1
|
Shyam M, Sabina EP. Harnessing the power of Arctium lappa root: a review of its pharmacological properties and therapeutic applications. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:49. [PMID: 39162715 PMCID: PMC11335715 DOI: 10.1007/s13659-024-00466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024]
Abstract
Arctium lappa, widely recognized as burdock, is a perennial plant that is employed in the realm of traditional Chinese medicine for a wide range of medicinal applications. The herb is rich in bioactive metabolites with therapeutic potential, encompassing polyphenolic antioxidants in its leaves, and flavonoids and fructo-oligosaccharides in its underground parts. Nutraceuticals originating from botanical sources such as Arctium lappa provide supplementary health advantages alongside their nutritional content and have demonstrated effectiveness in the prevention and management of specific ailments. The utilization of Arctium lappa root extract has exhibited encouraging outcomes in addressing hepatotoxicity induced by cadmium, lead, chromium, and acetaminophen, ameliorating liver damage and oxidative stress. Additionally, the root extract displays properties such as antidiabetic, hypolipidemic, aphrodisiac, anti-rheumatic, anti-Alzheimer, and various other pharmacological actions.
Collapse
Affiliation(s)
- Mukul Shyam
- Department of Biotechnology, School of Biosciences and Technology, VIT University, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Evan Prince Sabina
- Department of Biotechnology, School of Biosciences and Technology, VIT University, SBST, VIT, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Sharma P, Gupta K, Khandai SK, Malik S, Thareja S. Phytometabolites as modulators of breast cancer: a comprehensive review of mechanistic insights. Med Oncol 2024; 41:45. [PMID: 38172452 DOI: 10.1007/s12032-023-02269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Breast cancer (BC) is a highly debilitating malignancy affecting females globally and imposing a substantial burden on healthcare systems in both developed and developing nations. Despite the application of conventional therapeutic modalities such as chemotherapy, radiation therapy, and hormonal intervention, BC frequently exhibits resistance, necessitating the urgent development of novel, cost-effective, and accessible treatment strategies. In this context, there is a growing scientific interest in exploring the pharmacological potential of chemical compounds derived from botanical sources, which often exhibit notable biological activity. Extensive in vitro and in vivo investigations have revealed the capacity of these compounds, referred to as phytochemicals, to attenuate the metastatic cascade and reduce the risk of cancer dissemination. These phytochemicals exert their effects through modulation of key molecular and metabolic processes, including regulation of the cell cycle, induction of apoptotic cell death, inhibition of angiogenesis, and suppression of metastatic progression. To shed light on the latest advancements in this field, a comprehensive review of the scientific literature has been conducted, focusing on secondary metabolite agents that have recently been investigated and have demonstrated promising anticancer properties. This review aims to delineate their underlying mechanisms of action and elucidate the associated signaling pathways, thereby contributing to a deeper understanding of their therapeutic potential in the context of BC management.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Khushi Gupta
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sumit Kumar Khandai
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sonia Malik
- Laboratory of Woody Plants and Crops Biology, University of Orleans, Orleans, France
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
3
|
Liao D, Liu Y, Li C, He B, Zhou G, Cui Y, Huang H. Arctigenin hinders the invasion and metastasis of cervical cancer cells via the FAK/paxillin pathway. Heliyon 2023; 9:e16683. [PMID: 37292259 PMCID: PMC10245248 DOI: 10.1016/j.heliyon.2023.e16683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Context Cervical cancer is the most common gynecological pernicious tumor with high morbidity and mortality worldwide, especially in developing countries. Arctigenin (ARG), a nature-derived component, has exhibited anti-tumor activity in various tumors. Objective To explore the effect of ARG on cervical cancer. Materials and methods The effect and mechanism of ARG on cervical cancer cells were explored by cell counting kit-8 (CCK-8), flow cytometry, transwell and Western blot assays. Additionally, in vivo experiment was conducted in xenografted mice by immunohistochemistry (IHC), terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) and Western blot assays. Results ARG treatment induced both concentration-dependent and time-dependent reductions in the cell viability of SiHa and HeLa cells with a IC50 value of 9.34 μM and 14.45 μM, respectively. ARG increased the apoptosis rate and the protein levels of cleaved-caspase 3 and E-cadherin, but decreased the invaded cell numbers and the protein levels of Vimentin and N-cadherin in vitro. Mechanically, ARG inhibited the expression of focal adhesion kinase (FAK)/paxillin pathway, which was confirmed by the overexpression of FAK in SiHa cells. The inhibitory role of overexpression of FAK in proliferation and invasion, as well as its promoted role in apoptosis were reversed with ARG treatment. Meanwhile, ARG suppressed growth and metastasis, and enhanced apoptosis in vivo. Consistently, ARG administration reduced the relative protein level of p-FAK/FAK and p-paxillin/paxillin in tumor tissues of xenografted mice. Conclusion ARG inhibited proliferation, invasion and metastasis, but enhanced apoptosis of cervical cancer via the FAK/paxillin axis.
Collapse
Affiliation(s)
- Dan Liao
- .Department of Gynaecology, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yanyan Liu
- .Department of Gynaecology, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Cuifen Li
- .Department of Gynaecology, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Bin He
- .Medical and Pharmacy Research Laboratory, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Guanghui Zhou
- .Department of Rehabilitation Medicine, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yejia Cui
- .Department of Laboratory, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Haohai Huang
- .Medical and Pharmacy Research Laboratory, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
- .Department of Clinical Pharmacy, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| |
Collapse
|
4
|
Chiavaroli A, Libero ML, Di Simone SC, Acquaviva A, Nilofar, Recinella L, Leone S, Brunetti L, Cicia D, Izzo AA, Orlando G, Zengin G, Uba AI, Cakilcioğlu U, Mukemre M, Elkiran O, Menghini L, Ferrante C. Adding New Scientific Evidences on the Pharmaceutical Properties of Pelargonium quercetorum Agnew Extracts by Using In Vitro and In Silico Approaches. PLANTS (BASEL, SWITZERLAND) 2023; 12:1132. [PMID: 36903991 PMCID: PMC10005478 DOI: 10.3390/plants12051132] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 08/13/2023]
Abstract
Pelargonium quercetorum is a medicinal plant traditionally used for treating intestinal worms. In the present study, the chemical composition and bio-pharmacological properties of P. quercetorum extracts were investigated. Enzyme inhibition and scavenging/reducing properties of water, methanol, and ethyl acetate extracts were assayed. The extracts were also studied in an ex vivo experimental model of colon inflammation, and in this context the gene expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor α (TNFα) were assayed. Additionally, in colon cancer HCT116 cells, the gene expression of transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8), possibly involved in colon carcinogenesis, was conducted as well. The extracts showed a different qualitative and quantitative content of phytochemicals, with water and methanol extracts being richer in total phenols and flavonoids, among which are flavonol glycosides and hydroxycinnamic acids. This could explain, at least in part, the higher antioxidant effects shown by methanol and water extracts, compared with ethyl acetate extract. By contrast, the ethyl acetate was more effective as cytotoxic agent against colon cancer cells, and this could be related, albeit partially, to the content of thymol and to its putative ability to downregulate TRPM8 gene expression. Additionally, the ethyl acetate extract was effective in inhibiting the gene expression of COX-2 and TNFα in isolated colon tissue exposed to LPS. Overall, the present results support future studies for investigating protective effects against gut inflammatory diseases.
Collapse
Affiliation(s)
- Annalisa Chiavaroli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Alessandra Acquaviva
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Nilofar
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Donatella Cicia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Angelo Antonio Izzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Giustino Orlando
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, 34537 Istanbul, Turkey
| | - Ugur Cakilcioğlu
- Pertek Sakine Genç Vocational School, Munzur University, 62500 Pertek, Turkey
| | - Muzaffer Mukemre
- Department of Plant and Animal Production, Yuksekova Vocational School, Hakkari University, 30100 Hakkari, Turkey
| | - Omer Elkiran
- Department of Environmental Health, Vocational School of Health Services, Sinop University, 57000 Sinop, Turkey
| | - Luigi Menghini
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
5
|
Wang WL, Chen SM, Lee YC, Chang WW. Stigmasterol inhibits cancer stem cell activity in endometrial cancer by repressing IGF1R/mTOR/AKT pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
6
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
7
|
Bao X, Zhang Y, Zhang H, Xia L. Molecular Mechanism of β-Sitosterol and its Derivatives in Tumor Progression. Front Oncol 2022; 12:926975. [PMID: 35756648 PMCID: PMC9213880 DOI: 10.3389/fonc.2022.926975] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
β-Sitosterol (SIT), a white powdery organic substance with a molecular formula of C29H50O, is one of the most abundant naturally occurring phytosterols in plants. With a chemical composition similar to that of cholesterol, SIT is applied in various fields such as medicine, agriculture, and chemical industries, owing to its unique biological and physicochemical properties. Modern pharmacological studies have elucidated good anti-tumor therapeutic effect activity of SIT, which mainly manifests as pro-apoptotic, anti-proliferative, anti-metastatic, anti-invasive, and chemosensitizing on tumor cells. In addition, SIT exerts an anti-tumor effect on multiple malignant tumors such as breast, gastric, lung, kidney, pancreatic, prostate, and other cancers. Further, SIT derivatives with structural modifications are promising anti-tumor drugs with significant anti-tumor effects. This review article focuses on recent studies relevant to the anti-tumor effects of SIT and summarizes its anti-tumor mechanism to provide a reference for the clinical treatment of malignant tumors and the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
- Xingxun Bao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Mottaghi S, Abbaszadeh H. A comprehensive mechanistic insight into the dietary and estrogenic lignans, arctigenin and sesamin as potential anticarcinogenic and anticancer agents. Current status, challenges, and future perspectives. Crit Rev Food Sci Nutr 2021; 62:7301-7318. [PMID: 33905270 DOI: 10.1080/10408398.2021.1913568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that lignans as polyphenolic compounds are beneficial against life-threatening diseases such as cancer. Plant lignans have the potential to induce cancer cell death and interfere with carcinogenesis, tumor growth, and metastasis. Epidemiological studies have revealed that the intake of lignans is inversely associated with the risk of several cancers. Moreover, numerous experimental studies demonstrate that natural lignans significantly suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Dietary lignans arctigenin and sesamin have been found to have potent antiproliferative activities against various types of human cancer. The purpose of this review is to provide the reader with a deeper understanding of the cellular and molecular mechanisms underlying anticancer effects of arctigenin and sesamin. Our review comprehensively describes the effects of arctigenin and sesamin on the signaling pathways and related molecules involved in cancer cell proliferation and invasion. The findings of present review show that the dietary lignans arctigenin and sesamin seem to be promising carcinopreventive and anticancer agents. These natural lignans can be used as dietary supplements and pharmaceuticals for prevention and treatment of cancer.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Naghavi Alhosseini M, Mazandarani M, Enayati A, Saiedi M, Davoodi H. Anticancer Activity of Ethnopharmacological Plants of Golestan Province/Iran against AGS, HT-29 and KYSE-30 Cell Lines through Promoting the Apoptosis and Immunomodulatory Effects. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:636-646. [PMID: 34904014 PMCID: PMC8653648 DOI: 10.22037/ijpr.2021.114451.14858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The anticancer and immunomodulatory effects of medicinal plants from Golestan province, as a promising source of cancer therapy against gastrointestinal cancer cell lines, were investigated in this study. The ethanolic root/aerial part extracts of 9 medicinal plants were screened for their cytotoxicity against normal mouse fibroblast cells (L-929) and three human cancer cell lines including gastric adenocarcinoma (AGS), colorectal adenocarcinoma (HT-29), and esophagus adenocarcinoma (KYSE-30) by performing MTT assay to determine the IC50 of the extracts. The in-vitro antioxidant activity, total phenolic (TPC), and total flavonoid content (TFC) of extracts was evaluated. Flow cytometry and Real-Time PCR were used for apoptosis assay and evaluation of expression of some genes involved in cell signaling; TLR-4, AKT, ERK1/2, and NFκB. Out of the 9 plant extracts screened, Arctiumlappa root (ALR), showed the most potent cytotoxicity against AGS, KYSE-30, and HT-29 cells with IC50 values of 10, 200, and 2030 µg/mL, respectively. In addition, ALR exerts high TPC (215.8 ± 0.3 mg GAE/g), TFC (69.03 ± 0.7 mg QUE/g) and high radical scavenging activity with IC50 (1250 ± 0.1 µg/mL) in DPPH method. Also, ALR stimulates TLR-4 signaling, increased apoptosis, and decreased cancer cell attachment to the surface compared to the untreated cells. This plant, with a strong cytotoxic effect on cancer cells as well as increased apoptosis and its effect on molecules involved in TLR4 signaling as the immunomodulatory effect can be a suitable candidate for in-vivo studies in the future for cancer therapy.
Collapse
Affiliation(s)
- Mahdieh Naghavi Alhosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- M. N. A. and A. E. contributed equally to this work.
| | | | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- M. N. A. and A. E. contributed equally to this work.
| | - Mohsen Saiedi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Homa Davoodi
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|