1
|
Yang S, Li M, Lian G, Wu Y, Cui J, Wang L. ABHD8 antagonizes inflammation by facilitating chaperone-mediated autophagy-mediated degradation of NLRP3. Autophagy 2024:1-14. [PMID: 39225180 DOI: 10.1080/15548627.2024.2395158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
The NLRP3 inflammasome is a multiprotein complex that plays a vital role in the innate immune system in response to microbial infections and endogenous danger signals. Aberrant activation of the NLRP3 inflammasome is implicated in a spectrum of inflammatory and autoimmune diseases, emphasizing the necessity for precise regulation of the NLRP3 inflammasome to maintain immune homeostasis. The protein level of NLRP3 is a limiting step for inflammasome activation, which must be tightly controlled to avoid detrimental consequences. Here, we demonstrate that ABHD8, a member of the α/β-hydrolase domain-containing (ABHD) family, interacts with NLRP3 and promotes its degradation through the chaperone-mediated autophagy (CMA) pathway. ABHD8 acts as a scaffold to recruit palmitoyltransferase ZDHHC12 to NLRP3 for its palmitoylation as well as subsequent CMA-mediated degradation. Notably, ABHD8 deficiency results in the stabilization of NLRP3 protein and promotes NLRP3 inflammasome activation. We further confirm that ABHD8 overexpression ameliorates LPS- or alum-triggered NLRP3 inflammasome activation in vivo. Interestingly, the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impairs the ABHD8-NLRP3 association, resulting in an elevation in NLRP3 protein level and excessive inflammasome activation. These findings demonstrate that ABHD8 May represent a potential therapeutic target in conditions associated with NLRP3 inflammasome dysregulation.Abbreviations: 3-MA: 3-methyladenine; ABHD: α/β-hydrolase domain-containing; BMDMs: Bone marrow-derived macrophages; CFZ: carfilzomib; CHX: cycloheximide; CMA: chaperone-mediated autophagy; CQ: chloroquine; DAMPs: danger/damage-associated molecular patterns; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; LAMP2A: lysosomal associated membrane protein 2A; NH4Cl: ammonium chloride; NLRP3: NLR family pyrin domain containing 3; PAMPs: pathogen-associated molecular patterns; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Shuai Yang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen university, Guangzhou, Guangdong, China
| | - Mengqiu Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen university, Guangzhou, Guangdong, China
| | - Guangyu Lian
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen university, Guangzhou, Guangdong, China
| | - Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen university, Guangzhou, Guangdong, China
| | - Liqiu Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen university, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Dong H, Cao Y, Zou K, Shao Q, Liu R, Zhang Y, Pan L, Ning B. Ellagic acid promotes osteoblasts differentiation via activating SMAD2/3 pathway and alleviates bone mass loss in OVX mice. Chem Biol Interact 2024; 388:110852. [PMID: 38145796 DOI: 10.1016/j.cbi.2023.110852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Characterized by bone mass loss, osteoporosis is an orthopedic disease typically found in postmenopausal women and aging individuals. Consistent with its pathogenesis summarized as an imbalance in bone formation/resorption, current pharmacologically therapeutic strategies for osteoporosis mainly aim to promote bone formation or/and inhibit bone resorption. However, few effective drugs with mild clinical side effects have been developed, making it a well-concerned issue to seek appropriate drugs for osteoporosis. In this study, we investigated the effect of ellagic acid (EA) on osteogenesis in vitro and in vivo and searched for its molecular mechanism. Here, we showed that EA promoted osteogenic differentiation of MSCs, increased mRNA and protein expression levels of osteoblast marker genes Runt-related transcription factor2, Osterix, Alkaline phosphatase, Collagen type I alpha 1, Osteopontin and Osteocalcin. Furthermore, ovariectomized mice with orally administered EA (10 mg/kg, 50 mg/kg) had significantly higher bone mass than those in controls. And experiments such as fluorescence double-labeling and enzyme-linked immunosorbent assay also demonstrated that EA could promote osteogenesis in vivo. To probe the molecular mechanism of EA, we performed RNA sequencing analysis using EA-treated BMSCs. Significant up-regulation of SMAD2/3 transcription factors was identified by RNA-seq, and it was confirmed in vitro that EA promoted bone formation by activating the SMAD2/3 signaling pathway. Evidence from our present experiments indicates that EA may be a promising candidate for clinical treatment for osteoporosis in future.
Collapse
Affiliation(s)
- Hui Dong
- Jinan Central Hospital, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China; Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250013, China
| | - Yuxia Cao
- Jinan Central Hospital, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China; Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250013, China
| | - Ke Zou
- Jinan Central Hospital, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China; Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250013, China
| | - Qiang Shao
- Jinan Central Hospital, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Ronghan Liu
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250013, China
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250013, China
| | - Liuzhu Pan
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250013, China
| | - Bin Ning
- Jinan Central Hospital, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China; Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250013, China.
| |
Collapse
|
3
|
Pickering ME, Javier RM, Malochet S, Pickering G, Desmeules J. Osteoporosis treatment and pain relief: A scoping review. Eur J Pain 2024; 28:3-20. [PMID: 37403555 DOI: 10.1002/ejp.2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/11/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Anti-osteoporosis (OP) drugs have been suggested to contribute to pain reduction during OP management. This scoping review aimed at mapping the literature on pain relief with anti-OP drugs in OP treatment. DATABASES AND DATA TREATMENT Medline, Pubmed and Cochrane databases were searched by two reviewers with keywords combinations. Randomized controlled and real-life English studies, pain as an endpoint, antiosteoporosis drugs were inclusion criteria. Case reports, surveys, comment letters, conference abstracts, animal studies and grey literature were excluded. Predetermined data were extracted by two reviewers and disagreement solved through discussion. RESULTS A total of 130 articles were identified, 31 publications were included, 12 randomized clinical trials and 19 observational studies. Pain reduction was assessed by different tools: Visual Analogue Scale, Verbal Rating Scale, Facial Scale or as a domain of quality of life questionnaires including Short form 8, 36, mini-OP, Japanese OP, Qualeffo, Roland Morris Disability questionnaires. Collective data show that anti-OP drugs may display an analgesic effect that may be linked to the local mode of action of drugs on bone and consecutive modulation of pain sensitization. The methodology of the studies showed a heterogeneity of endpoints, comparators, statistical approaches and follow-up duration. CONCLUSION Considering the limitations of the literature, there is a need for more rigorous trials and larger real-life studies taking into account the recommendations published for research in rheumatology and in pain medicine. The identification of responders, patient subtypes, and of analgesic-effect doses would allow optimization and individualization for pain relief in patients with OP. SIGNIFICANCE STATEMENT This scoping review shows that anti-OP drugs may improve pain and quality of life of patients with OP. The heterogeneity in design, choice of endpoints, methodology, comparators and follow-up duration of included randomized clinical trials and real-life studies does not allow so far to identify a predominant antiosteoporosis drug or an optimal dosage for pain relief. These gaps need to be addressed and warrant further research in the future for optimizing pain improvement in the course of OP drug treatment.
Collapse
Affiliation(s)
| | - Rose-Marie Javier
- Centre d'Evaluation et de Traitement de la Douleur et Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sandrine Malochet
- Rheumatology Department, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Gisele Pickering
- Clinical Investigation Center, PIC/CIC, University Hospital, CHU, Clermont-Ferrand, France
| | - Jules Desmeules
- Service de Pharmacologie et Toxicologie Cliniques, Centre multidisciplinaire de la douleur, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| |
Collapse
|
4
|
Peng X, Wang S, Wang J, Ju W, Yang G, Gu K, Liu H, Wang Z, Jiang X, Li M, Chen H, Shi J, Chen M. Plasma 8-Hydroxy-2'-Deoxyguanosine, a Potential Valuable Biomarker for Atrial Fibrosis Is Influenced by Polymorphism of DNA Methylation Gene. Circ J 2023; 87:964-972. [PMID: 37225477 DOI: 10.1253/circj.cj-22-0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Previous studies revealed a relationship between 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the occurrence/recurrence of atrial fibrillation (AF). This 2-part study aimed to validate whether DNA damage related to 8-OHdG is associated with left atrial (LA) fibrosis in AF patients quantified by voltage mapping (Part I), and to identify the underlying genetic components regulating the 8-OHdG level (Part II). METHODS AND RESULTS Plasma 8-OHdG determination, DNA extraction, and genotyping were conducted before catheter ablation. LA voltage mapping was performed under sinus rhythm. According to the percentage of low voltage area (LVA), patients were categorized as stage I (<5%), stage II (5-10%), stage III (10-20%), and stage IV (>20%). Part I included 209 AF patients. The 8-OHdG level showed an upward trend together with advanced LVA stage (stage I 8.1 [6.1, 10.5] ng/mL, stage II 8.5 [5.7, 14.1] ng/mL, stage III 14.3 [12.1, 16.5] ng/mL, stage IV 13.9 [10.5, 16.0] ng/mL, P<0.000). Part II included 175 of the 209 patients from Part I. Gene-set analysis based on genome-wide association study summary data identified that the gene set named 'DNA methylation on cytosine' was the only genetic component significantly associated with 8-OHdG concentration. CONCLUSIONS Higher 8-OHdG levels may predict more advanced LVA of the LA in AF patients. DNA methylation is the putative genetic component underlying oxidative DNA damage in AF patients.
Collapse
Affiliation(s)
- Xiafeng Peng
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Shixin Wang
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Jing Wang
- Nephrology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Weizhu Ju
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Gang Yang
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Kai Gu
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Hailei Liu
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Zidun Wang
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Xiaohong Jiang
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Mingfang Li
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Hongwu Chen
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Jiaojiao Shi
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| | - Minglong Chen
- Cardiology Division, the First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
5
|
Clouse G, Penman S, Hadjiargyrou M, Komatsu DE, Thanos PK. Examining the role of cannabinoids on osteoporosis: a review. Arch Osteoporos 2022; 17:146. [PMID: 36401719 DOI: 10.1007/s11657-022-01190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/11/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE Prior research studies have shown that the endocannabinoid system, influenced by CBD and THC, plays a role in bone remodeling. As both the research on cannabis and use of cannabis continue to grow, novel medicinal uses of both its constituents as well as the whole plant are being discovered. This review examines the role of cannabinoids on osteoporosis, more specifically, the endocannabinoid system and its role in bone remodeling and the involvement of the cannabinoid receptors 1 and 2 in bone health, as well as the effects of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and synthetic cannabinoids on bone. METHODS A comprehensive literature search of online databases including PUBMED was utilized. RESULTS A total of 29 studies investigating the effects of cannabis and/or its constituents as well as the activation or inactivation of cannabinoid receptors 1 and 2 were included and discussed. CONCLUSION While many of the mechanisms are still not yet fully understood, both preclinical and clinical studies show that the effects of cannabis mediated through the endocannabinoid system may prove to be an effective treatment option for individuals with osteoporosis.
Collapse
Affiliation(s)
- Grace Clouse
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions (BNNLA), Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Samantha Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions (BNNLA), Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | - David E Komatsu
- Department of Orthopedics, Stony Brook University, Stony Brook, NY, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions (BNNLA), Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA. .,Department of Psychology, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
6
|
He Q, Fu K, Yao H, Wei S, Xiang L, Liu S, Chen T, Gao Y. Traditional Chinese decoction Si Zhi Wan attenuates ovariectomy (OVX)-induced bone loss by inhibiting osteoclastogenesis and promoting apoptosis of mature osteoclasts. Front Pharmacol 2022; 13:983884. [PMID: 36176450 PMCID: PMC9513524 DOI: 10.3389/fphar.2022.983884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Si Zhi Wan (SZW) is a traditional Chinese decoction used for osteoporosis treatment. Currently, the effect of SZW on ovariectomy (OVX)-induced bone loss and the underlying mechanisms remain unknown. Herein, we investigated the therapeutic effect of SZW on osteoporosis and explored the underlying mechanisms in vitro and in vivo. An OVX-induced bone loss model was established in vivo. After administration of SZW for 8 weeks, rats were sacrificed, and the uterus was weighted to calculate its index. The femur change was pathologically evaluated using hematoxylin and eosin (H&E) staining. The mineral density of the femur was observed by micro-CT. RAW264.7 cells were activated by receptor activator of nuclear factor-κB ligand (RANKL) in vitro. The effect of SZW on osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase (TRAP) staining, Western blotting, and RT-PCR. The pro-apoptosis effect of SZW on mature osteoclasts was examined after induction of osteoclast maturation. Finally, the effect of SZW on the NF-κB pathway was evaluated. Our results demonstrated that SZW ameliorated OVX-induced bone loss in rats. In addition, SZW inhibited osteoclastogenesis and attenuated osteoclast-mediated bone resorption in vitro and in vivo. SZW also promoted apoptosis of mature osteoclasts. Mechanically, SZW exerts its effects by suppressing the NF-κB pathway. Overall, these findings demonstrated that SZW may be a potentially effective alternative treatment for osteoporosis.
Collapse
Affiliation(s)
- Qingman He
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kanghua Fu
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Yao
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Li Xiang
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sixian Liu
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Yongxiang Gao
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yongxiang Gao,
| |
Collapse
|
7
|
Ye F, Dai Y, Wang T, Liang J, Wu X, Lan K, Sheng W. Trans-omics analyses revealed key epigenetic genes associated with overall survival in secondary progressive multiple sclerosis. J Neuroimmunol 2022; 364:577809. [PMID: 35026432 DOI: 10.1016/j.jneuroim.2022.577809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/21/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Secondary progressive multiple sclerosis (SPMS) is the second most common presentation of multiple sclerosis (MS) and is characterized by a gradually deteriorating disease with or without relapses. Approximately 80% of patients with relapsing-remitting MS (RRMS) develop SPMS within 20 years. Epidemiological investigations have revealed an average 7-year life expectancy decrease (more severe in progressive subtypes) in patients with MS. Studies have focused on the neurodegenerative pathogenesis of SPMS; and epigenetic changes have been associated with disease progression in neurodegenerative disorders. However, the evidence for the association between epigenetic changes and SPMS is scarce. Thus, in this study we aimed to identify the key epigenetic genes in SPMS. METHODS We downloaded DNA methylation and gene expression matrices from the Gene Expression Omnibus (GEO) database. We used bioinformatic analyses to identify key epigenetic genes associated with overall survival (OS) in patients with SPMS. RESULTS We found 49 differentially methylated positions (DMPs) between the SPMS and control GSE40360 datasets. We used the wANNOVAR server to obtain 64 methylated genes. We merged the gene expression datasets (GSE131282 and GSE135511) in the NetworkAnalyst platform and found 12,442 differentially-expressed genes (DEGs) between SPMS and controls using the Fisher's method, fixed effect model, Vote counting, and direct merging methods. Moreover, we identified 21 epigenetic genes (all hyper-methylated) after an integrating analysis of DMPs and DEGs of patients with SPMS. We established an epigenetic gene signature associated with the OS of patients with SPMS including six hyper-methylated genes (ITGA6, PPP1R16B, RNF126, ABHD8, FOXK1, and SLC6A19) based on the LASSO-Cox method. The calculated individual risk scores were associated with Oss, and we divided patients into high- and low-risk groups on the basis of the mean cut-off value. The six key epigenetic genes were significantly associated with gender, disease duration, and age at death via Spearman correlation analyses. In addition, survival analyses revealed a significant OS difference between high- and low-risk groups. The ROC curves indicated good performance for this predictive model. CONCLUSION We identified 21 hyper-methylated genes in patients with SPMS via an integrated analysis of DNA methylation and gene expression datasets. We identified a six-epigenetic gene signature that predicts the individual OS with good accuracy. These results indicated that epigenetic modifications play a vital role in the disease progression of SPMS.
Collapse
Affiliation(s)
- Fei Ye
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Dai
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tianzhu Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxin Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Lan
- Department of Anesthesiology, Troops 32268 Hospital, Dali, China
| | - Wenli Sheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Comparison of Percutaneous Kyphoplasty with or without Pedicle Screw Fixation in Osteoporotic Thoracolumbar Vertebral Fractures: A Retrospective Study. DISEASE MARKERS 2021; 2021:4745853. [PMID: 34306254 PMCID: PMC8263273 DOI: 10.1155/2021/4745853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022]
Abstract
Background Osteoporotic thoracolumbar compression fractures have become a great social burden due to the aging tendency of population. This study is aimed at comparing the clinical and radiological outcomes of percutaneous kyphoplasty with or without pedicle screw fixation in patients with osteoporotic thoracolumbar fractures. Hypothesis. There is a difference in clinical outcomes between percutaneous kyphoplasty with pedicle screw fixation and percutaneous kyphoplasty. Methods This retrospective study included 87 patients who received percutaneous kyphoplasty with or without pedicle screw fixation between October 2015 and October 2017 at Ningbo No.6 Hospital and were followed for 2 years. A total of 40 patients received percutaneous kyphoplasty with pedicle screw fixation (PKPF group), and the other 47 patients had percutaneous kyphoplasty only (PKP group). The outcomes were measured using the visual analogue scale (VAS), Oswestry Disability Index (ODI), Cobb angle (CA), and anterior vertebra height rate (AVHr), which were calculated at preoperative admission and each follow-up visit. Complications including postoperative back pain, refracture, and fixation failure were collected from medical records. Results There was no significant difference in baseline characteristics or preoperative data between the two groups (p < 0.05) but significantly better improvements in VAS, ODI, CA, and AVHr at 12- and 24-month follow-up visits in the PKPF group compared with those of the PKP group. 23 (48.9%) patients in the PKP group had complications, whereas only 5 (12.5%) patients in the PKPF group presented complications including 2 postoperative back pain and 1 fixation failure (p = 0.04). Conclusions PKPF obtained longer correction and better improvement in VAS, ODI, and CA in patients with osteoporotic thoracolumbar vertebral fractures than PKP.
Collapse
|
9
|
Sun Q, Nan XY, Tian FM, Liu F, Ping SH, Zhou Z, Zhang L. Raloxifene retards the progression of adjacent segmental intervertebral disc degeneration by inhibiting apoptosis of nucleus pulposus in ovariectomized rats. J Orthop Surg Res 2021; 16:368. [PMID: 34107971 PMCID: PMC8188785 DOI: 10.1186/s13018-021-02504-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/23/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Adjacent segmental intervertebral disk degeneration (ASDD) is a major complication secondary to lumbar fusion. Although ASSD pathogenesis remains unclear, the primary cause of intervertebral disk degeneration (IVDD) development is apoptosis of nucleus pulposus (NP). Raloxifene (RAL) could delay ASDD by inhibiting NP apoptosis. METHODS An ASDD rat model was established by ovariectomy (OVX) and posterolateral spinal fusion (PLF) on levels 4-5 of the lumbar vertebrae. Rats in the treatment groups were administered 1 mg/kg/d RAL by gavage for 12 weeks, following which, all animals were euthanized. Lumbar fusion, apoptosis, ASDD, and vertebrae micro-architecture were evaluated. RESULTS RAL maintained intervertebral disk height (DHI), delayed vertebral osteoporosis, reduced histological score, and inhibited apoptosis. The OVX+PLF+RAL group revealed upregulated expression of aggrecan and B-cell lymphoma-2 (bcl2), as well as significantly downregulated expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4), metalloproteinase-13 (MMP-13), caspase-3, BCL2-associated X (bax), and transferase dUTP nick end labeling (TUNEL) staining. Micro-computed tomography (Micro-CT) analysis revealed higher bone volume fraction (BV/TV), bone mineral density (BMD), and trabecular number (Tb.N), and lower trabecular separation (Tb.Sp) in OVX+PLF+RAL group than in the OVX+PLF group. CONCLUSIONS RAL can postpone ASDD development in OVX rats through inhibiting extracellular matrix metabolic imbalance, NP cell apoptosis, and vertebral osteoporosis. These findings showed RAL as a potential therapeutic target for ASDD.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopedic Surgery, Hebei Medical University, 361 Zhongshan E Rd, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xin-Yu Nan
- Department of Orthopedic Surgery, Hebei Medical University, 361 Zhongshan E Rd, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Fa-Ming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Fang Liu
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Shao-Hua Ping
- Department of Orthopedic Surgery, Hebei Medical University, 361 Zhongshan E Rd, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Zhuang Zhou
- Department of Bone and Soft Tissue Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, 361 Zhongshan E Rd, Shijiazhuang, Hebei, 050000, People's Republic of China.
- Department of Orthopedic Surgery, Emergency General Hospital, Beijing, People's Republic of China.
| |
Collapse
|