1
|
Sharma D, Prashar A. Associations between the gut microbiome, gut microbiology and heart failure: Current understanding and future directions. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 17:100150. [PMID: 38559891 PMCID: PMC10978367 DOI: 10.1016/j.ahjo.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 04/04/2024]
Abstract
The role of the gut microbiome in pathophysiology, prognostication and clinical management of heart failure (HF) patients is of great clinical and research interest. Both preclinical and clinical studies have shown promising results, and the gut microbiome has been implicated in other cardiovascular conditions that are risk factors for HF. There is an increasing interest in the use of biological compounds produced as biomarkers for prognostication as well as exploration of therapeutic options targeting the various markers and pathways from the gut microbiome that are implicated in HF. However, study variations exist, and targeted research for individual putative biomarkers is necessary. There is also limited evidence pertaining to decompensated HF in particular. In this review, we synthesize current understandings around pathophysiology, prognostication and clinical management of heart failure (HF) patients, and also provide an outline of potential areas of future research and scientific advances.
Collapse
Affiliation(s)
| | - Abhisheik Prashar
- University of New South Wales, Sydney, NSW 2052, Australia
- Department of Cardiology, St George Hospital, Sydney, NSW 2217, Australia
| |
Collapse
|
2
|
Traditional Chinese Medicine Alleviates Ulcerative Colitis via Modulating Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8075344. [PMID: 35310028 PMCID: PMC8926525 DOI: 10.1155/2022/8075344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/22/2021] [Accepted: 02/03/2022] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disorder characterized by relapsing and remitting inflammation of the bowel. In recent decades, traditional Chinese medicine (TCM) has been widely used in the therapy of UC. However, its underlying mechanisms have not been sufficiently elucidated. Accumulating studies indicate that the gut microbial dysbiosis is closely related to UC. It has been demonstrated that TCM could alter the composition of intestinal microbiota by enriching beneficial and SCFA-producing bacteria and reducing pathogenic bacteria. In this review, we discussed recent evidence regarding the TCM and its role in modulating gut microbiota for the treatment of UC.
Collapse
|
3
|
Mehmood K, Moin A, Hussain T, Rizvi SMD, Gowda DV, Shakil S, Kamal MA. Can manipulation of gut microbiota really be transformed into an intervention strategy for cardiovascular disease management? Folia Microbiol (Praha) 2021; 66:897-916. [PMID: 34699042 DOI: 10.1007/s12223-021-00926-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/03/2021] [Indexed: 02/08/2023]
Abstract
Recent advancement in manipulation techniques of gut microbiota either ex vivo or in situ has broadened its plausible applicability for treating various diseases including cardiovascular disease. Several reports suggested that altering gut microbiota composition is an effective way to deal with issues associated with managing cardiovascular diseases. However, actual translation of gut microbiota manipulation-based techniques into cardiovascular-therapeutic approach is still questionable. This review summarized the evidence on challenges, opportunities, recent development, and future prospects of gut microbiota manipulation for targeting cardiovascular diseases. Initially, issues associated with current cardiovascular diseases treatment strategy, association of gut microbiota with cardiovascular disease, and its influence on cardiovascular drugs were discussed, followed by applicability of gut microbiota manipulation as a cardiovascular disease intervention strategy along with its challenges and future prospects. Despite the fact that the gut microbiota is rugged, interventions like probiotics, prebiotics, synbiotics, fecal microbiota transplantation, fecal virome transplantation, antibiotics, diet changes, and exercises could manipulate it. Advanced techniques like administration of engineered bacteriophages and bacteria could also be employed. Intensive exploration revealed that if sufficiently controlled approach and proper monitoring were applied, gut microbiota could provide a compelling answer for cardiovascular therapy.
Collapse
Affiliation(s)
- Khalid Mehmood
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia.,Department of Pharmacy, Abbottabad University of Science and Technology, Havelian, Pakistan
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia.
| | - D V Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Enzymoics 7 Peterlee Place, NSW, 2770, Hebersham, Australia.,Novel Global Community, Educational Foundation, Hebersham, Australia
| |
Collapse
|
4
|
Tsai HJ, Tsai WC, Hung WC, Hung WW, Chang CC, Dai CY, Tsai YC. Gut Microbiota and Subclinical Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus. Nutrients 2021; 13:nu13082679. [PMID: 34444839 PMCID: PMC8397936 DOI: 10.3390/nu13082679] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/14/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with an increased risk of cardiovascular disease (CVD). The gut microbiota may contribute to the onset and progression of T2D and CVD. The aim of this study was to evaluate the relationship between the gut microbiota and subclinical CVD in T2D patients. This cross-sectional study used echocardiographic data to evaluate the cardiac structure and function in T2D patients. We used a quantitative polymerase chain reaction to measure the abundances of targeted fecal bacterial species that have been associated with T2D, including Bacteroidetes, Firmicutes, Clostridium leptum group, Faecalibacterium prausnitzii, Bacteroides, Bifidobacterium, Akkermansia muciniphila, and Escherichia coli. A total of 155 subjects were enrolled (mean age 62.9 ± 10.1 years; 57.4% male and 42.6% female). Phyla Bacteroidetes and Firmicutes and genera Bacteroides were positively correlated with the left ventricular ejection fraction. Low levels of phylum Firmicutes were associated with an increased risk of left ventricular hypertrophy. High levels of both phylum Bacteroidetes and genera Bacteroides were negatively associated with diastolic dysfunction. A high phylum Firmicutes/Bacteroidetes (F/B) ratio and low level of genera Bacteroides were correlated with an increased left atrial diameter. Phyla Firmicutes and Bacteroidetes, the F/B ratio, and the genera Bacteroides were associated with variations in the cardiac structure and systolic and diastolic dysfunction in T2D patients. These findings suggest that changes in the gut microbiome may be the potential marker of the development of subclinical CVD in T2D patients.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Family Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan;
- Department of Family Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-C.H.); (C.-C.C.)
| | - Wei-Wen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chen-Chia Chang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-C.H.); (C.-C.C.)
| | - Chia-Yen Dai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Chun Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of General Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Liquid Biopsy and Cohort Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101-5029; Fax: +886-7-3122810
| |
Collapse
|
5
|
Changes of gut microbiome composition and metabolites associated with hypertensive heart failure rats. BMC Microbiol 2021; 21:141. [PMID: 33952214 PMCID: PMC8097775 DOI: 10.1186/s12866-021-02202-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background The potential role of the gut microbiome (GM) in heart failure (HF) had recently been revealed. However, the underlying mechanisms of the GM and fecal metabolome in HF have not been characterized. The Dahl salt-sensitive rat model of hypertensive heart failure (H-HF) was used to study the clinical symptoms and characteristics. To elucidate the pathogenesis of HF, we combined 16S rRNA gene sequencing and metabolomics to analyze gut microbial compositions and fecal metabolomic profiles of rats with H-HF. Results PCoA of beta diversity shown that the gut microbiome composition profiles among the three groups were separated. Gut microbial composition was significantly altered in H-HF rats, the ratio of Firmicutes to Bacteroidetes(F/B) increased and the abundance of Muribaculaceae, Lachnospiraceae, and Lactobacillaceae decreased. Significantly altered levels of 17 genera and 35 metabolites were identified as the potential biomarker of H-HF. Correlation analysis revealed that specific altered genera were strongly correlated with changed fecal metabolites. The reduction in short-chain fatty acids (SCFA)-producing bacteria and trimethylamine N-oxide (TMAO) might be a notable characteristic for H-HF. Conclusions This is the first study to characterize the fecal microbiome of hypertensive heart failure by integrating 16S rRNA gene sequencing and LC–MS-based metabolomics approaches. Collectively, the results suggesting changes of gut microbiome composition and metabolites are associated with hypertensive heart failure rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02202-5.
Collapse
|