1
|
Li J, Gao Z. MARCHF1 promotes breast cancer through accelerating REST ubiquitylation and following TFAM transcription. Cell Biol Int 2025; 49:161-176. [PMID: 39428668 DOI: 10.1002/cbin.12255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Breast cancer has become the leading cause of death in women. Membrane associated ring-CH-type finger 1 (MARCHF1) is associated with the development of various types of cancer, but the exact role of MARCHF1 in breast cancer remains unclear. In our study, the higher MARCHF1 expression was observed in tumor samples of patients with breast cancer and then the role of MARCHF1 in breast cancer was further evaluated. Overexpression of MARCHF1 contributed to proliferation of cancer cells and inhibition of oxidative stress. Knockdown of MARCHF1 reduced breast cancer cell proliferation, increased mitochondrial dysfunction induced by oxidative stress, eventually aggravating cell death. In vivo, MARCHF1 promoted the tumor growth and oppositely, MARCHF1 silencing suppressed the tumor development. Moreover, MARCHF1 interacted with repressor Element-1 silencing transcription factor (REST) and facilitated its ubiquitylation and degradation. Subsequently, REST negatively regulated the transcription of mitochondrial transcription factor A (TFAM). The subcutaneous tumor formation assay in nude mice also supported these conclusions. In details, knockdown of MARCHF1 upregulated the protein expression of REST and downregulated the mRNA level of TFAM. On the contrary, MARCHF1 overexpression exhibited opposite effects. Thus, MARCHF1 is conducive to the progression of breast cancer via promoting the ubiquitylation and degradation of RSET and then the transcription of TFAM. Downregulating MARCHF1 could provide a novel direction for treating breast cancer.
Collapse
Affiliation(s)
- Jutao Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
- Organ Transplantation Center, The Second Hospital of Dalian Medical University, Dalian, China
- Department of Thyroid Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Zhenming Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
- Organ Transplantation Center, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Liu J, Zhou J, You C, Xia H, Gao Y, Liu Y, Gong X. Research progress in the mechanism of acupuncture regulating microglia in the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1435082. [PMID: 39145293 PMCID: PMC11321967 DOI: 10.3389/fnins.2024.1435082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the central nervous system, characterized by memory and cognitive dysfunction. Acupuncture is an effective means to alleviate the symptoms of AD. Recent studies have shown that microglia play an important role in the occurrence and development of AD. Acupuncture can regulate the activity of microglia, inhibit neuroinflammation, regulate phagocytosis, and clear Aβ Pathological products such as plaque can protect nerve cells and improve cognitive function in AD patients. This article summarizes the relationship between microglia and AD, as well as the research progress in the mechanism of acupuncture regulating microglia in the treatment of AD. The mechanism of acupuncture regulating microglia in the treatment of AD is mainly reviewed from two aspects: inhibiting neuroinflammatory activity and regulating phagocytic function.
Collapse
Affiliation(s)
- Jia Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University College of Integrated Traditional Chinese and Western Medicine, Dalian, China
| | - Jiaqi Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chong You
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University College of Integrated Traditional Chinese and Western Medicine, Dalian, China
| | - Haonan Xia
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University College of Integrated Traditional Chinese and Western Medicine, Dalian, China
| | - Yuling Gao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yong Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoyang Gong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Yang H, Shao ZH, Jin X, Chen JW. The critical role of P2XR/PGC-1α signalling pathway in hypoxia-mediated pyroptosis and M1/M2 phenotypic differentiation of mouse microglia. Eur J Neurosci 2024; 60:3629-3642. [PMID: 38697919 DOI: 10.1111/ejn.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Microglia are endogenous immune cells in the brain, and their pyroptosis and phenotype dichotomy are proved to play roles in neurodegenerative diseases. We investigated whether and how hypoxia affected pyroptosis and phenotype polarization in mouse microglia. Primary mouse microglia and BV2 microglia were exposed to hypoxia. Pyroptosis and M1/M2 phenotype were assessed by measuring gasdermin D truncation and M1/M2 surface marker expression. Mechanisms including purinergic ionotropic receptor (P2XR), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and NOD-like receptor protein 3 (NLRP3) inflammasome were investigated. We reported hypoxia (90% N2, 5% O2 and 5% CO2) induced pyroptosis and promoted M1 phenotype polarization in primary mouse microglia and BV2 microglia, and the effect appeared after 6 h exposure. Although hypoxia (90% N2, 5% O2 and 5% CO2, 6 h) had no effect on P2X1R and P2X7R expression, it increased P2X4R expression and decreased PGC-1α expression. Interestingly, blockade of P2X4R or P2X7R abolished hypoxia-modulated PGC-1α expression, pyroptosis and M1 polarization. PGC-1α overexpression or overactivation alleviated hypoxia-induced pyroptosis and M1 polarization, while PGC-1α knockdown or deactivation promoted pyroptosis and M1 polarization under normoxic situation. Further, hypoxia induced NLRP3 expression and activated caspase-1 and induced the phosphorylation of NF-κB and reduced the phosphorylation of STAT3/6. NLRP3 inhibitor and caspase-1 inhibitor abolished hypoxia-induced pyroptosis, while NF-κB inhibitor and STAT phosphorylation inducer ameliorated hypoxia-induced M1 polarization. In addition, NF-κB activator and STAT3/6 inhibitor caused microglia M1 polarization under normoxic situation. We concluded in cultured mouse microglia, hypoxia may induce pyroptosis via P2XR/PGC-1α/NLRP3/caspase-1 pathway and trigger M1 polarization through P2XR/PGC-1α/NF-κB/STAT3/6 pathway.
Collapse
Affiliation(s)
- Hao Yang
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Zhen-Hua Shao
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Xian Jin
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Jia-Wei Chen
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Perycz M, Dabrowski MJ, Jardanowska-Kotuniak M, Roura AJ, Gielniewski B, Stepniak K, Dramiński M, Ciechomska IA, Kaminska B, Wojtas B. Comprehensive analysis of the REST transcription factor regulatory networks in IDH mutant and IDH wild-type glioma cell lines and tumors. Acta Neuropathol Commun 2024; 12:72. [PMID: 38711090 PMCID: PMC11071216 DOI: 10.1186/s40478-024-01779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
The RE1-silencing transcription factor (REST) acts either as a repressor or activator of transcription depending on the genomic and cellular context. REST is a key player in brain cell differentiation by inducing chromatin modifications, including DNA methylation, in a proximity of its binding sites. Its dysfunction may contribute to oncogenesis. Mutations in IDH1/2 significantly change the epigenome contributing to blockade of cell differentiation and glioma development. We aimed at defining how REST modulates gene activation and repression in the context of the IDH mutation-related phenotype in gliomas. We studied the effects of REST knockdown, genome wide occurrence of REST binding sites, and DNA methylation of REST motifs in IDH wild type and IDH mutant gliomas. We found that REST target genes, REST binding patterns, and TF motif occurrence proximal to REST binding sites differed in IDH wild-type and mutant gliomas. Among differentially expressed REST targets were genes involved in glial cell differentiation and extracellular matrix organization, some of which were differentially methylated at promoters or gene bodies. REST knockdown differently impacted invasion of the parental or IDH1 mutant glioma cells. The canonical REST-repressed gene targets showed significant correlation with the GBM NPC-like cellular state. Interestingly, results of REST or KAISO silencing suggested the interplay between these TFs in regulation of REST-activated and repressed targets. The identified gene regulatory networks and putative REST cooperativity with other TFs, such as KAISO, show distinct REST target regulatory networks in IDH-WT and IDH-MUT gliomas, without concomitant DNA methylation changes. We conclude that REST could be an important therapeutic target in gliomas.
Collapse
Affiliation(s)
- Malgorzata Perycz
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Michal J Dabrowski
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Marta Jardanowska-Kotuniak
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
- Doctoral School of Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adria-Jaume Roura
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartlomiej Gielniewski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Stepniak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Dramiński
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Iwona A Ciechomska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
5
|
Lam XJ, Maniam S, Cheah PS, Ling KH. REST in the Road Map of Brain Development. Cell Mol Neurobiol 2023; 43:3417-3433. [PMID: 37517069 PMCID: PMC11410019 DOI: 10.1007/s10571-023-01394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Repressor element-1 silencing transcription factor (REST) or also known as neuron-restrictive silencing factor (NRSF), is the key initiator of epigenetic neuronal gene-expression modification. Identification of a massive number of REST-targeted genes in the brain signifies its broad involvement in maintaining the functionality of the nervous system. Additionally, REST plays a crucial role in conferring neuroprotection to the neurons against various stressors or insults during injuries. At the cellular level, nuclear localisation of REST is a key determinant for the functional transcriptional regulation of REST towards its target genes. Emerging studies reveal the implication of REST nuclear mislocalisation or dysregulation in several neurological diseases. The expression of REST varies depending on different types of neurological disorders, which has created challenges in the discovery of REST-targeted interventions. Hence, this review presents a comprehensive summary on the physiological roles of REST throughout brain development and its implications in neurodegenerative and neurodevelopmental disorders, brain tumours and cerebrovascular diseases. This review offers valuable insights to the development of potential therapeutic approaches targeting REST to improve pathologies in the brain. The important roles of REST as a key player in the nervous system development, and its implications in several neurological diseases.
Collapse
Affiliation(s)
- Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Wu YG, Song LJ, Yin LJ, Yin JJ, Wang Q, Yu JZ, Xiao BG, Ma CG. The effects and potential of microglial polarization and crosstalk with other cells of the central nervous system in the treatment of Alzheimer's disease. Neural Regen Res 2022; 18:947-954. [PMID: 36254973 PMCID: PMC9827789 DOI: 10.4103/1673-5374.355747] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system. During the pathogenesis of Alzheimer's disease, stimulatory factors continuously act on the microglia causing abnormal activation and unbalanced phenotypic changes; these events have become a significant and promising area of research. In this review, we summarize the effects of microglial polarization and crosstalk with other cells in the central nervous system in the treatment of Alzheimer's disease. Our literature search found that phenotypic changes occur continuously in Alzheimer's disease and that microglia exhibit extensive crosstalk with astrocytes, oligodendrocytes, neurons, and penetrated peripheral innate immune cells via specific signaling pathways and cytokines. Collectively, unlike previous efforts to modulate microglial phenotypes at a single level, targeting the phenotypes of microglia and the crosstalk with other cells in the central nervous system may be more effective in reducing inflammation in the central nervous system in Alzheimer's disease. This would establish a theoretical basis for reducing neuronal death from central nervous system inflammation and provide an appropriate environment to promote neuronal regeneration in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yi-Ge Wu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Li-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Jie-Zhong Yu
- Institute of Brain Science/Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases/Medical School, Shanxi Datong University, Datong, Shanxi Province, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Institute of Brain Science/Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases/Medical School, Shanxi Datong University, Datong, Shanxi Province, China,Correspondence to: Cun-Gen Ma, .
| |
Collapse
|
7
|
Role of Calcium Signaling Pathway-Related Gene Regulatory Networks in Ischemic Stroke Based on Multiple WGCNA and Single-Cell Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:8060477. [PMID: 34987704 PMCID: PMC8720592 DOI: 10.1155/2021/8060477] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 01/28/2023]
Abstract
Background This study is aimed at investigating the changes in relevant pathways and the differential expression of related gene expression after ischemic stroke (IS) at the single-cell level using multiple weighted gene coexpression network analysis (WGCNA) and single-cell analysis. Methods The transcriptome expression datasets of IS samples and single-cell RNA sequencing (scRNA-seq) profiles of cerebrovascular tissues were obtained by searching the Gene Expression Omnibus (GEO) database. First, gene pathway scoring was calculated via gene set variation analysis (GSVA) and was imported into multiple WGCNA to acquire key pathways and pathway-related hub genes. Furthermore, SCENIC was used to identify transcription factors (TFs) regulating these core genes using scRNA-seq data. Finally, the pseudotemporal trajectory analysis was used to analyse the role of these TFs on various cell types under hypoxic and normoxic conditions. Results The scores of 186 KEGG pathways were obtained via GSVA using microarray expression profiles of 40 specimens. WGCNA of the KEGG pathways revealed the two following pathways: calcium signaling pathway and neuroactive ligand-receptor interaction pathways. Subsequently, WGCNA of the gene expression matrix of the samples revealed the calcium signaling pathway-related genes (AC079305.10, BCL10, BCL2A1, BRE-AS1, DYNLL2, EREG, and PTGS2) that were identified as core genes via correlation analysis. Furthermore, SCENIC and pseudotemporal analysis revealed JUN, IRF9, ETV5, and PPARA score gene-related TFs. Jun was found to be associated with hypoxia in endothelial cells, whereas Irf9 and Etv5 were identified as astrocyte-specific TFs associated with oxygen concentration in the mouse cerebral cortex. Conclusions Calcium signaling pathway-related genes (AC079305.10, BCL10, BCL2A1, BRE-AS1, DYNLL2, EREG, and PTGS2) and TFs (JUN, IRF9, ETV5, and PPARA) were identified to play a key role in IS. This study provides a new perspective and basis for investigating the pathogenesis of IS and developing new therapeutic approaches.
Collapse
|
8
|
Zhou H, Xu Z, Liao X, Tang S, Li N, Hou S. Low Expression of YTH Domain-Containing 1 Promotes Microglial M1 Polarization by Reducing the Stability of Sirtuin 1 mRNA. Front Cell Neurosci 2022; 15:774305. [PMID: 34975410 PMCID: PMC8714917 DOI: 10.3389/fncel.2021.774305] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The N6-methyladenosine (m6A) modification is the most abundant posttranscriptional mRNA modification in mammalian cells and is dynamically modulated by a series of "writers," "erasers," and "readers." Studies have shown that m6A affects RNA metabolism in terms of RNA processing, nuclear export, translation, and decay. However, the role of the m6A modification in retinal microglial activation remains unclear. Here, we analyzed the single-cell RNA sequencing data of retinal cells from mice with uveitis and found that the m6A-binding protein YTH domain-containing 1 (YTHDC1) was significantly downregulated in retinal microglia in the context of uveitis. Further studies showed that YTHDC1 deficiency resulted in M1 microglial polarization, an increased inflammatory response and the promotion of microglial migration. Mechanistically, YTHDC1 maintained sirtuin 1 (SIRT1) mRNA stability, which reduced signal transducer and activator of transcription 3 (STAT3) phosphorylation, thus inhibiting microglial M1 polarization. Collectively, our data show that YTHDC1 is critical for microglial inflammatory response regulation and can serve as a target for the development of therapeutics for autogenic immune diseases.
Collapse
Affiliation(s)
- Hongxiu Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Eye Institute, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zongren Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Eye Institute, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xingyun Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Eye Institute, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Shiyun Tang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Eye Institute, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Na Li
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Eye Institute, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
9
|
Serum ICAM-1 as a Predictor of Prognosis in Patients with Acute Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5539304. [PMID: 33791362 PMCID: PMC7997739 DOI: 10.1155/2021/5539304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Objective Inflammation is one of the key mechanisms involved in functional impairment after stroke. Intercellular adhesion molecule-1 (ICAM-1) is an important inflammatory molecule in the body. The purpose of our study was to determine the correlation between ICAM-1 and the prognosis of acute ischemic stroke (AIS). Methods 286 AIS patients treated at Beijing Tiantan Hospital were continuously included in the study. The demographic data of the patients were collected, and the fasting blood within 24 hours of admission was collected to detect the clinical indicators. The functional prognosis was measured using the modified Rankin Scale (mRS) 3 months after stroke. The poor prognosis is defined as mRS ≥ 3. The enzyme-linked immunosorbent assay (ELISA) was used to determine the serum ICAM-1 levels. Results The serum ICAM-1 levels of patients with poor prognosis were significantly higher than that of patients with good prognosis (144.2 ± 14.8 vs 117.5 ± 12.1 pg/ml). Receiver operating characteristic curve (ROC) analysis showed that the sensitivity and specificity of serum ICAM-1 for predicting the prognosis of AIS were 74% and 76%, respectively. In logistic regression analysis, the serum ICAM-1 level is still an independent predictor of poor prognosis (odds ratio [OR]: 0.52; 95% confidence interval [CI]: 0.318-0.839). Conclusions Higher serum ICAM-1 levels on admission in AIS patients might increase the risk of poor prognosis.
Collapse
|