1
|
Polesskaya O, Boussaty E, Cheng R, Lamonte O, Zhou T, Du E, Sanches TM, Nguyen KM, Okamoto M, Palmer AA, Friedman R. Genome-wide association study for age-related hearing loss in CFW mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598304. [PMID: 38915500 PMCID: PMC11195089 DOI: 10.1101/2024.06.10.598304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Age-related hearing impairment is the most common cause of hearing loss and is one of the most prevalent conditions affecting the elderly globally. It is influenced by a combination of environmental and genetic factors. The mouse and human inner ears are functionally and genetically homologous. Investigating the genetic basis of age-related hearing loss (ARHL) in an outbred mouse model may lead to a better understanding of the molecular mechanisms of this condition. We used Carworth Farms White (CFW) outbred mice, because they are genetically diverse and exhibit variation in the onset and severity of ARHL. The goal of this study was to identify genetic loci involved in regulating ARHL. Hearing at a range of frequencies was measured using Auditory Brainstem Response (ABR) thresholds in 946 male and female CFW mice at the age of 1, 6, and 10 months. We obtained genotypes at 4.18 million single nucleotide polymorphisms (SNP) using low-coverage (mean coverage 0.27x) whole-genome sequencing followed by imputation using STITCH. To determine the accuracy of the genotypes we sequenced 8 samples at >30x coverage and used calls from those samples to estimate the discordance rate, which was 0.45%. We performed genetic analysis for the ABR thresholds for each frequency at each age, and for the time of onset of deafness for each frequency. The SNP heritability ranged from 0 to 42% for different traits. Genome-wide association analysis identified several regions associated with ARHL that contained potential candidate genes, including Dnah11, Rapgef5, Cpne4, Prkag2, and Nek11. We confirmed, using functional study, that Prkag2 deficiency causes age-related hearing loss at high frequency in mice; this makes Prkag2 a candidate gene for further studies. This work helps to identify genetic risk factors for ARHL and to define novel therapeutic targets for the treatment and prevention of ARHL.
Collapse
Affiliation(s)
- Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ely Boussaty
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Olivia Lamonte
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Thomas Zhou
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eric Du
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Khai-Minh Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mika Okamoto
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rick Friedman
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Yasuda SP, Miyasaka Y, Hou X, Obara Y, Shitara H, Seki Y, Matsuoka K, Takahashi A, Wakai E, Hibino H, Takada T, Shiroishi T, Kominami R, Kikkawa Y. Two Loci Contribute to Age-Related Hearing Loss Resistance in the Japanese Wild-Derived Inbred MSM/Ms Mice. Biomedicines 2022; 10:biomedicines10092221. [PMID: 36140322 PMCID: PMC9496148 DOI: 10.3390/biomedicines10092221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
An MSM/Ms strain was established using Japanese wild mice, which exhibit resistance to several phenotypes associated with aging, such as obesity, inflammation, and tumorigenesis, compared to common inbred mouse strains. MSM/Ms strain is resistant to age-related hearing loss, and their auditory abilities are sustained for long durations. The age-related hearing loss 3 (ahl3) locus contributes to age-related hearing in MSM/Ms strain. We generated ahl3 congenic strains by transferring a genomic region on chromosome 17 from MSM/Ms mice into C57BL/6J mice. Although C57BL/6J mice develop age-related hearing loss because of the ahl allele of the cadherin 23 gene, the development of middle- to high-frequency hearing loss was significantly delayed in an ahl3 congenic strain. Moreover, the novel age-related hearing loss 10 (ahl10) locus associated with age-related hearing resistance in MSM/Ms strain was mapped to chromosome 12. Although the resistance effects in ahl10 congenic strain were slightly weaker than those in ahl3 congenic strain, slow progression of age-related hearing loss was confirmed in ahl10 congenic strain despite harboring the ahl allele of cadherin 23. These results suggest that causative genes and polymorphisms of the ahl3 and ahl10 loci are important targets for the prevention and treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Shumpei P. Yasuda
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuki Miyasaka
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Xuehan Hou
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yo Obara
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroshi Shitara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuta Seki
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kunie Matsuoka
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Ai Takahashi
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Eri Wakai
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Hibino
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Toyoyuki Takada
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
| | | | - Ryo Kominami
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yoshiaki Kikkawa
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Correspondence:
| |
Collapse
|
3
|
Deng T, Li J, Liu J, Xu F, Liu X, Mi J, Bergquist J, Wang H, Yang C, Lu L, Song X, Yao C, Tian G, Zheng QY. Hippocampal Transcriptome-Wide Association Study Reveals Correlations Between Impaired Glutamatergic Synapse Pathway and Age-Related Hearing Loss in BXD-Recombinant Inbred Mice. Front Neurosci 2021; 15:745668. [PMID: 34867157 PMCID: PMC8636065 DOI: 10.3389/fnins.2021.745668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
Age-related hearing loss (ARHL) is associated with cognitive dysfunction; however, the detailed underlying mechanisms remain unclear. The aim of this study is to investigate the potential underlying mechanism with a system genetics approach. A transcriptome-wide association study was performed on aged (12–32 months old) BXD mice strains. The hippocampus gene expression was obtained from 56 BXD strains, and the hearing acuity was assessed from 54 BXD strains. Further correlation analysis identified a total of 1,435 hearing-related genes in the hippocampus (p < 0.05). Pathway analysis of these genes indicated that the impaired glutamatergic synapse pathway is involved in ARHL (p = 0.0038). Further gene co-expression analysis showed that the expression level of glutamine synthetase (Gls), which is significantly correlated with ARHL (n = 26, r = −0.46, p = 0.0193), is a crucial regulator in glutamatergic synapse pathway and associated with learning and memory behavior. In this study, we present the first systematic evaluation of hippocampus gene expression pattern associated with ARHL, learning, and memory behavior. Our results provide novel potential molecular mechanisms involved in ARHL and cognitive dysfunction association.
Collapse
Affiliation(s)
- Tingzhi Deng
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jingjing Li
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Second Clinical Medical College, Binzhou Medical University, Yantai, China
| | - Jian Liu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Fuyi Xu
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China.,Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Xiaoya Liu
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jia Mi
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jonas Bergquist
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China.,Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Chunhua Yang
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Xicheng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Cuifang Yao
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Geng Tian
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Qing Yin Zheng
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Salam SA, Mostafa F, Alnamshan MM, Elshewemi SS, Sorour JM. Thymoquinone ameliorates age-related hearing loss in C57BL/6J mice by modulating Sirt1 activity and Bak1 expression. Biomed Pharmacother 2021; 143:112149. [PMID: 34507120 DOI: 10.1016/j.biopha.2021.112149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Age-related hearing loss (AHL) is the most common sensory disorder of aged population. Currently, one of the most important sources of experimental medicine for AHL is medicinal plants. This study performed the first investigation of the effect of thymoquinone (TQ), a potent antioxidant, on AHL. Here, we used inbred C57BL/6J mice (B6 mice) as a successful experimental model of the early onset of AHL. The behavioral assessment of hearing revealed that the injection of a high dose of TQ (40 mg/kg; TQ40) significantly improved the auditory sensitivity of B6 mice at all tested frequencies (8, 16 and 22 kHz). Histological sections of cochlea from B6 mice injected with a low dose (20 mg/kg; TQ20) and high dose showed relatively less degenerative signs in the modiolus, hair cells and spiral ligaments, the main constituents of the cochlea. In addition, TQ40 completely restored the normal pattern of hair cells in B6 mice, as shown in scanning electron micrographs. Our data indicated that TQ20 and TQ40 reduced levels of Bak1-mediated apoptosis in the cochlea of B6 mice. Interestingly, the level of Sirt1, a positive regulator of autophagy, was significantly increased in B6 mice administered TQ40. In conclusion, TQ relieves the symptoms of AHL by downregulating Bak1 and activating Sirt1 in the cochlea of B6 mice.
Collapse
Affiliation(s)
- Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Fatma Mostafa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Mashael M Alnamshan
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Salma S Elshewemi
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Jehan M Sorour
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|