1
|
Karssa TH, Kussaga JB, Semedo‐Lemsaddek T, Mugula JK. Insights on the microbiology of Ethiopian fermented milk products: A review. Food Sci Nutr 2024; 12:6990-7003. [PMID: 39479617 PMCID: PMC11521749 DOI: 10.1002/fsn3.4372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Fermented milk products play a vital role in the diets of Ethiopians. They are produced from either spontaneous fermentation or back-slopping methods at the household level, in which lactic acid bacteria (LAB) and yeasts predominate. As a result, the processing steps are not standardized and overall safety is still of public health relevance. Therefore, quality and safety improvement, standardization of traditional manufacturing practices, and commercialization of products to a wider market are important. Hence, this systematic review aimed to provide a comprehensive overview of the microbiology of traditional Ethiopian fermented milk products, including ergo (spontaneously fermented whole milk), dhanaan (fermented camel milk), ititu (concentrated sour milk or spontaneously fermented milk curd), ayib (traditional cottage cheese), qibe (traditional butter), arrera (defatted buttermilk), and hazo (spiced fermented buttermilk). We followed the Preferred Reporting Items for Systematic Reviews and searched relevant databases and search engines, including the Web of Science, Google Scholar, Scopus, PubMed, ScienceDirect, and ResearchGate. Furthermore, the pertinent literature was checked individually and identified. Dairy fermentation provides shelf-life extension and improves the organoleptic quality of products. Nonetheless, the aforementioned Ethiopian fermented foods may be contaminated with Escherichia coli 0157: H7, Listeria monocytogenes, Salmonella spp., or Staphylococcus aureus due to inadequate processing and handling practices. This systematic review also revealed that these traditional milk products lack consistent quality and safety due to poor hygienic preparation techniques, non-controlled fermentation, and limited knowledge or awareness of small-holder dairy farmers. Therefore, the use of suitable procedures including good hygienic practices and controlled fermentation is recommended.
Collapse
Affiliation(s)
| | - Jamal B. Kussaga
- Department of Food Science and Agro‐ProcessingSokoine University of AgricultureMorogoroTanzania
| | - Teresa Semedo‐Lemsaddek
- CIISA – Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary MedicineUniversity of LisbonLisbonPortugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)LisbonPortugal
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of LisbonLisbonPortugal
| | - Jovin K. Mugula
- Department of Food Science and Agro‐ProcessingSokoine University of AgricultureMorogoroTanzania
| |
Collapse
|
2
|
Amenu D, Bacha K. Bio-Preservation Potential and Antimicrobial Activity of Bacteriocin-Producing Lactic Acid Bacteria Isolated from Ethiopian Traditional Fermented Dairy Products. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10272-w. [PMID: 38856908 DOI: 10.1007/s12602-024-10272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 06/11/2024]
Abstract
This study aimed to assess the antibacterial activity and bio-preservation capability of bacteriocin-producing LAB isolated from Ethiopian traditional fermented dairy products in raw milk from Jimma town. Bacteriocin-producing LAB were tested for their antimicrobial activity against various foodborne pathogens, including Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium. The results showed that probiotic LAB isolates inhibited foodborne pathogens (E. coli, S. aureus, and L. monocytogenes), with inhibition zones ranging from 22.00 ± 0.57 to 34.13 ± 0.57. Enterococcus faecium and Lactococcus lactis demonstrated possible antagonistic effects against E. coli, while Pediococcus pentosaceus had a 34.13 ± 0.57 mm inhibitory zone against Pseudomonas aeruginosa. The isolates also showed co-aggregation potential with the pathogens, with Lactococcus lactis isolates and their combinations demonstrating the best co-aggregation capabilities against the investigated pathogens. The bio-preservative assay showed that putative probiotic isolates (L. lactis JULABE35, E. faecium JULABE 23, and P. pentosaceus JULABE05) were efficient in decreasing Listeria monocytogenes in raw milk. After 7-8 days, milk samples diagnosed with these isolates showed complete reduction of Listeria monocytogenes. The bio-preservation capability of bacteriocin-producing LAB on raw milk extended the shelf life of milk at 4 °C storage for ten days, compared to six days for milk samples without probiotic LAB. The milk samples preserved with probiotic and bacteriocin-producing isolates showed good proximate analysis, showing significant variation with milk kept without bacteriocin-producing isolates. The isolated chemicals employed in this study can be used as food additives or food preservatives, indicating potential applications in Ethiopian traditional fermented dairy products.
Collapse
Affiliation(s)
- Desalegn Amenu
- Department of Biology, College of Natural and Computational Sciences, Wollega University, P.O. Box 395, Nekemte, Oromia, Ethiopia.
- Department of Biology, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia.
| | - Ketema Bacha
- Department of Biology, College of Natural and Computational Sciences, Wollega University, P.O. Box 395, Nekemte, Oromia, Ethiopia
| |
Collapse
|
3
|
Alemu TT, Kuyu CG. A review of the production, quality, and safety of traditionally fermented cereal-based alcoholic beverages in Ethiopia. Food Sci Nutr 2024; 12:3125-3136. [PMID: 38726402 PMCID: PMC11077225 DOI: 10.1002/fsn3.4012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 05/12/2024] Open
Abstract
In Ethiopia, a diverse array of cereal-based alcoholic beverages is being prepared and consumed. These traditional fermented drinks are distinct to specific regions and are prepared by locals using locally available raw materials according to cultural traditions. Notable among these are Tella, Areki, Keribo, Borde, and Shamita, renowned for their nutritional benefits and their role in ensuring food security. This paper explores existing literature regarding the production, quality, and safety of traditional cereal-based alcoholic beverages in Ethiopia. Despite the widespread consumption of these beverages, they have yet to be commercialized, mainly due to their perceived low quality. The uncommercialized processes and products demand more attention, particularly in light of the country's inflationary pressures. Additionally, these traditional fermented beverages significantly enhance health due to the presence of bioactive compounds and their nutritional value. Standardizing and modernizing production methods by integrating scientific knowledge, such as optimizing fermentation practices, is essential to fully capitalize on these traditional beverages. Equipping local producers with this knowledge can facilitate the transition to larger scale production. Furthermore, continued research is essential to maintaining overall quality and safety standards. Therefore, it is crucial to concentrate on enhancing the nutritional value and quality of traditional cereal-based beverages in the future. By illuminating these aspects, this review aims to enhance understanding of the traditional Ethiopian alcoholic beverage industry and its potential for elevating quality and safety standards. Moreover, the review explores these beverages' cultural significance, consumption patterns, and associated health risks.
Collapse
Affiliation(s)
- Tolcha Techane Alemu
- Department of Post‐Harvest ManagementJimma University College of Agriculture and Veterinary MedicineJimmaEthiopia
| | - Chala G. Kuyu
- Department of Post‐Harvest ManagementJimma University College of Agriculture and Veterinary MedicineJimmaEthiopia
| |
Collapse
|
4
|
Yehuala GA, Shibeshi NT, Kim SH, Park MK. Characterization of Autochthonous Lactic Acid Bacteria Isolated from a Traditional Ethiopian Beverage, Tella. Foods 2024; 13:575. [PMID: 38397552 PMCID: PMC10888401 DOI: 10.3390/foods13040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to isolate lactic acid bacteria (LAB) from a traditional Ethiopian fermented product, Tella, and evaluate their functional properties. Of forty-three isolates, seven LAB were screened and identified as Pediococcus pentosaceus, Latilactobacillus curvatus, Leuconostoc mesenteroides, and Lactiplantibacillus plantarum species. The isolates were tested for their alcohol tolerance, acid and bile resistance, auto-aggregation, co-aggregation, hydrophobicity, antibacterial activity, and antibiotic susceptibility. LAB isolates, specifically P. pentosaceus TAA01, L. mesenteroides TDB22, and L. plantarum TDM41, showed a higher degree of alcohol tolerance in 8% and 10% (w/v) ethanol concentrations. Additionally, these three isolates displayed survival rates >85% in both acidic pH and bile environments. Among the isolates, L. plantarum TDM41 demonstrated the highest auto-aggregation, co-aggregation, and hydrophobicity with (44.9 ± 1.7)%, (41.4 ± 0.2)%, and (52.1 ± 0.1)% values, respectively. The cell-free supernatant of the isolates exhibited antibacterial activity against foodborne pathogens of Escherichia coli, Salmonella Enteritidis, and Staphylococcus aureus. Each isolate exhibited various levels of resistance and susceptibility to seven antibiotics and resistance was observed against four of the antibiotics tested. After performing a principal component analysis, Pediococcus pentosaceus TAA01, L. mesenteroides TDB22, and L. plantarum TDM41 were selected as the most promising ethanol-tolerant probiotic isolates.
Collapse
Affiliation(s)
- Gashaw Assefa Yehuala
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; (G.A.Y.); (S.-H.K.)
- College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
- School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa P.O. Box 385, Ethiopia;
| | - Nurelegne Tefera Shibeshi
- School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa P.O. Box 385, Ethiopia;
| | - Su-Hyeon Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; (G.A.Y.); (S.-H.K.)
- Food and Bio-Industry Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; (G.A.Y.); (S.-H.K.)
- Food and Bio-Industry Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R. An overview of fermentation in the food industry - looking back from a new perspective. BIORESOUR BIOPROCESS 2023; 10:85. [PMID: 38647968 PMCID: PMC10991178 DOI: 10.1186/s40643-023-00702-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giacomo Di Giacinto
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Mohammad Mehdizadeh
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Ilam, Iran
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
6
|
Gizachew S, Van Beeck W, Spacova I, Dekeukeleire M, Alemu A, Mihret W, Lebeer S, Engidawork E. Characterization of potential probiotic starter cultures of lactic acid bacteria isolated from Ethiopian fermented cereal beverages, Naaqe, and Cheka. J Appl Microbiol 2023; 134:lxad237. [PMID: 37858306 DOI: 10.1093/jambio/lxad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
AIMS To test the in vitro probiotic potential and starter culture capacity of lactic acid bacteria (LAB) isolated from Naaqe and Cheka, cereal-based Ethiopian traditional fermented beverages. METHODS AND RESULTS A total of 44 strains were isolated from spontaneously fermented Ethiopian cereal-based beverages, Naaqe and Cheka with 24 putatively identified as LAB and 14 identified up to the species level. The species Limosilactobacillus fermentum (6/12; 50%) and Weissella confusa (5/12, 41.67%) were the predominant species identified from Naaqe, while the two Cheka isolates were L. fermentum and Pediococcus pentosaceus. Six LAB strains inhibited eight of the nine gastrointestinal indicator key pathogens in Ethiopia, including Escherichia coli, Salmonella enterica subsp. enterica var. Typhimurium, Staphylococcus aureus, Shigella flexneri, and Listeria monocytogenes. Three of the LAB isolates exhibited strain-specific immunostimulation in human monocytes. Based on these probiotic properties and growth, six strains were selected for in situ evaluation in a mock fermentation of Naaqe and Cheka. During primary fermentations, L. fermentum 73B, P. pentosaceus 74D, L. fermentum 44B, W. confusa 44D, L. fermentum 82C, and Weissella cibaria 83E and their combinations demonstrated higher pH-lowering properties and colony-forming unit counts compared to the control spontaneous fermentation. The same pattern was also observed in the secondary mock fermentation by the Naaqe LAB isolates. CONCLUSIONS In this study, we selected six LAB strains with antipathogenic, immunostimulatory, and starter culture potentials that can be used as autochthonous probiotic starters for Naaqe and Cheka fermentations once their health benefit is ascertained in a clinical trial as a next step.
Collapse
Affiliation(s)
- Seyoum Gizachew
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
- Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Wannes Van Beeck
- Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Irina Spacova
- Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Max Dekeukeleire
- Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ashenafi Alemu
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Wude Mihret
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Sarah Lebeer
- Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Berhanu M, Desalegn A, Birri DJ, Ashenafi M, Tigu F. Microbial, physicochemical and proximate analysis of Tej collected from Amhara regional state of Ethiopia. Heliyon 2023; 9:e16911. [PMID: 37332921 PMCID: PMC10275989 DOI: 10.1016/j.heliyon.2023.e16911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Tej is an Ethiopian traditional alcoholic beverage with significant social and economic importance. Due to the spontaneous fermentation process of Tej, several issues such as safety, quality, and physicochemical properties of the final products is rquired to be assessed. Thus, this study was aimed to assess the microbial quality, physicochemical, and proximate properties of Tej associated with different maturity time. The microbial, physicochemical and proximate analyses were carried out by standard protocol. Lactic acid bacteria (6.30 log CFU/mL) and yeast (6.22 log CFU/mL) were the dominat microorganisms of all Tej samples at different maturity time, with significant differences (p = 0.001) in mean microbial count among samples. The mean pH, titratable acidity and ethanol content of Tej samples were 3.51, 0.79 and 11.04% (v/v), respectively. There were significant differences (p = 0.001) among the mean pH and titratable acidity values. The mean proximate compositions (%) of Tej samples were as follows: moisture (91.88), ash (0.65), protein (1.38), fat (0.47) and carbohydrate (3.91). Statistically significant differences (p = 0.001) were observed in proximate compositions of Tej samples from different maturity time. Generally, Tej maturity time has a great impact on the improvement of nutrient composition and the increment of the acidic contents which in turn suppress the growth of unwanted microorganisms. Further evaluation of the biological, and chemical safety and development of yeast-LAB starter culture are strongly recommended to improve Tej fermentation in Ethiopia.
Collapse
Affiliation(s)
- Meseret Berhanu
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Science, Addis Ababa University, Ethiopia
| | - Asnake Desalegn
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Science, Addis Ababa University, Ethiopia
| | - Dagim Jirata Birri
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Science, Addis Ababa University, Ethiopia
| | - Mogessie Ashenafi
- Center for Food Security Studies, College of Development Studies, Addis Ababa University, Ethiopia
| | - Fitsum Tigu
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Science, Addis Ababa University, Ethiopia
| |
Collapse
|
8
|
Mkadem W, Indio V, Belguith K, Oussaief O, Savini F, Giacometti F, El Hatmi H, Serraino A, De Cesare A, Boudhrioua N. Influence of Fermentation Container Type on Chemical and Microbiological Parameters of Spontaneously Fermented Cow and Goat Milk. Foods 2023; 12:foods12091836. [PMID: 37174374 PMCID: PMC10177932 DOI: 10.3390/foods12091836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Fermented goat milk is an artisanal beverage with excellent nutritional properties. There are limited data on its physicochemical properties, fatty acids, phenolic acids, and on any insight on microbiota. The aim of this research was to conduct a pilot study to compare these parameters in raw cow and goat milk before and after spontaneous fermentation in a clay pot and glass container at 37 °C for 24 h. Both types of milk and fermentation containers significantly affected the pH, acidity, proximate composition, viscosity, and whiteness index of fermented milks. A total of 17 fatty acids were identified in fermented milks, where palmitic, stearic, and myristic were the main saturated acids, and oleic and linoleic acids were the main unsaturated ones. These profiles were primarily influenced by the type of raw milk used. Three to five phenolic acids were identified in fermented milks, where quinic acid was the major phenolic compound, and salviolinic acid was identified only in raw goat milk. Preliminary metataxonomic sequencing analysis showed that the genera Escherichia spp. and Streptococcus spp. were part of the microbiota of both fermented milks, with the first genus being the most abundant in fermented goat milk, and Streptococcus in cow's milk. Moreover, Escherichia abundance was negatively correlated with the abundance of many genera, including Lactobacillus. Overall, the results of this pilot study showed significant variations between the physicochemical properties, the fatty and phenolic acids, and the microbial communities of goat and cow fermented milk, showing the opportunity to further investigate the tested parameters in fermented goat milk to promote its production.
Collapse
Affiliation(s)
- Wafa Mkadem
- Laboratory of Physiopathology, Alimentation and Biomolecules (LR17ES03), Higher Institute of Biotechnology Sidi Thabet, University of Manouba, BP-66, Ariana 2020, Tunisia
| | - Valentina Indio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Khaoula Belguith
- Laboratory of Physiopathology, Alimentation and Biomolecules (LR17ES03), Higher Institute of Biotechnology Sidi Thabet, University of Manouba, BP-66, Ariana 2020, Tunisia
| | - Olfa Oussaief
- Livestock and Wildlife Laboratory, Arid Lands Institute of Medenine, University of Gabes, Medenine 4119, Tunisia
| | - Federica Savini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Halima El Hatmi
- Livestock and Wildlife Laboratory, Arid Lands Institute of Medenine, University of Gabes, Medenine 4119, Tunisia
- Food Department, Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine 4119, Tunisia
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy
| | - Nourhene Boudhrioua
- Laboratory of Physiopathology, Alimentation and Biomolecules (LR17ES03), Higher Institute of Biotechnology Sidi Thabet, University of Manouba, BP-66, Ariana 2020, Tunisia
| |
Collapse
|
9
|
Immune System and Epidemics: The Role of African Indigenous Bioactive Substances. Nutrients 2023; 15:nu15020273. [PMID: 36678143 PMCID: PMC9864875 DOI: 10.3390/nu15020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
With over 6 million coronavirus pandemic deaths, the African continent reported the lowest death rate despite having a high disease burden. The African community's resilience to the pandemic has been attributed to climate and weather conditions, herd immunity, repeated exposure to infectious organisms that help stimulate the immune system, and a disproportionately large youth population. In addition, functional foods, herbal remedies, and dietary supplements contain micronutrients and bioactive compounds that can help boost the immune system. This review identified significant traditional fermented foods and herbal remedies available within the African continent with the potential to boost the immune system in epidemics and pandemics. Methodology: Databases, such as PubMed, the Web of Science, and Scopus, were searched using relevant search terms to identify traditional African fermented foods and medicinal plants with immune-boosting or antiviral capabilities. Cereal-based fermented foods, meat-, and fish-based fermented foods, and dairy-based fermented foods containing antioxidants, immunomodulatory effects, probiotics, vitamins, and peptides were identified and discussed. In addition, nine herbal remedies and spices belonging to eight plant families have antioxidant, immunomodulatory, anti-inflammatory, neuroprotective, hepatoprotective, cardioprotective, and antiviral properties. Peptides, flavonoids, alkaloids, sterols, ascorbic acid, minerals, vitamins, and saponins are some of the bioactive compounds in the remedies. Bioactive compounds in food and plants significantly support the immune system and help increase resistance against infectious diseases. The variety of food and medicinal plants found on the African continent could play an essential role in providing community resilience against infectious diseases during epidemics and pandemics. The African continent should investigate nutritional, herbal, and environmental factors that support healthy living and longevity.
Collapse
|
10
|
Wang P, Wu J, Wang T, Zhang Y, Yao X, Li J, Wang X, Lü X. Fermentation process optimization, chemical analysis, and storage stability evaluation of a probiotic barley malt kvass. Bioprocess Biosyst Eng 2022; 45:1175-1188. [PMID: 35616735 DOI: 10.1007/s00449-022-02734-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Kvass is a popular low-alcohol beverage produced by the natural fermentation of dark rye bread or malt with complex microbial flora. However, few pieces of research focus on the microflora of traditional bread kvass, and the industrial kvass based on malt concentrate has some disadvantages, including the lack of viable probiotics and containing multiple artificial additives. Therefore, in the present study, based on the different homemade traditional bread kvass, the predominant species including Lacticaseibacillus paracasei, Acetobacter pasteurianus, and Saccharomyces cerevisiae were screened and identified. In addition, barley malt was used instead of bread for kvass production, and the co-fermentation conditions with three different strains were optimized as wort concentration of 7.4°Brix, cell ratio of 2/2/1 (S. cerevisiae/L. paracasei/A. pasteurianus), inoculum amount of 8%, fermentation temperature of 29.5 °C and fermentation time of 24.6 h. Moreover, the physicochemical (pH, total soluble solids, color, and alcohol content) and probiotic (microorganisms counting and antioxidant activity) properties of the barley malt kvass prepared at optimal conditions were symmetrically evaluated. Besides, compared with the commercial kvass products, the produced barley malt kvass exhibited better taste and more desirable antioxidant activity, and also maintained around 6-7 log CFU/mL of viable probiotic microorganisms during a week of storage. The present study not only enriched the biological resource of the traditional kvass, but also promoted the development of the kvass as a live-bacteria beverage.
Collapse
Affiliation(s)
- Panpan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Jiaqi Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yunyong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Xinyue Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Jiayao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Fermentation Dynamics of Ethiopian Traditional Beer ( Tella) as Influenced by Substitution of Gesho ( Rhamnus prinoides) with Moringa stenopetala: An Innovation for Nutrition. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:7083638. [PMID: 34845435 PMCID: PMC8627356 DOI: 10.1155/2021/7083638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
Abstract
This study was designed to improve Ethiopian traditional beer (tella) with the substitution of gesho by moringa leaves to enhance micronutrients. Substitution of gesho by moringa from 50 to 100% against the biochemical dynamics and nutritional and sensorial profiles of tella was assessed. Incorporation of moringa suppressed the activity of yeast and favored those of lactic acid bacteria, which shifted the properties of the product from a mild alcoholic nature to a low alcoholic and mild acidic nature, revealing the probiotic potential of tella. Moringa leaves at 100% substitution for gesho resulted in the least yeast count compared to the other formulations. The storage of tella samples over periods of 10 days also strengthened the probiotic nature of tella by drastically reducing the yeast cell counts (from 5 logs to <1). This corresponded to the slow increase in the acidity (0.63 to 0.99%), indicating comparatively higher activity of lactic acid bacteria. The best nutritional contents (dietary minerals) and sensorial acceptance of the product were attained at the 50% substitution of gesho by moringa. The implication of the present study is that ethnic foods and beverages can be innovated to meet the nutritional needs of the community.
Collapse
|