co., Ltd., Urumqi 830022, China;
| | - Yanying Qu
- Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830001, China; (Y.L.); (Q.C.); (Y.Q.)
| | - Quanjia Chen
- Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830001, China; (Y.L.); (Q.C.); (Y.Q.)
- Correspondence: (Q.C.); (X.L.)
| | - Xueyuan Li
- Xinjiang Academy of Agricultural Science, Urumqi 830001, China; (Z.G.); (J.W.); (J.Z.)
- Correspondence: (Q.C.); (X.L.)
| |
Collapse
|
13
|
Dorado G, Gálvez S, Rosales TE, Vásquez VF, Hernández P. Analyzing Modern Biomolecules: The Revolution of Nucleic-Acid Sequencing - Review. Biomolecules 2021; 11:1111. [PMID: 34439777 PMCID: PMC8393538 DOI: 10.3390/biom11081111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Recent developments have revolutionized the study of biomolecules. Among them are molecular markers, amplification and sequencing of nucleic acids. The latter is classified into three generations. The first allows to sequence small DNA fragments. The second one increases throughput, reducing turnaround and pricing, and is therefore more convenient to sequence full genomes and transcriptomes. The third generation is currently pushing technology to its limits, being able to sequence single molecules, without previous amplification, which was previously impossible. Besides, this represents a new revolution, allowing researchers to directly sequence RNA without previous retrotranscription. These technologies are having a significant impact on different areas, such as medicine, agronomy, ecology and biotechnology. Additionally, the study of biomolecules is revealing interesting evolutionary information. That includes deciphering what makes us human, including phenomena like non-coding RNA expansion. All this is redefining the concept of gene and transcript. Basic analyses and applications are now facilitated with new genome editing tools, such as CRISPR. All these developments, in general, and nucleic-acid sequencing, in particular, are opening a new exciting era of biomolecule analyses and applications, including personalized medicine, and diagnosis and prevention of diseases for humans and other animals.
Collapse
Affiliation(s)
- Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - Sergio Gálvez
- Dep. Lenguajes y Ciencias de la Computación, Boulevard Louis Pasteur 35, Universidad de Málaga, 29071 Málaga, Spain;
| | - Teresa E. Rosales
- Laboratorio de Arqueobiología, Avda. Universitaria s/n, Universidad Nacional de Trujillo, 13011 Trujillo, Peru;
| | - Víctor F. Vásquez
- Centro de Investigaciones Arqueobiológicas y Paleoecológicas Andinas Arqueobios, Martínez de Companón 430-Bajo 100, Urbanización San Andres, 13088 Trujillo, Peru;
| | - Pilar Hernández
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14080 Córdoba, Spain;
| |
Collapse
|
14
|
He W, Gao Y, Wen Y, Ke X, Ou Z, Li Y, He H, Chen Q. Detection of Virus-Related Sequences Associated With Potential Etiologies of Hepatitis in Liver Tissue Samples From Rats, Mice, Shrews, and Bats. Front Microbiol 2021; 12:653873. [PMID: 34177835 PMCID: PMC8221242 DOI: 10.3389/fmicb.2021.653873] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Hepatitis is a major global health concern. However, the etiology of 10-20% hepatitis cases remains unclear. Some hepatitis-associated viruses, like the hepatitis E virus, are zoonotic pathogens. Rats, shrews, and bats are reservoirs for many zoonotic pathogens. Therefore, understanding the virome in the liver of these animals is important for the investigation of the etiologies of hepatitis and monitoring the emerging zoonotic viruses. In this study, viral metagenomics and PCR methods were used to investigate viral communities in rats, mice, house shrews, and bats livers. Viral metagenomic analysis showed a diverse set of sequences in liver samples, comprising: sequences related to herpesviruses, orthomyxoviruses, anelloviruses, hepeviruses, hepadnaviruses, flaviviruses, parvoviruses, and picornaviruses. Using PCR methods, we first detected hepatovirus sequences in Hipposideros larvatus (3.85%). We also reported the first detection of Zika virus-related sequences in rats and house shrews. Sequences related to influenza A virus and herpesviruses were detected in liver. Higher detection rates of pegivirus sequences were found in liver tissue and serum samples from rats (7.85% and 15.79%, respectively) than from house shrews. Torque teno virus sequences had higher detection rates in the serum samples of rats and house shrews (52.72% and 5.26%, respectively) than in the liver. Near-full length genomes of pegivirus and torque teno virus were amplified. This study is the first to compare the viral communities in the liver of bats, rats, mice, and house shrews. Its findings expand our understanding of the virome in the liver of these animals and provide an insight into hepatitis-related viruses.
Collapse
Affiliation(s)
- Wenqiao He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yuhan Gao
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yuqi Wen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Xuemei Ke
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Zejin Ou
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yongzhi Li
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Huan He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| |
Collapse
|