1
|
Mattioda C, Voena C, Ciardelli G, Mattu C. In Vitro 3D Models of Haematological Malignancies: Current Trends and the Road Ahead? Cells 2025; 14:38. [PMID: 39791739 PMCID: PMC11720277 DOI: 10.3390/cells14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Haematological malignancies comprise a diverse group of life-threatening systemic diseases, including leukaemia, lymphoma, and multiple myeloma. Currently available therapies, including chemotherapy, immunotherapy, and CAR-T cells, are often associated with important side effects and with the development of drug resistance and, consequently, disease relapse. In the last decades, it was largely demonstrated that the tumor microenvironment significantly affects cancer cell proliferation and tumor response to treatment. The development of biomimetic, in vitro models may promote the investigation of the interactions between cancer cells and the tumor microenvironment and may help to better understand the mechanisms leading to drug resistance. Although advanced in vitro models have been largely explored in the field of solid tumors, due to the complex nature of the blood cancer tumor microenvironment, the mimicking of haematological malignancies mostly relies on simpler systems, often limited to two-dimensional cell culture, which intrinsically excludes the microenvironmental niche, or to ethically debated animal models. This review aims at reporting an updated overview of state-of-the-art hematological malignancies 3D in vitro models, emphasizing the key features and limitations of existing systems to inspire further research in this underexplored field.
Collapse
Affiliation(s)
- Carlotta Mattioda
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy;
| | - Gianluca Ciardelli
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| | - Clara Mattu
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| |
Collapse
|
2
|
Pitaro M, Antonini G, Arcovito A, Buccisano F, De Lauro A, Irno Consalvo M, Gallo V, Giacon N, Mangiatordi GF, Pacelli M, Pitaro MT, Polticelli F, Sorrenti M, Venditti A. Development of a recombinant human IgG1 monoclonal antibody against the TRBV5-1 segment of the T cell receptor for the treatment of mature T cell neoplasms. Front Immunol 2024; 15:1520103. [PMID: 39742266 PMCID: PMC11686114 DOI: 10.3389/fimmu.2024.1520103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
Background Mature T-cell neoplasms arise from the neoplastic transformation of a single T lymphocyte, and all cells in a neoplastic clone share the same V segment in the beta chain of the T-cell receptor (TCR). These segments may represent an innovative target for the development of targeted therapies. Methods A specific V segment of the TCR beta chain (TRBV5-1) was analyzed using bioinformatic tools, identifying three potential antigenic peptides. One of these peptides, selected for synthesis, was used to screen a library of human single-chain variable fragments (scFv) through phage display. One fragment demonstrated high affinity and specificity for the antigen and was used to produce a human monoclonal antibody of the IgG1 class. Results Surface plasmon resonance (SPR) studies confirmed the high affinity of the monoclonal antibody for the antigen in the nanomolar range. Flow cytometry analysis on patients' samples demonstrated that the antibody, conjugated with a fluorochrome, selectively binds to tumor T lymphocytes expressing TRBV5-1, without binding to other lymphocytes or blood cell components. Conclusions The development of fully human IgG1 monoclonal antibodies targeting specific V segments of the TCR beta chain represents a potential therapeutic option for patients with mature T-cell neoplasms.
Collapse
Affiliation(s)
- Michele Pitaro
- INBB – Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Giovanni Antonini
- INBB – Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
- Dipartimento di Scienze, Università di Roma Tre, Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche, Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Buccisano
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Rome, Italy
| | | | - Maria Irno Consalvo
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Rome, Italy
| | - Valentina Gallo
- Dipartimento di Scienze, Università di Roma Tre, Rome, Italy
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche, Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | - Adriano Venditti
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Rome, Italy
| |
Collapse
|
3
|
Jureczek J, Kałwak K, Dzięgiel P. Antibody-Based Immunotherapies for the Treatment of Hematologic Malignancies. Cancers (Basel) 2024; 16:4181. [PMID: 39766080 PMCID: PMC11674729 DOI: 10.3390/cancers16244181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/05/2025] Open
Abstract
Despite the great advancements in treatment strategies for hematological malignancies (HMs) over the years, their effective treatment remains challenging. Conventional treatment strategies are burdened with several serious drawbacks limiting their effectiveness and safety. Improved understanding of tumor immunobiology has provided novel anti-cancer strategies targeting selected immune response components. Currently, immunotherapy is counted as the fourth pillar of oncological treatment (together with surgery, chemo- and radiotherapy) and is becoming standard in the treatment regimen, alone or in combination therapy. Several categories of immunotherapies have been developed and are currently being assessed in clinical trials for the treatment of blood cancers, including immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor vaccines, and adoptive cell therapies. However, monoclonal antibodies (mAbs) and their derivatives have achieved the most notable clinical outcome so far. Since the approval of rituximab for treating B-cell malignancies, the availability of mAbs against tumor-specific surface molecules for clinical use has flourished. Antibody-based therapy has become one of the most successful strategies for immunotherapeutic cancer treatment in the last few decades, and many mAbs have already been introduced into standard treatment protocols for some hematologic malignancies. To further increase the efficacy of mAbs, they can be conjugated to radioisotopes or cytostatic drugs, so-called antibody-drug conjugates. Moreover, with the growing recognition of T-cell immunity's role in cancer development, strategies aimed at enhancing T cell activation and inhibiting mechanisms that suppress T cell function are actively being developed. This review provides a comprehensive overview of the current status of immunotherapeutic strategies based on monoclonal antibodies and their derivatives, including antibody-drug conjugates, bispecific T-cell engagers, and checkpoint inhibitors, approved for the treatment of various HMs.
Collapse
Affiliation(s)
- Justyna Jureczek
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Krzysztof Kałwak
- Clinical Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
4
|
Libert D, Zhao S, Younes S, Mosquera AP, Bharadwaj S, Ferreira C, Natkunam Y. TIGIT is Frequently Expressed in the Tumor Microenvironment of Select Lymphomas: Implications for Targeted Therapy. Am J Surg Pathol 2024; 48:337-352. [PMID: 38148663 PMCID: PMC10876169 DOI: 10.1097/pas.0000000000002168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Immune checkpoint inhibitors against Programmed Cell Death Protein 1/Programmed Cell (PD-1/PD-L1) and CTLA-4/B7 axes have had limited success in hematologic malignancies, requiring the need to explore alternative targets such as T-cell immunoreceptor with Ig and ITIM domains (TIGIT)/CD155 to improve durable clinical responses. We undertook this study to investigate the expression profile of TIGIT such that the potential efficacy of TIGIT blockade could be mapped among lymphoma subtypes. We validated an immunohistochemical assay for TIGIT and evaluated its expression in lymphoma and tumor microenvironment (TME) cells in 661 lymphoma/leukemia biopsies. Multiplex immunofluorescence was used for correlation with normal TME cell subsets. Tumor or TME TIGIT-positivity was defined as moderate to strong membrane staining in at least 10% of tumor or TME cells, respectively. TME TIGIT expression was correlated with overall survival and progression-free survival and comparison with PD-L1 expression. In most cases, lymphoma cells were TIGIT-negative except for angioimmunoblastic and peripheral T-cell lymphomas, which showed 91% and 47% positivity, respectively. A high proportion of small B-cell lymphoma and anaplastic large cell lymphoma cases had TIGIT-positive TME cells. Chronic lymphocytic leukemia/small lymphocytic lymphoma patients with TIGIT-negative TME cells showed significantly shorter overall survival ( P =0.04). No other statistically significant differences were found. When TIGIT was expressed in TME cells, there were a comparable number of TIGIT-positive only and dual TIGIT/PD-L1 positive cases except for more TIGIT-positive only cases in CLL/SLL. TIGIT expression shows distinctive profiles among lymphoma subtypes. Chronic lymphocytic leukemia/small lymphocytic lymphoma and anaplastic large cell lymphoma demonstrated high TME TIGIT expression compared with PD-L1, with a high proportion of dual TIGIT and PD-L1-positivity. Our results are likely to contribute to the design and correlative study of therapeutic response in clinical trials targeting TIGIT alone or in combination with PD1/PDL1.
Collapse
|
5
|
Carbone A, Gloghini A, Carlo-Stella C. Tumor microenvironment contribution to checkpoint blockade therapy: lessons learned from Hodgkin lymphoma. Blood 2023; 141:2187-2193. [PMID: 36898085 PMCID: PMC10646787 DOI: 10.1182/blood.2022016590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Classic Hodgkin lymphoma (cHL) is characterized by a tumor microenvironment (TME) containing inflammatory/immune cells. Follicular lymphoma, mediastinal gray zone lymphoma, and diffuse large B-cell lymphomas may show a TME containing inflammatory/immune cells, but the TMEs are quite different. In B-cell lymphomas and cHL, programmed cell death 1 (PD-1)-PD ligand 1 pathway blockade drugs differ in their effectiveness among patients with refractory/relapsed disease. Further research should explore innovative assays that could reveal which molecules influence sensitivity or resistance to therapy in an individual patient.
Collapse
Affiliation(s)
- Antonino Carbone
- Department of Pathology, Centro di Riferimento Oncologico Aviano, Istituto Nazionale Tumori, IRCCS, Aviano, Italy
| | - Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS, Istituto Nazionale Tumori, Milan, Italy
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- Department of Oncology and Hematology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
6
|
Cholujova D, Beke G, Hunter ZR, Hideshima T, Flores L, Zeleznikova T, Harrachova D, Klucar L, Leiba M, Drgona L, Treon SP, Kastritis E, Dorfman DM, Anderson KC, Jakubikova J. Dysfunctions of innate and adaptive immune tumor microenvironment in Waldenström macroglobulinemia. Int J Cancer 2023; 152:1947-1963. [PMID: 36533670 PMCID: PMC9992277 DOI: 10.1002/ijc.34405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Waldenström macroglobulinemia (WM) is a rare subtype of non-Hodgkin lymphoma characterized by malignant lymphoplasmacytic cells in the bone marrow (BM). To dissect the pathophysiology of WM, we evaluated clonal cells by mapping of B cell lymphomagenesis with adaptive and innate immune tumor microenvironment (TME) in the BM of WM patients using mass cytometry (CyTOF). In-depth immunophenotypic profiling of WM cells exhibited profound expansion of clonal cells in both unswitched and switched memory B cells and also plasma cells with aberrant expression variations. WM B lymphomagenesis was associated with reduction of most B cell precursors assessed with the same clonally restricted light chain and phenotypic changes. The immune TME was infiltrated by mature monocytes, neutrophils and adaptive T cells, preferentially subsets of effector T helper, effector CTL and effector memory CTL cells that were associated with superior overall survival (OS), in contrast to progenitors of T cells and myeloid/monocytic lineage subsets that were suppressed in WM cohort. Moreover, decrease in immature B and NKT cells was related to worse OS in WM patients. Innate and adaptive immune subsets of WM TME were modulated by immune checkpoints, including PD-1/PD-L1&PD-L2, TIGIT/PVR, CD137/CD137-L, CTLA-4, BTLA and KIR expression. The response of ibrutinib treatment to the reduction of clonal memory B cell was associated with high levels of immature B cells and effector memory CTL cells. Our study demonstrates that CyTOF technology is a powerful approach for characterizing the pathophysiology of WM at various stages, predicting patient risk and monitoring the effectiveness of treatment strategies.
Collapse
Affiliation(s)
- Danka Cholujova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Gabor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zachary R Hunter
- Bing Center for Waldenström Macroglobulinemia, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Teru Hideshima
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Boston, Massachusetts, USA
| | - Ludmila Flores
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Boston, Massachusetts, USA
| | - Tatiana Zeleznikova
- Department of Oncohematology, St. Elizabeth Cancer Institute Hospital, Bratislava, Slovakia
| | - Denisa Harrachova
- Department of Oncohematology, Hospital Cyril and Methodius, Bratislava, Slovakia
| | - Lubos Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Merav Leiba
- Assuta Ashdod University Hospital, Faculty of Health Science, Ben-Gurion University of the Negev, Negev, Israel
| | - Lubos Drgona
- Department of Oncohematology, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Steven P Treon
- Bing Center for Waldenström Macroglobulinemia, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - David M Dorfman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kenneth C Anderson
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Boston, Massachusetts, USA
| | - Jana Jakubikova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Boston, Massachusetts, USA
| |
Collapse
|
7
|
García-Domínguez DJ, Sánchez-Margalet V, de la Cruz-Merino L, Hontecillas-Prieto L. Knowing the myeloid-derived suppressor cells : Another enemy of sarcomas patients. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:93-116. [PMID: 36967155 DOI: 10.1016/bs.ircmb.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sarcomas are heterogeneous and aggressive malignant tumors with variable responses to current standard treatments being usually incurable for those patients with metastatic and unresectable diseases. The lack of curative strategies has led to develop new therapies in the treatment of sarcomas where the role of immune system is an evolving field. Most sarcomas often exhibit an immunosuppressive microenvironment, which reduces their capacity to trigger an immune response. Therefore, sarcomas are broadly considered as an "immune cold" tumor, although some studies have described a great immune heterogeneity across sarcoma subtypes. Sarcoma cells, like other tumors, evade their immune destruction through a variety of mechanisms, including expansion and recruitment of myeloid derived suppressor cells (MDSCs). MDSCs are immature myeloid cells that have been correlated with a reduction of the therapeutic efficacy, including immunotherapy, tumor progression and worst prognosis. Consequently, different strategies have been developed in recent years to target MDSCs in cancer treatments. This chapter discusses the role of MDSCs in sarcomas and their current potential as a therapeutic target in these malignancies.
Collapse
|
8
|
Landeira-Viñuela A, Arias-Hidalgo C, Juanes-Velasco P, Alcoceba M, Navarro-Bailón A, Pedreira CE, Lecrevisse Q, Díaz-Muñoz L, Sánchez-Santos JM, Hernández ÁP, García-Vaquero ML, Góngora R, De Las Rivas J, González M, Orfao A, Fuentes M. Unravelling soluble immune checkpoints in chronic lymphocytic leukemia: Physiological immunomodulators or immune dysfunction. Front Immunol 2022; 13:965905. [PMID: 36248816 PMCID: PMC9554405 DOI: 10.3389/fimmu.2022.965905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoid neoplasm characterized by the accumulation of mature B cells. The diagnosis is established by the detection of monoclonal B lymphocytes in peripheral blood, even in early stages [monoclonal B-cell lymphocytosis (MBLhi)], and its clinical course is highly heterogeneous. In fact, there are well-characterized multiple prognostic factors that are also related to the observed genetic heterogenicity, such as immunoglobulin heavy chain variable region (IGHV) mutational status, del17p, and TP53 mutations, among others. Moreover, a dysregulation of the immune system (innate and adaptive immunity) has been observed in CLL patients, with strong impact on immune surveillance and consequently on the onset, evolution, and therapy response. In addition, the tumor microenvironment is highly complex and heterogeneous (i.e., matrix, fibroblast, endothelial cells, and immune cells), playing a critical role in the evolution of CLL. In this study, a quantitative profile of 103 proteins (cytokines, chemokines, growth/regulatory factors, immune checkpoints, and soluble receptors) in 67 serum samples (57 CLL and 10 MBLhi) has been systematically evaluated. Also, differential profiles of soluble immune factors that discriminate between MBLhi and CLL (sCD47, sCD27, sTIMD-4, sIL-2R, and sULBP-1), disease progression (sCD48, sCD27, sArginase-1, sLAG-3, IL-4, and sIL-2R), or among profiles correlated with other prognostic factors, such as IGHV mutational status (CXCL11/I-TAC, CXCL10/IP-10, sHEVM, and sLAG-3), were deciphered. These results pave the way to explore the role of soluble immune checkpoints as a promising source of biomarkers in CLL, to provide novel insights into the immune suppression process and/or dysfunction, mostly on T cells, in combination with cellular balance disruption and microenvironment polarization leading to tumor escape.
Collapse
Affiliation(s)
- Alicia Landeira-Viñuela
- Department of Medicine and General Service of Cytometry, Centro de Investigación Biomédica en Red Cáncer (CIBERONC)- CB16/12/00400, Cancer Research Centre-Instituto Universitario de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas - Universidad de Salamanca (CSIC-USAL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Carlota Arias-Hidalgo
- Department of Medicine and General Service of Cytometry, Centro de Investigación Biomédica en Red Cáncer (CIBERONC)- CB16/12/00400, Cancer Research Centre-Instituto Universitario de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas - Universidad de Salamanca (CSIC-USAL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Pablo Juanes-Velasco
- Department of Medicine and General Service of Cytometry, Centro de Investigación Biomédica en Red Cáncer (CIBERONC)- CB16/12/00400, Cancer Research Centre-Instituto Universitario de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas - Universidad de Salamanca (CSIC-USAL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Miguel Alcoceba
- Department of Hematology, University Hospital of Salamanca, Centro de Investigación Biomédica en Red Cáncer (CIBERONC)- CB16/12/00233, Center Research-Centre Instituto Universitario de Biología Molecular y Celular del Cáncer (IBMCC) Consejo Superior de Investigaciones Científicas - Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (CSIC-USAL, IBSAL), Salamanca, Spain
| | - Almudena Navarro-Bailón
- Department of Hematology, University Hospital of Salamanca, Centro de Investigación Biomédica en Red Cáncer (CIBERONC)- CB16/12/00233, Center Research-Centre Instituto Universitario de Biología Molecular y Celular del Cáncer (IBMCC) Consejo Superior de Investigaciones Científicas - Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (CSIC-USAL, IBSAL), Salamanca, Spain
| | - Carlos Eduardo Pedreira
- Systems and Computing Department Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia-Programa de Engenharia de Sistemas e Computação (COPPE-PESC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Quentin Lecrevisse
- Department of Medicine and General Service of Cytometry, Centro de Investigación Biomédica en Red Cáncer (CIBERONC)- CB16/12/00400, Cancer Research Centre-Instituto Universitario de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas - Universidad de Salamanca (CSIC-USAL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Laura Díaz-Muñoz
- Department of Medicine and General Service of Cytometry, Centro de Investigación Biomédica en Red Cáncer (CIBERONC)- CB16/12/00400, Cancer Research Centre-Instituto Universitario de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas - Universidad de Salamanca (CSIC-USAL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | | | - Ángela-Patricia Hernández
- Department of Medicine and General Service of Cytometry, Centro de Investigación Biomédica en Red Cáncer (CIBERONC)- CB16/12/00400, Cancer Research Centre-Instituto Universitario de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas - Universidad de Salamanca (CSIC-USAL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Department of Pharmaceutical Sciences, Organic Chemistry Section, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Marina L. García-Vaquero
- Department of Medicine and General Service of Cytometry, Centro de Investigación Biomédica en Red Cáncer (CIBERONC)- CB16/12/00400, Cancer Research Centre-Instituto Universitario de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas - Universidad de Salamanca (CSIC-USAL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Rafael Góngora
- Department of Medicine and General Service of Cytometry, Centro de Investigación Biomédica en Red Cáncer (CIBERONC)- CB16/12/00400, Cancer Research Centre-Instituto Universitario de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas - Universidad de Salamanca (CSIC-USAL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center Instituto Universitario de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca (CIC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain
| | - Marcos González
- Department of Hematology, University Hospital of Salamanca, Centro de Investigación Biomédica en Red Cáncer (CIBERONC)- CB16/12/00233, Center Research-Centre Instituto Universitario de Biología Molecular y Celular del Cáncer (IBMCC) Consejo Superior de Investigaciones Científicas - Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (CSIC-USAL, IBSAL), Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine and General Service of Cytometry, Centro de Investigación Biomédica en Red Cáncer (CIBERONC)- CB16/12/00400, Cancer Research Centre-Instituto Universitario de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas - Universidad de Salamanca (CSIC-USAL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and General Service of Cytometry, Centro de Investigación Biomédica en Red Cáncer (CIBERONC)- CB16/12/00400, Cancer Research Centre-Instituto Universitario de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas - Universidad de Salamanca (CSIC-USAL), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Proteomics Unit, Cancer Research Centre-IBMCC, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca-Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
- *Correspondence: Manuel Fuentes,
| |
Collapse
|
9
|
Palomba ML, Till BG, Park SI, Morschhauser F, Cartron G, Marks R, Shivhare M, Hong WJ, Raval A, Chang AC, Penuel E, Popplewell LL. Combination of Atezolizumab and Obinutuzumab in Patients with Relapsed/Refractory Follicular Lymphoma and Diffuse Large B-Cell Lymphoma: Results from a Phase 1b Study. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e443-e451. [PMID: 35031227 DOI: 10.1016/j.clml.2021.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/02/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND This was an open-label, phase 1b study assessing the safety, tolerability, preliminary efficacy and pharmacokinetics of the combination of atezolizumab and obinutuzumab in patients with relapsed/refractory follicular lymphoma (FL) or diffuse large B-cell lymphoma (DLBCL). There is a mechanistic rationale suggesting that this combination may enhance recruitment of both innate and adaptive immunity and be effective against CD20+ B-cell malignancies. MATERIALS AND METHODS The study consisted of a safety evaluation stage and an expansion stage. Patients received obinutuzumab 1000 mg intravenously (IV) in cycle (C) 1, obinutuzumab plus atezolizumab 1200 mg IV for C2-8, and atezolizumab only from C9. Primary endpoints were to identify a recommended phase 2 dose (RP2D) for atezolizumab, and safety and tolerability in the safety and expansion stages. RESULTS A total of 49 patients were enrolled (FL, n = 26; DLBCL, n = 23), with a median of 2 prior lines of treatment. The RP2D for atezolizumab was 1200 mg IV every 3 weeks. Adverse events reported in ≥ 20% of patients were fatigue (15 patients [31%]), nausea (13 patients [27%]), cough, and diarrhea (10 patients [20%] each). Objective response rate was 54% in the FL cohort (complete response [CR] rate: 23%) and 17% in the DLBCL cohort (CR: 4%). Median progression-free survival was 9 months for FL and 3 months for DLBCL. Median overall survival was not estimable for FL and 9 months for DLBCL. CONCLUSION The combination of obinutuzumab and atezolizumab was determined to be safe and tolerable, with no new toxicities observed.
Collapse
Affiliation(s)
- M Lia Palomba
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian G Till
- Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Franck Morschhauser
- Department of Clinical Hematology, Lille University Hospital Center, Lille, France
| | - Guillaume Cartron
- Department of Clinical Hematology, University Hospital Center of Montpellier, Montpellier, France
| | - Reinhard Marks
- Department of Hematology, Oncology and Stem Cell Transplantation, Universitätsklinikum Freiburg, Freiburg, Germany
| | | | - Wan-Jen Hong
- Product Development Oncology, Genentech, Inc., South San Francisco, CA
| | - Aparna Raval
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA
| | - Alice C Chang
- Product Development Oncology, Genentech, Inc., South San Francisco, CA
| | - Elicia Penuel
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA
| | - Leslie L Popplewell
- Lymphoma Division, Department of Hematology and Hematopoitic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
10
|
Tumor Immune Microenvironment in Lymphoma: Focus on Epigenetics. Cancers (Basel) 2022; 14:cancers14061469. [PMID: 35326620 PMCID: PMC8946119 DOI: 10.3390/cancers14061469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Lymphoma is a neoplasm arising from B or T lymphocytes or natural killer cells characterized by clonal lymphoproliferation. This tumor comprises a diverse and heterogeneous group of malignancies with distinct clinical, histopathological, and molecular characteristics. Despite advances in lymphoma treatment, clinical outcomes of patients with relapsed or refractory disease remain poor. Thus, a deeper understanding of molecular pathogenesis and tumor progression of lymphoma is required. Epigenetic alterations contribute to cancer initiation, progression, and drug resistance. In fact, over the past decade, dysregulation of epigenetic mechanisms has been identified in lymphomas, and the knowledge of the epigenetic aberrations has led to the emergence of the promising epigenetic therapy field in lymphoma tumors. However, epigenetic aberrations in lymphoma not only have been found in tumor cells, but also in cells from the tumor microenvironment, such as immune cells. Whereas the epigenetic dysregulation in lymphoma cells is being intensively investigated, there are limited studies regarding the epigenetic mechanisms that affect the functions of immune cells from the tumor microenvironment in lymphoma. Therefore, this review tries to provide a general overview of epigenetic alterations that affect both lymphoma cells and infiltrating immune cells within the tumor, as well as the epigenetic cross-talk between them.
Collapse
|
11
|
Cheng J, Chen G, Lv H, XU L, LIU H, Chen T, Qu L, Wang J, Cheng L, Hu S, Wang Y. CD4-Targeted T Cells Rapidly Induce Remissions in Mice with T Cell Lymphoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6614784. [PMID: 33855074 PMCID: PMC8019637 DOI: 10.1155/2021/6614784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 03/05/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the immune cell therapy for T cell lymphoma, we developed CD4-specific chimeric antigen receptor- (CAR-) engineered T cells (CD4CART), and the cytotoxic effects of CD4CART cells were determined in vitro and in vivo. METHODS CD4CART cells were obtained by transduction of lentiviral vector encoding a single-chain antibody fragment (scFv) specific for CD4 antigen, costimulatory factor CD28 fragment, and intracellular signal transduction domain of CD3 fragments. Control T cells were obtained by transduction of reporter lentiviral vector. The cytotoxicity, tumor growth, and survival rate of mice with T cell lymphoma were analyzed after adoptive T cell transfer in vivo. RESULTS CD4CART cells had potent cytotoxic activity against CD4+ T1301 tumor T cells in a concentration-dependent manner. In addition, adoptive CD4CART cell transfer significantly suppressed tumor growth and improved animal survival with T cell lymphoma, compared to the mice who received control T cells and PBS. CONCLUSION CD4CART cells have potent cytotoxic effects on T cell lymphoma. The study provided an experimental basis for CD4CART-mediated therapy of T cell lymphoma.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Guanghua Chen
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Jiangsu Province, China
| | - Hui Lv
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Liangjing XU
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Jiangsu Province, China
| | - Huiwen LIU
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Jiangsu Province, China
| | - Tianping Chen
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Lijun Qu
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Jian Wang
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Lemei Cheng
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yi Wang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
12
|
Csizmar CM, Ansell SM. Engaging the Innate and Adaptive Antitumor Immune Response in Lymphoma. Int J Mol Sci 2021; 22:3302. [PMID: 33804869 PMCID: PMC8038124 DOI: 10.3390/ijms22073302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has emerged as a powerful therapeutic strategy for many malignancies, including lymphoma. As in solid tumors, early clinical trials have revealed that immunotherapy is not equally efficacious across all lymphoma subtypes. For example, immune checkpoint inhibition has a higher overall response rate and leads to more durable outcomes in Hodgkin lymphomas compared to non-Hodgkin lymphomas. These observations, combined with a growing understanding of tumor biology, have implicated the tumor microenvironment as a major determinant of treatment response and prognosis. Interactions between lymphoma cells and their microenvironment facilitate several mechanisms that impair the antitumor immune response, including loss of major histocompatibility complexes, expression of immunosuppressive ligands, secretion of immunosuppressive cytokines, and the recruitment, expansion, and skewing of suppressive cell populations. Accordingly, treatments to overcome these barriers are being rapidly developed and translated into clinical trials. This review will discuss the mechanisms of immune evasion, current avenues for optimizing the antitumor immune response, clinical successes and failures of lymphoma immunotherapy, and outstanding hurdles that remain to be addressed.
Collapse
Affiliation(s)
| | - Stephen M. Ansell
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|