1
|
Sumaira S, Vijayarathna S, Hemagirri M, Adnan M, Hassan MI, Patel M, Gupta R, Shanmugapriya, Chen Y, Gopinath SC, Kanwar JR, Sasidharan S. Plant bioactive compounds driven microRNAs (miRNAs): A potential source and novel strategy targeting gene and cancer therapeutics. Noncoding RNA Res 2024; 9:1140-1158. [PMID: 39022680 PMCID: PMC11250886 DOI: 10.1016/j.ncrna.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Irrespective of medical technology improvements, cancer ranks among the leading causes of mortality worldwide. Although numerous cures and treatments exist, creating alternative cancer therapies with fewer adverse side effects is vital. Since ancient times, plant bioactive compounds have already been used as a remedy to heal cancer. These plant bioactive compounds and their anticancer activity can also deregulate the microRNAs (miRNAs) in the cancerous cells. Therefore, the deregulation of miRNAs in cancer cells by plant bioactive compounds and the usage of the related miRNA could be a promising approach for cancer cure, mainly to prevent cancer and overcome chemotherapeutic side effect problems. Hence, this review highlights the function of plant bioactive compounds as an anticancer agent through the underlying mechanism that alters the miRNA expression in cancer cells, ultimately leading to apoptosis. Moreover, this review provides insight into using plant bioactive compounds -driven miRNAs as an anticancer agent to develop miRNA-based cancer gene therapy. They can be the potential resource for gene therapy and novel strategies targeting cancer therapeutics.
Collapse
Affiliation(s)
- Sahreen Sumaira
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Soundararajan Vijayarathna
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mitesh Patel
- Research and Development Cell and Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, Department. Pharmaceutical Research, GLA University, Mathura, India
| | - Shanmugapriya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Jagat R. Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), 174001, Bilaspur, Himachal Pradesh, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Hong Liang O, Ee Meng C, Mohamad CWSR, Mohd Nasir NF, Xiao Jian T, Chong You B, Ziezie Mohd Tarmizi E, Kim Yee L, Kok Yeow Y, Shing Fhan K, Kim Fey L, Kian Keong T, Mohd Roslan MR, Baharuddin SA. Frequency-dependent dielectric spectroscopic analysis on phytochemical and antioxidant activities in Radix Glycyrrhizae extract. Heliyon 2024; 10:e37077. [PMID: 39296056 PMCID: PMC11408827 DOI: 10.1016/j.heliyon.2024.e37077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Radix Glycyrrhizae, the dried roots of the Glycyrrhiza glabra plant, is a popular Chinese herbal medicine known for its various health benefits. It is particularly effective in relieving respiratory problems like coughs, sore throats, bronchitis, and asthma. However, there is limited research on the electrical properties of Radix Glycyrrhizae, likely due to its complex composition of phytochemical and antioxidant activities. This research aims to investigate the potential of these active biological compounds and understand their electrochemical properties. In this study, High-Performance Liquid Chromatography (HPLC) analysis revealed that Radix Glycyrrhizae decoction contains significant amounts of flavonoids and saponins, compounds known for their health benefits and therapeutic effects. Further analysis using Fourier Transform Infrared Spectroscopy (FTIR) identified several functional groups, including phenols, alcohols, alkynes, alkenes, ethers, and glycosides, which contribute to the plant's medicinal potential and affect the impedance and dielectric properties of the extract. The antioxidant activity of Radix Glycyrrhizae decoction was also evaluated using DPPH assays, showing similar radical scavenging activity to gallic acid. Dielectric and impedance measurement of Radix Glycyrrhizae extract were performed using an Agilent vector network analyzer and a Hioki impedance analyzer. The dielectric constant measured was consistent across both analyzers. However, the loss factor showed different trends: the vector network analyzer indicated a decrease in the loss factor with increasing frequency in the range of 5 MHz-20 GHz, while the impedance analyzer showed the opposite trend in the frequency range of 4 Hz-5 MHz.
Collapse
Affiliation(s)
- Ong Hong Liang
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, 02600, Malaysia
| | - Cheng Ee Meng
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, 02600, Malaysia
- Advanced Communication Engineering (ACE) Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Perlis, 02600, Malaysia
- Sports Engineering Research Centre (SERC), Universiti Malaysia Perlis (UniMAP), Perlis, 02600, Malaysia
| | | | - Nashrul Fazli Mohd Nasir
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, 02600, Malaysia
- Sports Engineering Research Centre (SERC), Universiti Malaysia Perlis (UniMAP), Perlis, 02600, Malaysia
| | - Tan Xiao Jian
- Sports Engineering Research Centre (SERC), Universiti Malaysia Perlis (UniMAP), Perlis, 02600, Malaysia
- Centre for Multimodal Signal Processing, Tunku Abdul Rahman University of Management and Technology (TAR UMT), Jalan Genting Kelang, Setapak, Kuala Lumpur, 53300, Malaysia
- Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology (TAR UMT), Jalan Genting Kelang, Setapak, Kuala Lumpur, 53300, Malaysia
| | - Beh Chong You
- Department of Engineering and Built Environment, Tunku Abdul Rahman University of Management and Technology, Penang Branch, Pulau Pinang, 11200, Malaysia
| | - Emma Ziezie Mohd Tarmizi
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Lee Kim Yee
- Lee Kong Chian Faculty of Engineering & Science, Sungai Long Campus, Jalan Sungai Long, Tunku Abdul Rahman University, Kajang, Cheras, Sungai Long City, 43000, Malaysia
| | - You Kok Yeow
- Department of Communication Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Malaysia
| | - Khor Shing Fhan
- Faculty of Electrical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Kangar, 02600, Malaysia
| | - Leu Kim Fey
- Department of Chinese Medicine, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman (UTAR), Sungai Long Campus, Jalan Sungai Long, Tunku Abdul Rahman University, Kajang, Cheras, Sungai Long City, 43000, Malaysia
- Hospital Universiti Tunku Abdul Rahman, Jalan Hospital UTAR, 31900, Kampar, Perak Darul Ridzuan, Malaysia
| | - Te Kian Keong
- Department of Chinese Medicine, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman (UTAR), Sungai Long Campus, Jalan Sungai Long, Tunku Abdul Rahman University, Kajang, Cheras, Sungai Long City, 43000, Malaysia
- Hospital Universiti Tunku Abdul Rahman, Jalan Hospital UTAR, 31900, Kampar, Perak Darul Ridzuan, Malaysia
| | - Mohd Riza Mohd Roslan
- Department of Engineering and Built Environment, Tunku Abdul Rahman University of Management and Technology, Penang Branch, Pulau Pinang, 11200, Malaysia
| | - Siti Aishah Baharuddin
- Department of Engineering and Built Environment, Tunku Abdul Rahman University of Management and Technology, Penang Branch, Pulau Pinang, 11200, Malaysia
| |
Collapse
|
3
|
Swain SS, Sahoo SK. Piperlongumine and its derivatives against cancer: A recent update and future prospective. Arch Pharm (Weinheim) 2024; 357:e2300768. [PMID: 38593312 DOI: 10.1002/ardp.202300768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Piperlongumine, or piplartine (PL), is a bioactive alkaloid isolated from Piper longum L. and a potent phytoconstituent in Indian Ayurveda and traditional Chinese medicine with a lot of therapeutic benefits. Apart from all of its biological activities, it demonstrates multimodal anticancer activity by targeting various cancer-associated pathways and being less toxic to normal cells. According to their structure-activity relationship (SAR), the trimethylphenyl ring (cinnamoyl core) and 5,6-dihydropyridin-2-(1H)-one (piperdine core) are responsible for the potent anticancer activity. However, it has poor intrinsic properties (low aqueous solubility, poor bioavailability, etc.). As a result, pharmaceutical researchers have been trying to optimise or modify the structure of PL to improve the drug-likeness profiles. The present review selected 26 eligible research articles on PL derivatives published between 2012 and 2023, followed by the preferred reporting items for systematic reviews and meta-analyses (PRISMA) format. We have thoroughly summarised the anticancer potency, mode of action, SAR and drug chemistry of the proposed PL-derivatives against different cancer cells. Overall, SAR analyses with respect to anticancer potency and drug-ability revealed that substitution of methoxy to hydroxyl, attachment of ligustrazine and 4-hydroxycoumarin heterocyclic rings in place of phenyl rings, and attachment of heterocyclic rings like indole at the C7-C8 olefin position in native PL can help to improve anticancer activity, aqueous solubility, cell permeability, and bioavailability, making them potential leads. Hopefully, the large-scale collection and critical drug-chemistry analyses will be helpful to pharmaceutical and academic researchers in developing potential, less-toxic and cost-effective PL-derivatives that can be used against different cancers.
Collapse
Affiliation(s)
- Shasank S Swain
- Biotechnology Research and Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Odisha, India
| | - Sanjeeb K Sahoo
- Biotechnology Research and Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Odisha, India
| |
Collapse
|
4
|
Samykannu G, Mariyappan N, Natarajan J. Molecular interaction and MD-simulations: investigation of Sizofiran as a promising anti-cancer agent targeting eIF4E in colorectal cancer. In Silico Pharmacol 2024; 12:33. [PMID: 38655099 PMCID: PMC11033251 DOI: 10.1007/s40203-024-00206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
CRC has a major global health impact due to high mortality rates. CRC shows high expression of eukaryotic translation initiation factor (eIF4E) protein, the rapid development of lung, bladder, colon, prostate, breast, head, and neck cancer is attributed to the dysregulation of eIF4E making an important target for treatment. Targeting eIF4E-mediated translation is a promising anti-cancer strategy. Many organic compounds that inhibit eIF4E are being studied clinically. The compound Sizofiran has emerged as a promising eIF4E inhibitor candidate, but its exact mechanism of action is unclear. In an effort to close this discrepancy by clarifying the mechanism of the interactions between phytochemical substances and eIF4E, molecular docking and dynamics studies were conducted. Molecular docking studies found Sizofiran (- 12.513 kcal/mol) has the most affinity eIF4E binding energy out of 93 phytochemicals, 5 current drugs, and 4 known inhibitors. This positions it as a top eIF4E inhibitor candidate. An alignment of eIF4E protein sequences from multiple pathogens revealed that the glutamate103 interacting residues are evolutionarily conserved across the different eIF4E proteins. Further insights from 100 ns of MD simulations supported Sizofiran having superior stability and eIF4E inhibition compared to reference compounds. Designed Sizofiran-related compounds showed better activity than the current drugs such as Camptosar, Sorafenib, Regorafenib, Doxorubicin, and Kenpaullone, indicating strong potential to suppress CRC progression by targeting eIF4E. This research aims to significantly aid development of improved eIF4E-targeting drugs for cancer treatment. Graphical abstract Showing the Graphical abstract of the complete study. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00206-3.
Collapse
Affiliation(s)
- Gopinath Samykannu
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, TamilNadu India
| | - Nandhini Mariyappan
- Molecular Modelling and Designing Laboratory, Department of Physics, Bharathiar University, Coimbatore, TamilNadu India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, TamilNadu India
| |
Collapse
|
5
|
Oyovwi MO, Ben-Azu B, Tesi EP, Ojetola AA, Olowe TG, Joseph UG, Emojevwe V, Oghenetega OB, Rotu RA, Rotu RA, Falajiki FY. Diosmin protects the testicles from doxorubicin-induced damage by increasing steroidogenesis and suppressing oxido-inflammation and apoptotic mediators. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:34-50. [PMID: 38765875 PMCID: PMC11101964 DOI: 10.62347/orpk5021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Cancer chemotherapy with doxorubicin (DOX) has been linked to serious testicular damage and spermatotoxicity due to the induction of oxidative stress, inflammation, and apoptosis. Thus, the current study was carried out to assess the potential ameliorative impact of diosmin, an antioxidant drug, against DOX-mediated spermatoxicity and testicular injury in rats. MATERIAL AND METHODS In the experimental protocol, rats were grouped into 4: Group 1 received vehicle and saline for 8 weeks while group 2 received diosmin and saline concomitantly for 8 weeks. Group 3 was given 3 mg/kg intraperitoneal DOX once every 7 days for 8 weeks. Group 4 was given 40 mg/kg of diosmin orally for 56 days followed by DOX diosmin administration after one hour. After 56 days of treatment, sperm quality, hormonal testing, biochemical parameters, and histological alterations in the testes were evaluated. RESULTS DOX-induced reduce spermatogenic function, testicular 3- and 17β-Hydroxysteroid dehydrogenases, and serum follicle stimulating hormone, luteinizing hormone, and testosterone. It also enhanced inflammation, testicular oxidative damage, and apoptosis. The histopathologic examinations corroborated the biochemical results obtained. Significantly, diosmin treatment reduced DOX-induced injury, as evidenced by restored testicular architecture, increased steroidogenesis, preservation of spermatogenesis, suppression of oxide-inflammatory response, and apoptosis. CONCLUSION It was found that through diosmin antioxidant, anti-apoptotic, and anti-oxido-inflammatory it presents a possible therapeutic alternative for protecting testicular tissue against DOX's harmful effects.
Collapse
Affiliation(s)
- Mega O Oyovwi
- Department of Physiology, Adeleke UniversityEde, Osun State, Nigeria
- Department of Hunan Physiology, Achievers UniversityOwo, Ondo State, Nigeria
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State UniversityAbraka, Delta State, Nigeria
| | - Edesiri P Tesi
- Department of Science Laboratory Technology, Delta State PolytechnicOgwashi-Uku, Delta State, Nigeria
| | | | - Temitope G Olowe
- Department of Physiology, University of Medical SciencesOndo, Ondo State, Nigeria
| | - Uchechukwu G Joseph
- Department of Medical Laboratory Science, Adeleke UniversityEde, Osun State, Nigeria
| | - Victor Emojevwe
- Department of Physiology, University of Medical SciencesOndo, Ondo State, Nigeria
| | - Onome B Oghenetega
- Department of Physiology, School of Basic Medical Science, Babcock UniversityIllisan, Ogun State, Nigeria
| | - Rume A Rotu
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, University of IbadanIbadan, Oyo State, Nigeria
| | - Rotu A Rotu
- Department of Industrial Safety and Environmental Management, School of Maritime TechnologyBurutu, Delta State, Nigeria
| | - Faith Y Falajiki
- Department of Physiology, Adeleke UniversityEde, Osun State, Nigeria
| |
Collapse
|
6
|
Gnanaselvan S, Yadav SA, Manoharan SP. Structure-based virtual screening of anti-breast cancer compounds from Artemisia absinthium-insights through molecular docking, pharmacokinetics, and molecular dynamic simulations. J Biomol Struct Dyn 2024; 42:3267-3285. [PMID: 37194295 DOI: 10.1080/07391102.2023.2212805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Breast cancer is the world's second most frequent malignancy, with a significant mortality and morbidity rate. Nowadays, natural breast cancer medicine has piqued attention as disease-curing agent with low side effects. Herein, the leaf powder of Artemisia absinthium was extracted with ethanol, and GC-MS and LC-MS methods were employed to identify the phytocompounds. Using commercial software SeeSAR-9.2 and StarDrop, identified phytocompounds were docked with estrogen and progesterone breast cancer receptors as they promote breast cancer growth to find the binding affinity of the ligands, drugability, and toxicity. Hormone-mediated breast cancer accounts for about 80% of all cases of breast cancer. Cancer cells proliferate when estrogen and progesterone hormones are attached to these receptors. The molecular docking results demonstrated that 3',4',5,7-Tetrahydroxyisoflavanone (THIF) has stronger binding efficacy than standard drugs and other phytocompounds with -28.71 (3 hydrogen bonds) and -24.18 kcal/mol (6 hydrogen bonds) binding energies for estrogen and progesterone receptors, respectively. Pharmacokinetics and toxicity analysis were done to predict the drug-likeness of THIF which results in good drugability and less toxicity. The best fit THIF was subjected to a molecular dynamics simulation analysis by using Gromacs to analyze the conformational changes that occurred during protein-ligand interaction and found that, the structural changes were observed. The results from MD simulation and pharmacokinetic studies suggested that THIF can be expected that in vitro and in vivo research on this compound may lead to the development of a potent anti-breast cancer drug in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suvathika Gnanaselvan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | | | - Sowmya Priya Manoharan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| |
Collapse
|
7
|
James AR, Jayaprakash S, Sundeep LM. In-Vitro Cytotoxicity, Apoptotic Property, and Gene Expression Changes Induced by Naringenin-7-O-Glucoside in Triple-Negative Breast Cancer. Cureus 2024; 16:e58634. [PMID: 38770462 PMCID: PMC11104259 DOI: 10.7759/cureus.58634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION Cancer is one of the most significant health challenges demanding the expansion of effectual therapeutic methods. Triple-negative breast cancer (TNBC) is a form of aggressive cancer with inadequate therapeutic options which lacks the expression of certain hormones. MATERIALS AND METHODS The present study investigates the potential of naringenin-7-O-glucoside, a flavanone glycoside extracted from Holarrhena antidysenterica as an anticancer agent against TNBC cell lines. In-vitro analysis to evaluate cytotoxicity, apoptotic-inducing properties and effect on gene expression was conducted. RESULTS MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay studied the IC-50 of naringenin-7-O-glucoside to be 233.56 µg/µL, revealing the dose-dependent cytotoxicity with minimal effect on Vero cells. Extensive DNA fragmentation confirmed the apoptotic property. Furthermore, a significant downregulation of the epidermal growth factor receptor (EGFR) was noted in treated cells when equated to the control specimen of the sample. CONCLUSION Therefore, naringenin-7-O-glucoside can be a potential targeted therapeutic agent.
Collapse
Affiliation(s)
- Akhila R James
- Biotechnology, Hindustan Institute of Technology and Science, Chennai, IND
| | | | - Lakshmi M Sundeep
- Biotechnology, Hindustan Institute of Technology and Science, Chennai, IND
| |
Collapse
|
8
|
Chanu KD, Thoithoisana S, Kar A, Mukherjee PK, Radhakrishnanand P, Parmar K, Sharma N. Phytochemically analysed extract of Ageratina adenophora (Sprengel) R.M.King & H. Rob. initiates caspase 3-dependant apoptosis in colorectal cancer cell: A synergistic approach with chemotherapeutic drugs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117591. [PMID: 38104872 DOI: 10.1016/j.jep.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ageratina adenophora (Sprengel) R.M.King & H.Rob. has been used as traditional indigenous medicine all across the globe for its diverse therapeutic applications such as anticancer, analgesic, antipyretic, thermogenic, antiseptic, antimicrobial as well as astringent. The various ethnic groups of India use plant parts to treat cuts and wounds, venomous insect bites, skin lesions, blisters, scabies and other skin irritations, gastritis and indigestion problems, cough, stomach ache and dysentery. The Portuguese traditionally extract the juice from the plant and use it for cancer, diabetes, liver disorder, gallbladder and stomach ailments. Nigerian healers use different parts of the plant to treat diabetes, fever and inflammation. AIM OF THE STUDY The aim of this study is to investigate the cytotoxic potential of A. adenophora hydroalcoholic leaves extract (AHL) on Colorectal cancer (CRC) cell lines (HCT-116, HCT-15 and HT-29), synergistic potential with chemotherapeutic drugs 5FU and Cisplatin as well as reactive oxygen species (ROS) generation, based on the sample collected from Mao district of Manipur, India. Identification of bioactive phytocompounds in AHL was also performed by HRLCMS. METHODS The AHL was evaluated for its cytotoxic as well as antiproliferative activities by 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide (MTT) assay, clonogenic and cell migration assays. The total phenolic content (TPC) and total flavonoid content (TFC) were quantified by Folin-ciocalteu and Aluminium chloride assays respectively. Caspase 3 activation was evaluated using Caspase-3 Assay Kit. Apoptosis detection by flow cytometry was carried out using annexin V-FITC/PI apoptosis detection kit. The apoptotic cells were also visualized by Giemsa and 4',6-Diamidino-2-phenylindole (DAPI) staining. The intracellular Reactive oxygen species (ROS) generation was also evaluated using fluorescent probe 2',7'-dichlorodihydrofluorescein di-acetate (H2DCFDA) in flow cytometry. The combination effects of AHL with chemotherapeutic drugs 5FU and Cisplatin were also evaluated. The identification of phytochemical constituents of AHL were analysed by HR-LCMS. RESULTS The AHL induced cytotoxic activity significantly in HCT-116 with IC50 of 65.65 ± 2.10 μg/mL, but non-cancerous cell HeK-293 was least cytotoxic. Colony formation and cell migration were inhibited in a dose and time dependent manner. The cell morphology upon AHL treatment was significantly altered with apoptotic features. The extract was rich in total phenolic (82.09 ± 0.35mgGAE/g) and total flavonoid (58.31 ± 0.55 mgQAE/g) contents. AHL induced apoptosis as detected by AnnexinV/PI, via activation of caspase 3 and elevated production of Reactive oxygen species (ROS). AHL in combination with 5FU and Cisplatin acts synergistically and potentiates the therapeutic properties of the extract. Sesquiterpenes, phenolic as well as flavonoid derivatives with anticancer properties were detected in AHL by HRLCMS, and these phytoconstituents may be attributed for anticancer property of AHL. CONCLUSION The present study evaluates the effectiveness of AHL against Colorectal cancer cell lines. AHL is cytotoxic and induces apoptosis in HCT-116 cells by caspase 3 activation and increased ROS production that can be attributed to sesquiterpenoids. Thus, the plant A. adenophora has therapeutic potential for Colorectal cancer and can be further exploited for developing anticancer drug.
Collapse
Affiliation(s)
- Khaidem Devika Chanu
- Institute of Bio-resources and Sustainable Development (IBSD), Department of Biotechnology, Ministry of Science and Technology, Government of India, Takyelpat, Imphal, 795001, Manipur, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| | - Soibam Thoithoisana
- Institute of Bio-resources and Sustainable Development (IBSD), Department of Biotechnology, Ministry of Science and Technology, Government of India, Takyelpat, Imphal, 795001, Manipur, India; Department of Zoology, Manipur University (MU), Imphal, 795003, Manipur, India.
| | - Amit Kar
- Institute of Bio-resources and Sustainable Development (IBSD), Department of Biotechnology, Ministry of Science and Technology, Government of India, Takyelpat, Imphal, 795001, Manipur, India.
| | - Pulok Kumar Mukherjee
- Institute of Bio-resources and Sustainable Development (IBSD), Department of Biotechnology, Ministry of Science and Technology, Government of India, Takyelpat, Imphal, 795001, Manipur, India.
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati (NIPER), Assam, 781101, India.
| | - Keyur Parmar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati (NIPER), Assam, 781101, India.
| | - Nanaocha Sharma
- Institute of Bio-resources and Sustainable Development (IBSD), Department of Biotechnology, Ministry of Science and Technology, Government of India, Takyelpat, Imphal, 795001, Manipur, India.
| |
Collapse
|
9
|
Chatterjee S, Chakraborty P, Dutta S, Karak S, Mahalanobis S, Ghosh N, Dewanjee S, Sil PC. Formulation of Carnosic-Acid-Loaded Polymeric Nanoparticles: An Attempt to Endorse the Bioavailability and Anticancer Efficacy of Carnosic Acid against Triple-Negative Breast Cancer. ACS APPLIED BIO MATERIALS 2024; 7:1656-1670. [PMID: 38364267 DOI: 10.1021/acsabm.3c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Triple-negative breast cancer (TNBC) is considered to be one of the most difficult subtypes of breast cancer (BC) to treat. The sheer absence of certain receptors makes it very tough to target, leaving high-dose chemotherapy as probably the sole therapeutic option at the cost of nonspecific toxic effects. Carnosic acid (CA) has been established as a potential chemotherapeutic agent against a range of cancer cells. However, its in vivo chemotherapeutic potential is significantly challenged due to its poor pharmacokinetic attributes. In this study, poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) were formulated to circumvent the biopharmaceutical limitations of CA. CA-loaded polymeric NPs (CA-PLGA NPs) have been evaluated as a potential therapeutic option in the treatment of TNBC. Different in vitro studies exhibited that CA-PLGA NPs significantly provoked oxidative-stress-mediated apoptotic death in MDA-MB-231 cells. The improved anticancer potential of CA-PLGA NPs over CA was found to be associated with improved cellular uptake of the nanoformulation by TNBC cells. In vivo studies also established the improvement in the chemotherapeutic efficacy of CA-nanoformulation over that of free CA without showing any sign of systemic toxicity. Thus, CA-PLGA NPs emerge as a promising candidate to fix two bugs with a single code, resolving biopharmaceutical attributes of CA as well as introducing a treatment option for TNBC.
Collapse
Affiliation(s)
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Sanchari Karak
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | | | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| |
Collapse
|
10
|
R D, S W, D P D, R S. Cracking a cancer code DNA methylation in epigenetic modification: an in-silico approach on efficacy assessment of Sri Lanka-oriented nutraceuticals. J Biomol Struct Dyn 2024:1-21. [PMID: 38425013 DOI: 10.1080/07391102.2024.2321235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
DNA methyltransferase (DNMTs) are essential epigenetic modifiers that play a critical role in gene regulation. These enzymes add a methyl group to cytosine's 5'-carbon, specifically within CpG dinucleotides, using S-adenosyl-L-methionine. Abnormal overexpression of DNMTs can alter the gene expression patterns and contribute to cancer development in the human body. Therefore, the inhibition of DNMT is a promising therapeutic approach to cancer treatment. This study was aimed to identify potential nutraceutical inhibitors from the Sri Lanka Flora database using computational methods, which provided an atomic-level description of the drug binding site and examined the interactions between nutraceuticals and amino acids of the DNMT enzyme. A series of nutraceuticals from Sri Lanka-oriented plants were selected and evaluated to assess their inhibitory effects on DNMT using absorption, distribution, metabolism, excretion and toxicity analysis, virtual screening, molecular docking, molecular dynamics simulation and trajectory analysis. Azacitidine, a DNMT inhibitor approved by the US Food and Drug Administration, was selected as a reference inhibitor. The complexes with more negative binding energies were selected and further assessed for their potency. Seven molecules were identified from 200 nutraceuticals, demonstrating significantly negative binding energies against the DNMT enzyme. Various trajectory analyses were conducted to investigate the stability of the DNMT enzyme. The results indicated that petchicine (NP#0003), ouregidione (NP#0011) and azacitidine increased the stability of the DNMT enzyme. Consequently, these two nutraceuticals showed inhibitory efficacies similar to azacitidine, making them potential candidates for therapeutic interventions targeting DNMT enzyme-related cancers. Additional bioassay testing is recommended to confirm the efficacies of these nutraceuticals and explore their applicability in clinical treatments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dushanan R
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Sri Lanka
| | - Weerasinghe S
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Dissanayake D P
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Senthilnithy R
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Sri Lanka
| |
Collapse
|
11
|
Imtiaz I, Schloss J, Bugarcic A. Traditional and contemporary herbal medicines in management of cancer: A scoping review. J Ayurveda Integr Med 2024; 15:100904. [PMID: 38395014 PMCID: PMC10901831 DOI: 10.1016/j.jaim.2024.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Cancer is one of the leading causes of death worldwide and is primarily managed by chemotherapy, radiation and surgery. Traditional medicine is widely used worldwide due to availability, affordability, wide applicability and accessibility. While potential for traditional medicines in management of cancer is well-documented, there is limited literature that collates traditional knowledge and contemporary herbal medicine practice. To collate available evidence on herbal medicines used in the management of all cancers from traditional world-wide sources, and the management of lung and colorectal cancers in contemporary practice. Medicinal plants with anti-cancer properties were identified following JBI methodology for scoping reviews through searches of the following sources: Trove, Archive.Org, and Henriette's herbal medicine page (traditional texts), book list available from World Naturopathic Federation white paper (contemporary naturopathic texts), and in PubMed, MEDLINE, SCOPUS, ScienceDirect, AMED and JSTOR (case studies). Of the 1973 citations retrieved, 38 traditional texts, 3 contemporary naturopathic texts and 10 case studies were included in the review. The traditional texts (n = 110) noted the highest number of different anti-cancer herbal species, followed by case reports (n = 52) and contemporary texts (n = 13). This review identified various herbal medicines used to treat cancer traditionally which is distinct to those found in contemporary use. Moreover, this review identified the use of herbs from other native medical systems around the world in the contemporary naturopathic practice and individual case management. The evidence presented in the review could be utilized in pre-clinical settings to research traditional preparations of herbs.
Collapse
Affiliation(s)
- I Imtiaz
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Lismore NSW, Australia
| | - J Schloss
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Lismore NSW, Australia
| | - A Bugarcic
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Lismore NSW, Australia.
| |
Collapse
|
12
|
Guo C, Wan L, Li C, Wen Y, Pan H, Zhao M, Wang J, Ma X, Nian Q, Tang J, Zeng J. Natural products for gastric carcinoma prevention and treatment: Focus on their antioxidant stress actions in the Correa's cascade. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155253. [PMID: 38065034 DOI: 10.1016/j.phymed.2023.155253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Correa's cascade is a pathological process beginning from gastritis to gastric precancerous lesions, and finally to gastric carcinoma (GC). While the pathogenesis of GC remains unclear, oxidative stress plays a prominent role throughout the entire Correa's cascade process. Studies have shown that some natural products (NPs) could halt and even reverse the development of the Correa's cascade by targeting oxidative stress. METHODS To review the effects and mechanism by which NPs inhibit the Correa's cascade through targeting oxidative stress, data were collected from PubMed, Embase, Web of Science, ScienceDirect, and China National Knowledge Infrastructure databases from initial establishment to April 2023. NPs were classified and summarized by their mechanisms of action. RESULTS NPs, such as terpenoid, polyphenols and alkaloids, exert multistep antioxidant stress effects on the Correa's cascade. These effects include preventing gastric mucosal inflammation (stage 1), reversing gastric precancerous lesions (stage 2), and inhibiting gastric carcinoma (stage 3). NPs can directly impact the conversion of gastritis to GC by targeting oxidative stress and modulating signaling pathways involving IL-8, Nrf2, TNF-α, NF-κB, and ROS/MAPK. Among which polyphenols have been studied more and are of high research value. CONCLUSIONS NPs display a beneficial multi-step action on the Correa's cascade, and have potential value for clinical application in the prevention and treatment of gastric cancer by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Cui Guo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lina Wan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Chengen Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jundong Wang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources,Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Jianyuan Tang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
13
|
Zhao X, Wang Y, Zhang Z, Velu P, Liu R. In-vitro Antioxidant, In-vitro and In-silico Ovarian Anticancer Activity (Ovarian Cancer Cells-PA1) and Phytochemical Analysis of Cissus quadrangularis L. Ethanolic Extract. Comb Chem High Throughput Screen 2024; 27:1504-1512. [PMID: 37818574 DOI: 10.2174/0113862073255558230926114444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Cissus quadrangularis is a valuable natural source of traditional medicines. OBJECTIVE An in vitro investigation was performed to determine whether the ethanolic extract from the whole portions of C. quadrangularis had anticancer and free radical scavenging activities against ovarian cancer cells-PA1. C. quadrangularis is a herb collected from rural areas in Andhra Pradesh, India. MATERIALS AND METHODS C. quadrangularis was air-dried and crushed, and the powder and ethanol (0.5 kg) were used in a Soxhlet device for continuous extraction. Phytochemical analysis of the extracts was performed using a standard procedure. The antioxidant activity of the ethanolic extract of C. quadrangularis was evaluated using DPPH. An in vitro anticancer study used an ethanolic extract against the PA1 cell line. Apoptosis of ovarian cancer cells was studied using DAPI and carboxy-H2DCFDA staining. From LC-MS analysis, quercetin-3-O-alpha-Lrhamnopyranoside and erucic acid were docked with the threonine tyrosine kinase (TTK) enzyme using auto docking. RESULTS The ethanolic extract of C. quadrangularis demonstrated significant dose-dependent antioxidant activity compared to ascorbic acid. The ethanolic extract of C. quadrangularis was found to have high anticancer activity against ovarian cancer cell lines (PA1), with an IC50 value of 482.057 ± 113.857 μg/ml. DAPI and carboxy-H2DCFDA staining confirmed that C. quadrangularis ethanolic extract induced apoptosis in ovarian cancer cells (p < .001). Molecular docking studies helped identify the binding affinities between the protein and ligand complexes, such as Quercetin-3-O-alpha-Lrhamnopyranoside binding sites of target proteins 5N7V (MET602, GLN672) and erucic acid 5N7V (GLY354). Quercetin-3-O-alpha-L-rhamnopyranoside was reported to bind with 5N7V by hydrogen bonding at MET602 and GLN672 amino acids with 2.02, 2.99 Å bonding length distance and binding affinity of -7.9 kcal/mol. Erucic acid was reported to bind with 5N7V by hydrogen bonding at GLY354 amino acid with 3.18, 2.93 Å bonding length (Å) distance and binding affinity of -4.3 kcal/mol. The current analysis showed that the ethanolic extracts of C. quadrangularis L. exhibited antioxidant and anticancer properties against ovarian PA1 cells. CONCLUSION The experimental results confirmed that C. quadrangularis L. is a promising, safe chemotherapeutic plant for ovarian cancer PA1 cells. The docking results demonstrated that Quercetin-3-O-alpha-L-rhamnopyranoside strongly binds threonine tyrosine kinase at the MET602 and GLN672 positions. This study showed that the C. quadrangularis ethanolic extract has Quercetin-3-O-alpha-L-rhamnopyranoside, which can be used as an anticancer agent.
Collapse
Affiliation(s)
- Xuejing Zhao
- Department of Obstetrics and Gynecology, Air Force Medical University, Air Force 986 Hospital, Xi'an, Shaanxi, 710054, China
| | - Yinghui Wang
- Department of Gynaecology, People's Hospital of Laoling City, Dezhou, Shandong, 253600, P.R. China
| | - Zhaohui Zhang
- Department of Gynaecology, People's Hospital of Laoling City, Dezhou, Shandong, 253600, P.R. China
| | - Periyannan Velu
- Department of Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, 608002, Tamilnadu, India
| | - Runping Liu
- Department of Obstetrics and Gynecology, Hanzhong People's Hospital, 723000, Hanzhong, Shaanxi, China
| |
Collapse
|
14
|
Salazar-Campos J, Salazar-Campos O, Gálvez-Ruiz O, Gavidia-Chávez H, Gavidia-Chávez M, Irigoin-Guevara L, Obregón-Domínguez J. Functional Properties and Acceptability of Potentially Medicinal Tea Infusions Based on Equisetum arvense, Desmodium molliculum, and Mentha piperita. Prev Nutr Food Sci 2023; 28:444-452. [PMID: 38188091 PMCID: PMC10764227 DOI: 10.3746/pnf.2023.28.4.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 01/09/2024] Open
Abstract
Natural herbal teas are one of the three most consumed beverages in the world, and despite their frequent use in the cosmetic, food, and pharmaceutical industries, there is still much to about them. This study aimed to determine the functional properties of tea infusions made from dried Equisetum arvense (EA), Desmodium molliculum (DM), and Mentha piperita (M) grown in the Peruvian Andes. Next, using a simplex design with unrestricted centroid amplified centroid, 12 combinations were obtained for the combination of dried leaves with EA: 0∼100%, DM: 0∼100%, and M: 0∼100% optimal combination of EA: 6.59%, DM: 84.62%, and M: 8.79% maximizes functional components for total polyphenols (2,831.18 mg EAG/100 g), flavonoids (37.73 mg CAT/g), and antioxidant capacity (145.99 μmol Trolox/g). It can be confirmed that dried mixtures of these plants made into tea are a significant source of bioactive molecules, have a tolerable flavor, and can be used for therapeutic purposes when consumed.
Collapse
Affiliation(s)
- Johonathan Salazar-Campos
- Centro de Experimentación e Investigación, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Orlando Salazar-Campos
- Escuela de Ingeniería de Software, Facultad de Ingeniería, Universidad San Ignacio de Loyola, Lima 15024, Perú
| | - Osmar Gálvez-Ruiz
- Dirección de Incubadora de Empresas, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Herlita Gavidia-Chávez
- Dirección de Incubadora de Empresas, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Mery Gavidia-Chávez
- Dirección de Incubadora de Empresas, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Lorena Irigoin-Guevara
- Dirección de Incubadora de Empresas, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Jesús Obregón-Domínguez
- Departamento de Procesamiento de la Información, Data Engineering Perú, Trujillo 13009, Perú
| |
Collapse
|
15
|
Jabir NR, Rehman MT, AlAjmi MF, Ahmed BA, Tabrez S. Prioritization of bioactive compounds envisaging yohimbine as a multi targeted anticancer agent: insight from molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:10463-10477. [PMID: 36533328 DOI: 10.1080/07391102.2022.2158137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Recently, multi-targeted drugs have attracted much attention in cancer therapy where several therapeutic proteins are targeted by a single agent. Using the published scientific literature, we selected sixteen well-known anticancer targets and seven potential phytobioactive chemicals to find a multitargeted compound by screening through molecular docking. The feasible protein-ligand interaction was further predicted by protein-ligand interaction analysis and molecular dynamic simulation. The phytochemical yohimbine exhibited the lowest docking score in the range of -8.3 to -10.0 kcal/mol over other ligands with all the studied protein targets. Molecular interaction data also revealed the feasible binding of yohimbine with all targets. Moreover, the molecular simulation data also confirmed the stability of protein-ligand complexes with three most scored targets viz. ERK2, PARP1 and PIK3α. Based on our results, yohimbine seems to be the most potent compound out of those selected compounds and can be considered as effective lead molecule against the studied target proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Thanjavur, Tamil Nadu, India
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry, Centre for Research and Development, PRIST University, Thanjavur, Tamil Nadu, India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Kursvietiene L, Kopustinskiene DM, Staneviciene I, Mongirdiene A, Kubová K, Masteikova R, Bernatoniene J. Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions. Antioxidants (Basel) 2023; 12:2056. [PMID: 38136176 PMCID: PMC10740678 DOI: 10.3390/antiox12122056] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is one of the most serious public health issues worldwide, demanding ongoing efforts to find novel therapeutic agents and approaches. Amid growing interest in the oncological applications of phytochemicals, particularly polyphenols, resveratrol-a naturally occurring polyphenolic stilbene derivative-has emerged as a candidate of interest. This review analyzes the pleiotropic anti-cancer effects of resveratrol, including its modulation of apoptotic pathways, cell cycle regulation, inflammation, angiogenesis, and metastasis, its interaction with cancer stem cells and the tumor microenvironment. The effects of resveratrol on mitochondrial functions, which are crucial to cancer development, are also discussed. Future research directions are identified, including the elucidation of specific molecular targets, to facilitate the clinical translation of resveratrol in cancer prevention and therapy.
Collapse
Affiliation(s)
- Lolita Kursvietiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Inga Staneviciene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Ausra Mongirdiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Kateřina Kubová
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Ruta Masteikova
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
17
|
Suhail M, Tarique M, Tabrez S, Zughaibi TA, Rehan M. Synergistic inhibition of glioblastoma multiforme through an in-silico analysis of luteolin and ferulic acid derived from Angelica sinensis and Cannabis sativa: Advancements in computational therapeutics. PLoS One 2023; 18:e0293666. [PMID: 37943817 PMCID: PMC10635529 DOI: 10.1371/journal.pone.0293666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/14/2023] [Indexed: 11/12/2023] Open
Abstract
The primary objective of this study is to uncover novel therapeutic agents for the treatment of Glioblastoma Multiforme (GBM), a highly aggressive form of brain cancer, and Alzheimer's Disease (AD). Given the complexity and resistance associated with both conditions, the study underscores the imperative need for therapeutic alternatives that can traverse the biological intricacies inherent in both neuro-oncological and neurodegenerative disorders. To achieve this, a meticulous, target-based virtual screening was employed on an ensemble of 50 flavonoids and polyphenol derivatives primarily derived from plant sources. The screening focused predominantly on molecular targets pertinent to GBM but also evaluated the potential overlap with neural pathways involved in AD. The study utilized molecular docking and Molecular Dynamic (MD) simulation techniques to analyze the interaction of these compounds with a key biological target, protein tyrosine phosphatase receptor-type Z (PTPRZ). Out of the 50 compounds examined, 10 met our stringent criteria for binding affinity and specificity. Subsequently, the highest value of binding energy was observed for the synergistic binding of luteolin and ferulic acid with the value of -10.5 kcal/mol. Both compounds exhibited inherent neuroprotective properties and demonstrated significant potential as pathway inhibitors in GBM as well as molecular modulators in AD. Drawing upon advanced in-silico cytotoxicity predictions and sophisticated molecular modeling techniques, this study casts a spotlight on the therapeutic capabilities of polyphenols against GBM. Furthermore, our findings suggest that leveraging these compounds could catalyze a much-needed paradigm shift towards more integrative therapeutic approaches that span the breadth of both neuro-oncology and neurodegenerative diseases. The identification of cross-therapeutic potential in flavonoids and polyphenols could drastically broaden the scope of treatment modalities against both fatal diseases.
Collapse
Affiliation(s)
- Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Liu J, Deng L, Wang L, Qian D, He C, Ren Q, Zhang Q, Chen Y. Licochalcone A induces G2/M phase arrest and apoptosis via regulating p53 pathways in esophageal cancer: In-vitro and in-vivo study. Eur J Pharmacol 2023; 958:176080. [PMID: 37758012 DOI: 10.1016/j.ejphar.2023.176080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Licochalcone A (LCA) is a flavonoid isolated from Glycyrrhiza uralensis Fisch that has shown promising therapeutic effects in various cancers. This study attempted to analyze its therapeutic potential for esophageal cancer (EC). Combining multiple databases and network pharmacology, we found that the mechanism of LCA inhibiting EC may be closely related to p53 signaling pathway, cell cycle regulation and apoptosis. Molecular docking was then used to predict the affinity between LCA and key targets. Subsequently, we selected three common EC cell lines for in vitro validation. LCA treatment significantly inhibited EC cell proliferation and colony formation. Wound healing and transwell assay showed that LCA can reduce the migration and invasion of EC cells, and down-regulated the expression of matrix metalloproteinases (MMP). LCA promoted excessive ROS production, decreased mitochondrial membrane potential, and upregulated the expression of Bax, Caspase3 and Caspase-9, all of which are involved in apoptosis. LCA treatment blocked the cell cycle in G2/M phase and decreased the expression of cyclin D1, cyclin B1, and CDK1. LCA significantly up-regulated p53 protein and gene expression, thereby inducing apoptosis and cycle arrest. Finally, the xenograft tumor model was established by subcutaneous injection of Eca-109 cells. LCA administration inhibited tumor growth by activating p53 signaling pathways and apoptosis. Meanwhile, there was no significant weight loss and few major organotoxicity and hematotoxicity. In conclusion, LCA is an excellent candidate for EC treatment by regulating p53 pathway to induce G2/M phase arrest and apoptosis.
Collapse
Affiliation(s)
- Jia Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liangyan Deng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Lingyu Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Die Qian
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chengxun He
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Qiang Ren
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Qing Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Yunhui Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
19
|
Gupta M, Ahmad J, Ahamad J, Kundu S, Goel A, Mishra A. Flavonoids as promising anticancer therapeutics: Contemporary research, nanoantioxidant potential, and future scope. Phytother Res 2023; 37:5159-5192. [PMID: 37668281 DOI: 10.1002/ptr.7975] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 09/06/2023]
Abstract
Flavonoids are natural polyphenolic compounds considered safe, pleiotropic, and readily available molecules. It is widely distributed in various food products such as fruits and vegetables and beverages such as green tea, wine, and coca-based products. Many studies have reported the anticancer potential of flavonoids against different types of cancers, including solid tumors. The chemopreventive effect of flavonoids is attributed to various mechanisms, including modulation of autophagy, induction of cell cycle arrest, apoptosis, and antioxidant defense. Despite of significant anticancer activity of flavonoids, their clinical translation is limited due to their poor biopharmaceutical attributes (such as low aqueous solubility, limited permeability across the biological membranes (intestinal and blood-brain barrier), and stability issue in biological systems). A nanoparticulate system is an approach that is widely utilized to improve the biopharmaceutical performance and therapeutic efficacy of phytopharmaceuticals. The present review discusses the significant anticancer potential of promising flavonoids in different cancers and the utilization of nanoparticulate systems to improve their nanoantioxidant activity further to enhance the anticancer activity of loaded promising flavonoids. Although, various plant-derived secondary metabolites including flavonoids have been recommended for treating cancer, further vigilant research is warranted to prove their translational values.
Collapse
Affiliation(s)
- Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Javed Ahamad
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Snehashis Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Archit Goel
- All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
20
|
Siew EL, Pearanpan L, Zamkhuri Z, Nordin FJ, Ooi TC, Chan KM, Kamarozaman AS, Ahmat N, Rajab NF. Genoprotective potential of Macaranga species phytochemical compounds on HT-29 human colorectal adenocarcinoma cell line. Genes Environ 2023; 45:28. [PMID: 37899475 PMCID: PMC10614388 DOI: 10.1186/s41021-023-00282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND The species of genus Macaranga are widely found in Malaysian secondary forests and has been used as an alternative for treating varieties of illness. Studies have shown that the medicinal properties of this genus contain anti-inflammatory, antioxidant, and anti-cancer effects. This study aimed to determine the cytotoxicity of six isolated phytochemicals from Macaranga heynei (M. heynei), Macaranga lowii and Shorea leprosula on HT-29 human colorectal adenocarcinoma cell lines. RESULTS One out of six isolated phytochemical compounds, identified as "Laevifolin A", showed a cytotoxicity with an IC50 value of 21.2 µM following 48 h treatment as detected using Sulforhodamine B (SRB) assay. Additionally, no induction of apoptosis and oxidative stress were observed on Laevifolin A treated HT-29 cells as determined using Annexin V-FITC/PI assay and dihydroethidine (HE) staining, respectively. Additionally, no damage to the DNA were observed as measured using the Alkaline Comet assay. Further investigation on menadione-induced oxidative DNA damage showed the genoprotective potential of Laevifolin A on HT-29 cells. CONCLUSIONS In conclusion, this study indicated that only one compound (Laevifolin A) that extracted from M. heynei has the cytotoxicity potential to be developed as an anticancer agent in human colorectal adenocarcinoma. However, besides exhibiting cytotoxic effect, the compound also exhibits genoprotective capability that warrant further investigation.
Collapse
Affiliation(s)
- Ee Ling Siew
- ASASIpintar Program, Pusat PERMATA@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur, 50300, Malaysia
| | - Lishantini Pearanpan
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur, 50300, Malaysia
| | - Zhafri Zamkhuri
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur, 50300, Malaysia
| | - Fariza Juliana Nordin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| | - Theng Choon Ooi
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur, 50300, Malaysia
| | - Kok Meng Chan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur, 50300, Malaysia
- Product Stewardship and Toxicology, Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia
| | - Aisyah Salihah Kamarozaman
- Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, Dengkil, Selangor, 43800, Malaysia
| | - Norizan Ahmat
- Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, Dengkil, Selangor, 43800, Malaysia
| | - Nor Fadilah Rajab
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur, 50300, Malaysia.
| |
Collapse
|
21
|
Fakudze NT, Sarbadhikary P, George BP, Abrahamse H. Ethnomedicinal Uses, Phytochemistry, and Anticancer Potentials of African Medicinal Fruits: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:1117. [PMID: 37631032 PMCID: PMC10458058 DOI: 10.3390/ph16081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Africa is home to diverse medicinal plants that have been used for generations for the treatment of several different cancers and, presently, they are gaining interest from researchers as promising approaches to cancer treatment. This review aims to provide a comprehensive review of dietary and medicinal African fruits including their traditional uses, botanical description, ethnobotanical uses, bioactive phytochemical compositions, and anticancer properties investigated to date in vitro, in vivo, and in clinical studies. Data on recent updates concerning the traditional uses and anticancer properties of these fruits were collected from a myriad of available publications in electronic databases, such as Web of Science, PubMed, ScienceDirect, Scopus, SpringerLink, and Google Scholar. The results suggest that approximately 12 native or commercially grown African fruits belonging to different plant species, including Tribulus terrestris, Xanthium strumarium, Withania somnifera, Xylopia aethiopica, Abelmoschus esculentus, Carissa macrocarpa, Carpobrotus edulis, Syzygium cumini, Kigelia Africana, Annona muricata, Persea americana, and Punica granatum, have been reported for their potential as treatment options for the management of cancer. We further found that approximately eight different fruits from native plant species from Africa, namely, Sclerocarya birrea, Dovyalis caffra, Parinari curatellifolia, Mimusops caffra, Carpobrotus edulis, Vangueria infausta, Harpephyllum caffrum, and Carissa macrocarpa, have been widely used for the traditional treatment of different ailments but somehow failed to gain the interest of researchers for their use in anticancer research. In this review, we show the potential use of various fruits as anticancer agents, such as Tribulus terrestris, Xanthium strumarium, Withania somnifera, Xylopia aethiopica, Abelmoschus esculentus, Carissa macrocarpa, Carpobrotus edulis, Syzygium cumini, Kigelia Africana, Annona muricata, Persea americana, and Punica granatum; unfortunately, not enough reported research data have been published to gain thorough mechanistic insights and clinical applications. Additionally, we discuss the possibility of the utilization of potential phytochemicals from fruits like Persea americana and Punica granatum in anticancer research, as well as future directions.
Collapse
Affiliation(s)
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 1701, Johannesburg 2028, South Africa; (N.T.F.); (H.A.)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 1701, Johannesburg 2028, South Africa; (N.T.F.); (H.A.)
| | | |
Collapse
|
22
|
Irianto T, Gaipl US, Rückert M. Immune modulation during anti-cancer radio(immuno)therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:239-277. [PMID: 38225105 DOI: 10.1016/bs.ircmb.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cancer can affect all human organs and tissues and ranks as a prominent cause of death as well as an obstruction to increasing life expectancy. A notable breakthrough in oncology has been the inclusion of the immune system in fighting cancer, potentially prolonging life and providing long-term benefits. The concept of "immunotherapy" has been discussed from the 19th and early 20th centuries by Wilhelm Busch, William B. Coley and Paul Ehrlich. This involves distinct approaches, including vaccines, non-specific cytokines and adoptive cell therapies. However, despite the advances made in recent years, questions on how to select the best therapeutic options or how to select the best combinations to improve clinical outcomes are still relevant for scientists and clinicians. More than half of cancer patients receive radiotherapy (RT) as part of their treatment. With the advances in RT and immunotherapy approaches, it is reasonable to consider how to enhance immunotherapy with radiation and vice versa, and to investigate whether combinations of these therapies would be beneficial. In this chapter, we will discuss how the immune system responds to cancer cells and different cancer therapies with a focus on combination of RT and immunotherapy (radioimmunotherapy, RIT).
Collapse
Affiliation(s)
- Teresa Irianto
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
23
|
Rangsinth P, Sharika R, Pattarachotanant N, Duangjan C, Wongwan C, Sillapachaiyaporn C, Nilkhet S, Wongsirojkul N, Prasansuklab A, Tencomnao T, Leung GPH, Chuchawankul S. Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods 2023; 12:2529. [PMID: 37444267 DOI: 10.3390/foods12132529] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Ergosterol is an important sterol commonly found in edible mushrooms, and it has important nutritional value and pharmacological activity. Ergosterol is a provitamin. It has been well established that edible mushrooms are an excellent food source of vitamin D2 because ergosterol is a precursor that is converted to vitamin D2 under ultraviolet radiation. The pharmacological effects of ergosterol, which include antimicrobial, antioxidant, antimicrobial, anticancer, antidiabetic, anti-neurodegenerative, and other activities, have also been reported. This review aims to provide an overview of the available evidence regarding the pharmacological effects of ergosterol and its underlying mechanisms of action. Their potential benefits and applications are also discussed.
Collapse
Affiliation(s)
- Panthakarn Rangsinth
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Rajasekharan Sharika
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattaporn Pattarachotanant
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatrawee Duangjan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Chamaiphron Wongwan
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nichaporn Wongsirojkul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
24
|
Avti PK, Singh J, Dahiya D, Khanduja KL. Dual functionality of pyrimidine and flavone in targeting genomic variants of EGFR and ER receptors to influence the differential survival rates in breast cancer patients. Integr Biol (Camb) 2023; 15:zyad014. [PMID: 38084900 DOI: 10.1093/intbio/zyad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/01/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023]
Abstract
Breast cancer ranks as one of the most prevalent forms of cancer and stands as the primary global cause of mortality among women. Overexpression of EGFR and ER receptors or their genomic alterations leads to malignant transformation, disease aggression and is linked to poor patient survival outcomes. The clinical breast cancer patient's genomic expression, survival analysis, and computational drug-targeting approaches were used to identify best-hit phytochemicals for therapeutic purposes. Breast cancer patients have genomic alterations in EGFR (4%, n = 5699) and ER (9%, n = 8461), with the highest proportion being missense mutations. No statistically significant difference was observed in the patient survival rates between the altered and unaltered ER groups, unlike EGFR, with the lowest survival rates in the altered group. Computational screening of natural compound libraries (7711) against each EGFR (3POZ) and ER (3ERT) receptor shortlists the best-hit 3 compounds with minimum docking score (ΔG = -7.9 to -10.8), MMGBSA (-40.16 to -51.91 kcal/mol), strong intermolecular H-bonding, drug-like properties with least kd, and ki. MD simulation studies display stable RMSD, RMSF, and good residual correlation of best-hit common compounds (PubChem ID: 5281672 and 5280863) targeting both EGFR and ER receptors. In vitro, studies revealed that these common drugs exhibited a high anti-proliferative effect on MCF-7 and MDA-MB-231 breast cancer cells, with effective IC50 values (15-40 μM) and lower free energy, kd, and ki (5281672 > 5280863 > 5330286) much affecting HEK-293 non-cancerous cells, indicating the safety profile. The experimental and computational correlation studies suggest that the highly expressed EGFR and ER receptors in breast cancer patients having poor survival rates can be effectively targeted with best-hit common potent drugs with a multi-target therapeutic approach. Insight Box: The findings of this study provide valuable insights into the genomic/proteomic data, breast cancer patient's survival analysis, and EGFR and ER receptor variants structural analysis. The genetic alterations analysis of EGFR and ER/ESR1 in breast cancer patients reveals the high frequency of mutation types, which affect patient's survival rate and targeted therapies. The common best-hit compounds affect the cell survival patterns with effective IC50, drug-like properties having lower equilibrium and dissociation constants demonstrating the anti-proliferative effects. This work integrates altered receptor structural analysis, molecular interaction-based simulations, and ADMET properties to illuminate the identified best hits phytochemicals potential efficacy targeting both EGFR and ER receptors, demonstrating a multi-target therapeutic approach.
Collapse
Affiliation(s)
- Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Krishan L Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
25
|
Kanneganti J, Mina U, Singh A, Gautam A, Somvanshi P. Anti Mtb Medicinal Plants Database (AMMPDB): A curated database of Indian anti-tubercular medicinal plants. J Ayurveda Integr Med 2023; 14:100712. [PMID: 37120901 PMCID: PMC10172712 DOI: 10.1016/j.jaim.2023.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/04/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
The utilization of medicinal plants for their therapeutic properties has long been a key component of Indian culture. Unique medicinal characteristics can be found in the phytochemicals that are extracted from these plants. Globally, tuberculosis (TB) burden and management are challenged due to the emergence of new resistant strains of Mycobacterium tuberculosis (Mtb). This highlights the importance of new drug molecules from diverse sources as well as their innovative management options. In this context, the present study formulated an Anti Mtb medicinal plant database (AMMPDB Ver. 1.1), a manually curated database of native Indian medicinal plants that reported anti-tubercular (anti-TB) activities and their potential therapeutic phytochemicals. This is the first-ever freely accessible digital repository. The current version of the database provides users, with information regarding 118 native Indian anti-tubercular medicinal plants and their 3374 phytochemicals. The database provides the following information: Taxonomical ID, botanical description, vernacular names, conservation status, geographical distribution maps, IC-50 value, phytochemical details which include - name, Compound ID, Synonyms, location in plant part, 2D, 3D structures (as per the availability), and their medicinal uses reported in the literature. The tools section of the database is equipped with sequentially catalogued and hyperlinked open-access tools utilized for computational drug designing. A case study has been incorporated under the contributors section to validate the tools section and the phytochemicals of the database. AMMPDB Ver 1.1 will be serviceable to research in computational drug designing and discovery with effectiveness and ease. Database URL: https://www.ammpdb.com/.
Collapse
Affiliation(s)
| | - Usha Mina
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Ankita Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Anuradha Gautam
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, India
| | - Pallavi Somvanshi
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
26
|
Devan AR, Nair B, Nath L. Translational Phytomedicines against Cancer: Promise and Hurdles. Adv Pharm Bull 2023; 13:210-215. [PMID: 37342376 PMCID: PMC10278225 DOI: 10.34172/apb.2023.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/01/2022] [Accepted: 04/24/2022] [Indexed: 02/23/2024] Open
Affiliation(s)
| | | | - Lekshmi.R. Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| |
Collapse
|
27
|
Cuevas-Cianca SI, Romero-Castillo C, Gálvez-Romero JL, Juárez ZN, Hernández LR. Antioxidant and Anti-Inflammatory Compounds from Edible Plants with Anti-Cancer Activity and Their Potential Use as Drugs. Molecules 2023; 28:molecules28031488. [PMID: 36771154 PMCID: PMC9920972 DOI: 10.3390/molecules28031488] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Food is our daily companion, performing numerous beneficial functions for our bodies. Many of them can help to alleviate or prevent ailments and diseases. In this review, an extensive bibliographic search is conducted in various databases to update information on unprocessed foods with anti-inflammatory and antioxidant properties that can aid in treating diseases such as cancer. The current state of knowledge on inflammatory processes involving some interleukins and tumor necrosis factor-alpha (TNF-α) is reviewed. As well as unprocessed foods, which may help reduce inflammation and oxidative stress, both of which are important factors in cancer development. Many studies are still needed to take full advantage of the food products we use daily.
Collapse
Affiliation(s)
- Sofía Isabel Cuevas-Cianca
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Cristian Romero-Castillo
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - José Luis Gálvez-Romero
- ISSTE Puebla Hospital Regional, Boulevard 14 Sur 4336, Colonia Jardines de San Manuel, Puebla 72570, Mexico
| | - Zaida Nelly Juárez
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| | - Luis Ricardo Hernández
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| |
Collapse
|
28
|
Lasso P, Rojas L, Arévalo C, Urueña C, Murillo N, Barreto A, Costa GM, Fiorentino S. Tillandsia usneoides Extract Decreases the Primary Tumor in a Murine Breast Cancer Model but Not in Melanoma. Cancers (Basel) 2022; 14:5383. [PMID: 36358804 PMCID: PMC9656114 DOI: 10.3390/cancers14215383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 08/01/2023] Open
Abstract
The main limits of current antitumor therapies are chemoresistance, relapses, and toxicity that impair patient quality of life. Therefore, the discovery of therapeutic alternatives, such as adjuvants to conventional therapy that modulate the intracellular oxidation state or the immune response, remains a challenge. Owing to traditional medicine, several uses of plants are known, indicating a promising antitumor and immunomodulatory effect. We evaluated the effect of ethanolic extract of T. usneoides in vitro and in vivo in models of 4T1 breast cancer and B16-F10 melanoma. In vitro evaluations with both cell lines showed that the extract has cytotoxic activity and induces apoptotic cell death. However, its effect on ROS production and glucose uptake was opposite. In vivo, only in the 4T1 model, a significant decrease in tumor size was found in animals treated with the extract, accompanied by an increase in dendritic cells and activated CD8+ T cells, and a decrease in myeloid-derived suppressor-like cells (MDSC-LC) and Tregs in the tumor microenvironment. These results suggest that T. usneoides extract antagonistically regulates tumor metabolism of 4T1 vs. B16-F10, impacting the tumor microenvironment and effective antitumor immune response, leading to a reduction in 4T1 tumor size but not on B16-F10.
Collapse
Affiliation(s)
- Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Laura Rojas
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Cindy Arévalo
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Natalia Murillo
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Geison M. Costa
- Grupo de Investigación en Fitoquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
29
|
Multi-Target Potential of Berberine as an Antineoplastic and Antimetastatic Agent: A Special Focus on Lung Cancer Treatment. Cells 2022; 11:cells11213433. [PMID: 36359829 PMCID: PMC9655513 DOI: 10.3390/cells11213433] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Despite therapeutic advancements, lung cancer remains the principal cause of cancer mortality in a global scenario. The increased incidence of tumor reoccurrence and progression and the highly metastatic nature of lung cancer are of great concern and hence require the investigation of novel therapies and/or medications. Naturally occurring compounds from plants serve as important resources for novel drugs for cancer therapy. Amongst these phytochemicals, Berberine, an alkaloid, has been extensively explored as a potential natural anticancer therapeutic agent. Several studies have shown the effectiveness of Berberine in inhibiting cancer growth and progression mediated via several different mechanisms, which include cell cycle arrest, inducing cell death by apoptosis and autophagy, inhibiting cell proliferation and invasion, as well as regulating the expression of microRNA, telomerase activity, and the tumor microenvironment, which usually varies for different cancer types. In this review, we aim to provide a better understanding of molecular insights of Berberine and its various derivative-induced antiproliferative and antimetastatic effects against lung cancer. In conclusion, the Berberine imparts its anticancer efficacy against lung cancers via modulation of several signaling pathways involved in cancer cell viability and proliferation, as well as migration, invasion, and metastasis.
Collapse
|
30
|
Moroccan Medicinal Plants Used to Treat Cancer: Ethnomedicinal Study and Insights into Pharmacological Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1645265. [PMID: 36330227 PMCID: PMC9626195 DOI: 10.1155/2022/1645265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Cancer is one of the major medical challenges, with an unacceptably high death toll worldwide. In Morocco, medicinal plants continue to play a pivotal therapeutic role despite the development of modern sanitation systems. In the current study, an ethnobotanical survey was carried out at the Moroccan national institute of oncology, Rabat, and we aimed at (1) establishing an exhaustive inventory of indigenous knowledge of Moroccan medicinal plants used to manage cancer and (2) confirming the reported ethnopharmacological uses through bibliometric review. An ethnobotanical survey was conducted with 291 cancer patients at the Moroccan National Institute of Oncology, Rabat, during a period of 4 months, from February to May 2019, through semistructured interviews. Ethnobotanical indices, including informant consensus factor (FIC), use report (UR), relative frequency citation (RFC), botanical family use value (FUV), fidelity level (FL), and index of agreement on remedies (IAR), were employed in data analyses. The survey revealed that 39 medicinal plants belonging to 27 botanical families and 38 genera were used to treat cancer. The most used ethnospecies were Aristolochia longa with the highest RFC value (0.096), followed by Nigella sativa, Ephedra alata, Euphorbia resinifera, and Lavandula dentata, éwith RFC values of 0.072, 0.054, 0.044, and 0.044, respectively. In regard to the plant families, Lamiaceae contributed the highest number of plants with five species (FUV = 0.034), followed by Asteraceae (4 species; FUV = 0.020), and Fabaceae (4 species; FUV = 0.020). The leaves are the most popular plant part used by the studied population against cancer; otherwise, decoction was the most commonly used method for remedy preparation and the highest FIC was noticed for uterine cancer treatment (0.86). Considering these findings, further investigations into the recorded plant species should be performed to assess phytochemical constituents and pharmaceutical benefits in order to identify their active compounds for any drug formulations.
Collapse
|
31
|
Giri AK, Biswal B, Jena B, Acharya L. Phytochemicals with ROS scavenging activity and nutritional analyses of an underutilized fruit from Odisha (Eugenia roxburghii DC.). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Dutta R, Bhattacharya E, Pramanik A, Hughes TA, Mandal Biswas S. Potent nutraceuticals having antioxidant, DNA damage protecting potential and anti-cancer properties from the leaves of four Ficus species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
A Review on Medicinal Plants Having Anticancer Properties of Northeast India and Associated Endophytic Microbes and their Future in Medicinal Science. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human beings are affected by different diseases and suffer to different extents. Cancer is one of the major human disease and millions of people suffered from cancer and end their lives every year. Peoples are dependent on herbal medicines since prehistoric time especially from developing countries. It is very common to have different side effects of modern synthetic medicines; hence now-a-days importance of herbal medicines due to no or least side effects increases all parts of the world. But the major problems of using herbal medicines are that plants can produce very limited amount of medicinally important bioactive metabolites and they have very long growth periods. Therefore endophytes are the excellent alternative of plant derived metabolites. Endophytic microbes can synthesize exactly same type of metabolites as the plant produces. North East India is a treasure of plant resources; various types of medicinal plants are present in this region. Different types of indigenous tribes are inhabited in this region who used different plants in traditional system for treating various disease. But with increasing demand it is sometimes not sufficient to manage the demand of medicines, therefore for massive production endophytic study is crucial. In spite of having huge plant resources very limited endophytic studies are observed in this region. In this review, we studied different plants with their endophytes of NE India showing anticancer properties.
Collapse
|
34
|
Khodavirdipour A, Safaralizadeh R, Haghi M, Hosseinpourfeizi MA. Comparative de novo transcriptome analysis of flower and root of Oliveria decumbens Vent. to identify putative genes in terpenes biosynthesis pathway. Front Genet 2022; 13:916183. [PMID: 35991569 PMCID: PMC9386285 DOI: 10.3389/fgene.2022.916183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The Oliveria decumbens Vent. is a wild, rare, annual medicinal plant and endemic plant of Iran that has metabolites (mostly terpenes) which make it a precious plant in Persian Traditional Medicine and also a potential chemotherapeutic agent. The lack of genetic resources has slowed the discovery of genes involved in the terpenes biosynthesis pathway. It is a wild relative of Daucus carota. In this research, we performed the transcriptomic differences between two samples, flower and root of Oliveria decumbens, and also analyze the expression value of the genes involved in terpenoid biosynthesis by RNA-seq and its essential oil’s phytochemicals analyzed by GC/MS. In total, 136,031,188 reads from two samples of flower and root have been produced. The result shows that the MEP pathway is mostly active in the flower and the MVA in the root. Three genes of GPP, FPPS, and GGPP that are the precursors in the synthesis of mono, di, and triterpenes are upregulated in root and 23 key genes were identified that are involved in the biosynthesis of terpenes. Three genes had the highest upregulation in the root including, and on the other hand, another three genes had the expression only in the flower. Meanwhile, 191 and 185 upregulated genes in the flower and root of the plant, respectively, were selected for the gene ontology analysis and reconstruction of co-expression networks. The current research is the first of its kind on Oliveria decumbens transcriptome and discussed 67 genes that have been deposited into the NCBI database. Collectively, the information obtained in this study unveils the new insights into characterizing the genetic blueprint of Oliveria decumbens Vent. which paved the way for medical/plant biotechnology and the pharmaceutical industry in the future.
Collapse
|
35
|
Cirsilineol Inhibits the Proliferation of Human Prostate Cancer Cells by Inducing Reactive Oxygen Species (ROS)-Mediated Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7975664. [PMID: 35855832 PMCID: PMC9288295 DOI: 10.1155/2022/7975664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Cirsilineol has been reported to exhibit anticancer effects against several human cancer cell lines. The present study was designed to evaluate the anticancer effects of cirsilineol against the human DU-145 prostate cancer cells. The results showed that cirsilineol suppressed the proliferation of DU-145 cancer cells in a dose-dependent manner with minimal cytotoxic effects against the normal cells. The IC50 of cirsilineol was found to be 7 μM and 110 μM against prostate cancer DU-145 and normal HPrEC prostate cells, respectively. Acridine orange and ethidium bromide (AO/EB) staining showed that cirsilineol induced apoptosis in DU-145 prostate cancer cells. The Annexin V/PI staining further confirmed the induction of apoptosis in DU-145 cells. The western blot analysis showed that cirsilineol suppressed the expression of Bax and upregulated the expression of Bcl-2 in prostate cancer DU-145 cells. Moreover, cirsilineol caused a dose-dependent increase in reactive oxygen species (ROS) levels in prostate cancer. Wound healing and Transwell assays showed that cirsilineol inhibits migration and invasion of DU-145 prostate cancer cells. Summing up, the results suggest that cirsilineol suppresses the proliferation of prostate cancer cells and may prove to be a beneficial lead molecule for the development of chemotherapy for prostate cancer.
Collapse
|
36
|
Adnan M, Jairajpuri DS, Chaddha M, Khan MS, Yadav DK, Mohammad T, Elasbali AM, Abu Al-Soud W, Hussain Alharethi S, Hassan MI. Discovering Tuberosin and Villosol as Potent and Selective Inhibitors of AKT1 for Therapeutic Targeting of Oral Squamous Cell Carcinoma. J Pers Med 2022; 12:jpm12071083. [PMID: 35887580 PMCID: PMC9322152 DOI: 10.3390/jpm12071083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a major cause of death in developing countries because of high tobacco consumption. RAC-alpha serine-threonine kinase (AKT1) is considered as an attractive drug target because its prolonged activation and overexpression are associated with cancer progression and metastasis. In addition, several AKT1 inhibitors are being developed to control OSCC and other associated forms of cancers. We performed a screening of the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) database to discover promising AKT1 inhibitors which pass through various important filters such as ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, physicochemical properties, PAINS (pan-assay interference compounds) filters, PASS (prediction of activity spectra for substances) analysis, and specific interactions with AKT1. Molecules bearing admirable binding affinity and specificity towards AKT1 were selected for further analysis. Initially, we identified 30 natural compounds bearing appreciable affinity and specific interaction with AKT1. Finally, tuberosin and villosol were selected as potent and selective AKT1 inhibitors. To obtain deeper insights into binding mechanism and selectivity, we performed an all-atom molecular dynamics (MD) simulation and principal component analysis (PCA). We observed that both tuberosin and villosol strongly bind to AKT1, and their complexes were stable throughout the simulation trajectories. Our in-depth structure analysis suggested that tuberosin and villosol could be further exploited in the therapeutic targeting of OSCC and other cancers after further clinical validations.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Bahrain;
| | - Muskan Chaddha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.C.); (T.M.)
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (D.K.Y.); (M.I.H.)
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.C.); (T.M.)
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
- Health Sciences Research Unit, Jouf University, Sakaka 72388, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran 66252, Saudi Arabia;
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.C.); (T.M.)
- Correspondence: (D.K.Y.); (M.I.H.)
| |
Collapse
|
37
|
Crocus sativus L. Tepal Extract Induces Apoptosis in Human U87 Glioblastoma Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4740246. [PMID: 35722462 PMCID: PMC9205709 DOI: 10.1155/2022/4740246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/21/2022] [Indexed: 12/13/2022]
Abstract
Crocus sativus (C. sativus) is considered as the costliest spice and an important medicinal plant. Herein, we investigated the effects of tepal extract (TE) of C. sativus on the viability of the human glioblastoma cells. Results revealed that TE significantly (P < 0.05) inhibited the proliferation of U87 glioblastoma cells in a dose-dependent manner with comparatively lower toxic effects against normal astrocytes. The IC50 of TE against U87 glioblastoma cells was found to be 130 μg/mL as compared to 600 μg/mL against normal astrocytes. TE also inhibited the colony formation of U87 cells significantly (P < 0.05). The AO/EB and Annexin V/PI staining assays indicated that TE stimulated apoptosis in U87 cells dose dependently. The early and late apoptotic U87 cells increased from 0.66% and 2.3% at control to 14.2% and 21.4% at 260 μg/mL of TE. Moreover, TE caused upregulation of Bax and suppression of Bcl-2. Wound healing assay showed that migration of the U87 cells was suppressed significantly (P < 0.05) at 80 μg/mL of TE. Taken together, these results suggest that TE exhibits antiproliferative effects against U87 glioma cells and may prove to be an important source of natural anticancer agents.
Collapse
|
38
|
Dewi C, Fristiohady A, Amalia R, Khairul Ikram NK, Ibrahim S, Muchtaridi M. Signaling Pathways and Natural Compounds in Triple-Negative Breast Cancer Cell Line. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123661. [PMID: 35744786 PMCID: PMC9227697 DOI: 10.3390/molecules27123661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, having a poor prognosis and rapid metastases. TNBC is characterized by the absence of estrogen, progesterone, and human epidermal growth receptor-2 (HER2) expressions and has a five-year survival rate. Compared to other breast cancer subtypes, TNBC patients only respond to conventional chemotherapies, and even then, with limited success. Shortages of chemotherapeutic medication can lead to resistance, pressured index therapy, non-selectivity, and severe adverse effects. Finding targeted treatments for TNBC is difficult owing to the various features of cancer. Hence, identifying the most effective molecular targets in TNBC pathogenesis is essential for predicting response to targeted therapies and preventing TNBC cell metastases. Nowadays, natural compounds have gained attention as TNBC treatments, and have offered new strategies for solving drug resistance. Here, we report a systematic review using the database from Pubmed, Science Direct, MDPI, BioScince, Springer, and Nature for articles screening from 2003 to 2022. This review analyzes relevant signaling pathways and the prospect of utilizing natural compounds as a therapeutic agent to improve TNBC treatments in the future.
Collapse
Affiliation(s)
- Citra Dewi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Pharmacy Department, Faculty of Science and Technology, Mandala Waluya University, Kendari 93561, Indonesia
| | - Adryan Fristiohady
- Faculty of Pharmacy, Halu Oleo University, Kampus Hijau Bumi Tridharma, Kendari 93232, Indonesia;
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Sugeng Ibrahim
- Department of Molecular Biology, Faculty of Medicine, Universitas Katolik Soegijapranata, Semarang 50234, Indonesia;
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence:
| |
Collapse
|
39
|
Zimmermann-Klemd AM, Reinhardt JK, Winker M, Gründemann C. Phytotherapy in Integrative Oncology-An Update of Promising Treatment Options. Molecules 2022; 27:3209. [PMID: 35630688 PMCID: PMC9143079 DOI: 10.3390/molecules27103209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Modern phytotherapy is part of today's conventional evidence-based medicine and the use of phytopharmaceuticals in integrative oncology is becoming increasingly popular. Approximately 40% of users of such phytopharmaceuticals are tumour patients. The present review provides an overview of the most important plants and nature-based compounds used in integrative oncology and illustrates their pharmacological potential in preclinical and clinical settings. A selection of promising anti-tumour plants and ingredients was made on the basis of scientific evidence and therapeutic practical relevance and included Boswellia, gingko, ginseng, ginger, and curcumin. In addition to these nominees, there is a large number of other interesting plants and plant ingredients that can be considered for the treatment of cancer diseases or for the treatment of tumour or tumour therapy-associated symptoms. Side effects and interactions are included in the discussion. However, with the regular and intended use of phytopharmaceuticals, the occurrence of adverse side effects is rather rare. Overall, the use of defined phytopharmaceuticals is recommended in the context of a rational integrative oncology approach.
Collapse
Affiliation(s)
- Amy M. Zimmermann-Klemd
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland; (A.M.Z.-K.); (M.W.)
| | - Jakob K. Reinhardt
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland;
| | - Moritz Winker
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland; (A.M.Z.-K.); (M.W.)
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland; (A.M.Z.-K.); (M.W.)
| |
Collapse
|
40
|
Ruidas B, Sur TK, Das Mukhopadhyay C, Sinha K, Som Chaudhury S, Sharma P, Bhowmick S, Majumder R, Saha A. Quercetin: a silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1. Breast Cancer 2022; 29:748-760. [PMID: 35511410 DOI: 10.1007/s12282-022-01356-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Recent evidence confirmed that the maximum energy in metastatic breast cancer progression is supplied by fatty acid oxidation (FAO) governed by a rate-limiting enzyme, carnitine palmitoyltransferase 1 (CPT1). Therefore, the active limitation of FAO could be an emerging aspect to inhibit breast cancer progression. Herein, for the first time, we have introduced quercetin (QT) from a non-dietary source (Mikania micrantha Kunth) to limit the FAO in triple-negative breast cancer cells (TNBC) through an active targeting of CPT1. METHODS Molecular quantification of QT was confirmed through high-performance thin-layer chromatography (HPTLC). Computational docking analyses predicted the binding affinity of QT to CPT1. Cell-based seahorse energy efflux investigated the mitochondrial respiration rate, glycolytic function and ATP production rate. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) investigated the FAO-associated gene expression. Matrigel cell invasion and fluorescence-activated cell sorting analyses investigated anti-metastatic and apoptotic cell death induction activities, respectively. In vivo antitumor activities were checked using the female breast cancer mice (BALB/c) model. RESULTS QT resulted in a significant reduction in the intracellular mitochondrial respiration and glycolytic function, limiting extensive ATP production. In turn, QT elevated the reactive oxygen species (ROS) and depleted antioxidant levels to induce anti-metastatic and cell apoptosis activities. qRT-PCR resulted in active healing of altered FAO-associated gene expression which was well predicted through the successful in silico molecular binding potentiality of QT to CPT1. Subsequently, QT has shown excellent in vivo antitumor activities through the altered lipid profile and oxidative stress-healing capabilities. CONCLUSIONS All the obtained data significantly grounded the fact that QT could be a promising metabolism-targeted breast cancer therapeutic.
Collapse
Affiliation(s)
- Bhuban Ruidas
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India.
| | - Tapas Kumar Sur
- Department of Pharmacology, R G Kar Medical College and Hospital, Kolkata, West Bengal, 700004, India
| | - Chitrangada Das Mukhopadhyay
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India
| | - Koel Sinha
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India
| | - Sutapa Som Chaudhury
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India
| | - Pramita Sharma
- Department of Zoology, Hooghly Mohsin College affiliated to University of Burdwan, Hooghly, West Bengal, 712101, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A. P. C. Road, Kolkata, 700009, India
| | - Rabindranath Majumder
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92, A. P. C. Road, Kolkata, 700009, India
| |
Collapse
|
41
|
Dehydrocrenatidine Induces Liver Cancer Cell Apoptosis by Suppressing JNK-Mediated Signaling. Pharmaceuticals (Basel) 2022; 15:ph15040402. [PMID: 35455398 PMCID: PMC9027780 DOI: 10.3390/ph15040402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Liver cancer is a leading cause of death worldwide. Despite advancement in therapeutic interventions, liver cancer is associated with poor prognosis because of highly lethal characteristics and high recurrence rate. In the present study, the anticancer potential of a plant-based alkaloid namely dehydrocrenatidine has been evaluated in human liver cancer cells. The study findings revealed that dehydrocrenatidine reduced cancer cell viability by arresting cell cycle at G2/M phase and activating mitochondria-mediated and death receptor-mediated apoptotic pathways. Specifically, dehydrocrenatidine significantly increased the expression of extrinsic pathway components (FAS, DR5, FADD, and TRADD) as well as intrinsic pathway components (Bax and Bim L/S) in liver cancer cells. In addition, dehydrocrenatidine significantly increased the cleavage and activation of PARP and caspases 3, 8, and 9. The analysis of upstream signaling pathways revealed that dehydrocrenatidine induced caspase-mediated apoptosis by suppressing the phosphorylation of JNK1/2. Taken together, the study identifies dehydrocrenatidine as a potent anticancer agent that can be use clinically to inhibit the proliferation of human liver cancer cells.
Collapse
|
42
|
Mottaghipisheh J, Doustimotlagh AH, Irajie C, Tanideh N, Barzegar A, Iraji A. The Promising Therapeutic and Preventive Properties of Anthocyanidins/Anthocyanins on Prostate Cancer. Cells 2022; 11:1070. [PMID: 35406634 PMCID: PMC8997497 DOI: 10.3390/cells11071070] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
As water-soluble flavonoid derivatives, anthocyanidins and anthocyanins are the plants pigments mostly rich in berries, pomegranate, grapes, and dark color fruits. Many bioactivity properties of these advantageous phytochemicals have been reported; among them, their significant abilities in the suppression of tumor cells are of the promising therapeutic features, which have recently attracted great attention. The prostate malignancy, is considered the 2nd fatal and the most distributed cancer type in men worldwide. The present study was designated to gather the preclinical and clinical studies evaluating potencies of anthocyanidins/anthocyanins for the treatment and prevention of this cancer type for the first time. In general, findings confirm that the anthocyanins (especifically cyanidin-3-O-glucoside) indicated higher activity against prostatic neoplasms compared to their correlated anthocyanidins (e.g., delphinidin); in which potent anti-inflammatory, apoptosis, and anti-proliferative activities were analyzed. Complementary anti-prostate cancer assessment of diverse naturally occurred anthocyanidins/anthocyanins and their synthetically optimized derivatives through preclinical experiments and eventually confirmed by clinical trials can promisingly lead to discover natural-based chemotherapeutic drug options.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Center for Molecular Biosciences (CMBI), Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Amir Hossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 75918-67319, Iran;
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj 75918-67319, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Alireza Barzegar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
- Liosa Pharmed Parseh Company, Shiraz 71997-47118, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| |
Collapse
|
43
|
Rizvi A, Ahmed B, Khan MS, El-Beltagi HS, Umar S, Lee J. Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops. Molecules 2022; 27:molecules27041407. [PMID: 35209196 PMCID: PMC8880754 DOI: 10.3390/molecules27041407] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Traditionally, medicinal plants have long been used as a natural therapy. Plant-derived extracts or phytochemicals have been exploited as food additives and for curing many health-related ailments. The secondary metabolites produced by many plants have become an integral part of human health and have strengthened the value of plant extracts as herbal medicines. To fulfil the demand of health care systems, food and pharmaceutical industries, interest in the cultivation of precious medicinal plants to harvest bio-active compounds has increased considerably worldwide. To achieve maximum biomass and yield, growers generally apply chemical fertilizers which have detrimental impacts on the growth, development and phytoconstituents of such therapeutically important plants. Application of beneficial rhizosphere microbiota is an alternative strategy to enhance the production of valuable medicinal plants under both conventional and stressed conditions due to its low cost, environmentally friendly behaviour and non-destructive impact on fertility of soil, plants and human health. The microbiological approach improves plant growth by various direct and indirect mechanisms involving the abatement of various abiotic stresses. Given the negative impacts of fertilizers and multiple benefits of microbiological resources, the role of plant growth promoting rhizobacteria (PGPR) in the production of biomass and their impact on the quality of bio-active compounds (phytochemicals) and mitigation of abiotic stress to herbal plants have been described in this review. The PGPR based enhancement in the herbal products has potential for use as a low cost phytomedicine which can be used to improve health care systems.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
- Correspondence: (B.A.); (H.S.E.-B.)
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Gamma St., Cairo 12613, Egypt
- Correspondence: (B.A.); (H.S.E.-B.)
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| |
Collapse
|
44
|
Kim MJ, Kawk HW, Kim SH, Lee HJ, Seo JW, Lee CY, Kim YM. The p53-Driven Anticancer Effect of Ribes fasciculatum Extract on AGS Gastric Cancer Cells. Life (Basel) 2022; 12:life12020303. [PMID: 35207590 PMCID: PMC8876336 DOI: 10.3390/life12020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer metastasis is directly related to the survival rate of cancer patients. Although cancer metastasis proceeds by the movement of cancer cells, it is fundamentally caused by its resistance to anoikis, a mechanism of apoptosis caused by the loss of adhesion of cancer cells. Therefore, it was found that inhibiting cancer migration and reducing anoikis resistance are important for cancer suppression, and natural compounds can effectively control it. Among them, Ribes fasciculatum, which has been used as a medicinal plant, was confirmed to have anticancer potential, and experiments were conducted to prove various anticancer effects by extracting Ribes fasciculatum (RFE). Through various experiments, it was observed that RFE induces apoptosis of AGS gastric cancer cells, arrests the cell cycle, induces oxidative stress, and reduces mobility. It was also demonstrated that anoikis resistance was attenuated through the downregulation of proteins, such as epidermal growth factor receptor (EGFR). Moreover, the anticancer effect of RFE depends upon the increase in p53 expression, suggesting that RFE is suitable for the development of p53-targeted anticancer materials. Moreover, through xenotransplantation, it was found that the anticancer effect of RFE confirmed in vitro was continued in vivo.
Collapse
|
45
|
Tesi EP, Ben‐Azu B, Mega OO, Mordi J, Knowledge OO, Awele ED, Rotu RA, Emojevwe V, Adebayo OG, Eneni OA. Kolaviron, a flavonoid‐rich extract ameliorates busulfan‐induced chemo‐brain and testicular damage in male rats through inhibition of oxidative stress, inflammatory, and apoptotic pathways. J Food Biochem 2022; 46:e14071. [DOI: 10.1111/jfbc.14071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Edesiri P. Tesi
- Department of Science Laboratory Technology Delta State Polytechnic Ogwashi‐Uku Nigeria
| | - Benneth Ben‐Azu
- Department of Pharmacology Faculty of Basic Medical Science, College of Health Sciences Delta State University Abraka Nigeria
| | - Oyovwi O. Mega
- Department of Basic Medical Sciences Achievers University Owo Nigeria
| | - Joseph Mordi
- Department of Biochemistry Faculty of Basic Medical Science, College of Health Sciences Delta State University Abraka Nigeria
| | - Obed O. Knowledge
- Department of Science Laboratory Technology Delta State Polytechnic Ogwashi‐Uku Nigeria
| | - Egbuchua D. Awele
- Department of Science Laboratory Technology Delta State Polytechnic Ogwashi‐Uku Nigeria
| | - Rume A. Rotu
- Department of Physiology Faculty of Basic Medical Science College of Medicine University of Ibadan Ibadan Nigeria
| | - Victor Emojevwe
- Department of Physiology Faculty of Basic Medical Science University of Medical Sciences Ondo Nigeria
| | - Olusegun G. Adebayo
- Neurophysiology Unit, Department of Physiology PAMO University of Medical Sciences Port‐Harcourt Nigeria
| | - Okubo Aya‐Ebi Eneni
- Department of Pharmacology and Toxicology Faculty of Pharmacy Niger Delta University Amassoma Nigeria
| |
Collapse
|
46
|
KIM H, CHO SM, KIM WJ, HONG KB, SUH HJ, YU KW. Red ginseng polysaccharide alleviates cytotoxicity and promotes anti-inflammatory activity of ginsenosides. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.52220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hoon KIM
- Kyung Hee University Skin Biotechnology Center, Republic of Korea
| | | | - Woo Jung KIM
- Gyeonggido Business and Science Accelerator, Republic of Korea
| | | | | | - Kwang-Won YU
- Korea National University of Transportation, Republic of Korea
| |
Collapse
|
47
|
Ashraf MA, Sayed S, Bello M, Hussain N, Chando RK, Alam S, Hasan MK. CDK4 as a phytochemical based anticancer drug target. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2021.100826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
48
|
de Lima RG, Lisoni FCR, Picão TB, Dos Santos FF, Orenha RP, Borges A, Molina EF, Parreira RLT, E Silva MLA, Santos MFC, de Laurentiz RDS. In vitro and in silico cytotoxicity of hinokinin-loaded PLGA microparticle systems against tumoral SiHa cells. Nat Prod Res 2021; 36:4696-4703. [PMID: 34736364 DOI: 10.1080/14786419.2021.2000409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This work aimed to synthesize poly (D, L-lactic-co-glycolic acid) (PLGA) microparticles containing hinokinin (HNK) and to evaluate their cytotoxic activity against tumoral SiHa cells and non-tumoral HaCaT cells. Hinokinin was incorporated into PLGA (PLGA-HNK) with an encapsulation efficiency of 84.18 ± 2.32%. PLGA and PLGA-HNK were characterized by SEM microscopy and showed spherical morphology with an average size of ∼3.33. Encapsulation efficiency was determined by a calibration curve using UV-vis spectroscopy. PLGA-HNK more active inhibiting proliferation of SiHa cells (IC50 = 14.68 µM) than free HNK (IC50 = 225.5 µM). In relation to HaCaT cells, PLGA-HNK showed no significant difference compared to the negative control. These results led to an increase in HNK bioavailability and thereby, biological activity. In silico prediction analysis suggests that HNK is cytotoxic against SiHa cells with E6 and MDM2 inhibition as possible main mechanism of action.
Collapse
Affiliation(s)
- Regiane G de Lima
- Departamento de Física e Química, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, São Paulo, Brasil
| | - Flavia C R Lisoni
- Departamento de Biologia e Zootecnia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, São Paulo, Brasil
| | - Thais B Picão
- Departamento de Biologia e Zootecnia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, São Paulo, Brasil
| | - Fransérgio F Dos Santos
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brasil
| | - Renato P Orenha
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brasil
| | | | - Eduardo F Molina
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brasil
| | - Renato L T Parreira
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brasil
| | - Márcio L A E Silva
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brasil
| | - Mario F C Santos
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brasil
| | - Rosangela da S de Laurentiz
- Departamento de Física e Química, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, São Paulo, Brasil
| |
Collapse
|
49
|
Prasedya ES, Ardiana N, Padmi H, Ilhami BTK, Martyasari NWR, Sunarwidhi AL, Nikmatullah A, Widyastuti S, Sunarpi H, Frediansyah A. The Antiproliferative and Apoptosis-Inducing Effects of the Red Macroalgae Gelidium latifolium Extract against Melanoma Cells. Molecules 2021; 26:molecules26216568. [PMID: 34770978 PMCID: PMC8587204 DOI: 10.3390/molecules26216568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
The red macroalga Gelidium latifolium is widely distributed in the coastal areas of Indonesia. However, current knowledge on its potential biological activities is still limited. In this study, we investigated the potential bioactive compounds in Gelidium latifolium ethanol extract (GLE), and its cytotoxic effects against the murine B16-F10 melanoma cell line. GLE shows high total phenolic content (107.06 ± 17.42 mg GAE/g) and total flavonoid content (151.77 ± 3.45 mg QE/g), which potentially contribute to its potential antioxidant activity (DPPH = 650.42 ± 2.01 µg/mL; ABTS = 557.01 ± 1.94 µg/mL). ESI-HR-TOF-MS analysis revealed large absorption in the [M-H]- of 327.2339 m/z, corresponding to the monoisotopic molecular mass of brassicolene. The presence of this compound potentially contributes to GLE's cytotoxic activity (IC50 = 84.29 ± 1.93 µg/mL). Furthermore, GLE significantly increased the number of apoptotic cells (66.83 ± 3.06%) compared to controls (18.83 ± 3.76%). Apoptosis was also confirmed by changes in the expression levels of apoptosis-related genes (i.e., p53, Bax, Bak, and Bcl2). Downregulated expression of Bcl2 indicates an intrinsic apoptotic pathway. Current results suggest that components of Gelidium latifolium should be further investigated as possible sources of novel antitumor drugs.
Collapse
Affiliation(s)
- Eka Sunarwidhi Prasedya
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, Mataram University, Mataram 83126, Indonesia; (E.S.P.); (N.A.); (H.P.); (B.T.K.I.); (N.W.R.M.); (H.S.)
| | - Nur Ardiana
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, Mataram University, Mataram 83126, Indonesia; (E.S.P.); (N.A.); (H.P.); (B.T.K.I.); (N.W.R.M.); (H.S.)
| | - Hasriaton Padmi
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, Mataram University, Mataram 83126, Indonesia; (E.S.P.); (N.A.); (H.P.); (B.T.K.I.); (N.W.R.M.); (H.S.)
| | - Bq Tri Khairina Ilhami
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, Mataram University, Mataram 83126, Indonesia; (E.S.P.); (N.A.); (H.P.); (B.T.K.I.); (N.W.R.M.); (H.S.)
| | - Ni Wayan Riyani Martyasari
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, Mataram University, Mataram 83126, Indonesia; (E.S.P.); (N.A.); (H.P.); (B.T.K.I.); (N.W.R.M.); (H.S.)
| | | | - Aluh Nikmatullah
- Faculty of Agriculture, University of Mataram, Mataram 83125, Indonesia;
| | - Sri Widyastuti
- Faculty of Food Science and Agroindustry, University of Mataram, Mataram 83125, Indonesia;
| | - Haji Sunarpi
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, Mataram University, Mataram 83126, Indonesia; (E.S.P.); (N.A.); (H.P.); (B.T.K.I.); (N.W.R.M.); (H.S.)
| | - Andri Frediansyah
- Pharmaceutical Institute, Eberhard Karls University of Tuebingen, 72074 Tuebingen, Germany
- Research Division for Natural Product Technology (BPTBA), Indonesian Institute of Sciences (LIPI), Wonosari 55861, Indonesia
- National Research and Innovation Agency (BRIN), Wonosari 55861, Indonesia
- Correspondence:
| |
Collapse
|
50
|
Truong VNP, Nguyen YTK, Cho SK. Ampelopsin Suppresses Stem Cell Properties Accompanied by Attenuation of Oxidative Phosphorylation in Chemo- and Radio-Resistant MDA-MB-231 Breast Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14080794. [PMID: 34451892 PMCID: PMC8400665 DOI: 10.3390/ph14080794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
Ampelopsin, also known as dihydromyricetin, is a commonly found flavonoid in medicinal plants. The cancer stem cell (CSC) population is a promising target for triple-negative breast cancer (TNBC). In this study, flavonoid screening was performed in the established MDA-MB-231/IR cell line, which is enriched in CSCs. Ampelopsin suppressed the proliferation and colony formation of stem cell-rich MDA-MB-231/IR, while inducing their apoptosis. Importantly, ampelopsin displayed an inhibitory impact on the stemness features of MDA-MB-231/IR cells, demonstrated by decreases in mammosphere formation, the CD44+/CD24-/low population, aldehyde dehydrogenase activity, and the levels of stem cell markers (e.g., CD44, MRP1, β-catenin, and KLF4). Ampelopsin also suppressed the epithelial-mesenchymal transition, as evidenced by decreases in migration, invasion capacity, and mesenchymal markers, as well as an increase in the epithelial marker E-cadherin. Moreover, ampelopsin significantly impaired oxidative phosphorylation by reducing the oxygen consumption rate and adenosine triphosphate production in MDA-MB-231/IR cells. Notably, ampelopsin treatment significantly reduced the levels of the phosphorylated forms of IκBα and NF-κB p65, as well as the levels of tumor necrosis factor (TNF)-α-stimulated phosphorylation of IκBα and NF-κB p65. These results demonstrated that ampelopsin prevents the TNF-α/NF-κB signaling axis in breast CSCs.
Collapse
Affiliation(s)
- Vi Nguyen-Phuong Truong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (V.N.-P.T.); (Y.T.-K.N.)
| | - Yen Thi-Kim Nguyen
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (V.N.-P.T.); (Y.T.-K.N.)
| | - Somi-Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (V.N.-P.T.); (Y.T.-K.N.)
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-10-8660-1842
| |
Collapse
|