1
|
Rahmani S, Roohbakhsh A, Pourbarkhordar V, Karimi G. The Cardiovascular Protective Function of Natural Compounds Through AMPK/SIRT1/PGC-1α Signaling Pathway. Food Sci Nutr 2024; 12:9998-10009. [PMID: 39723061 PMCID: PMC11666815 DOI: 10.1002/fsn3.4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 12/28/2024] Open
Abstract
Cardiovascular disease (CVD) poses a major risk to human health and exert a heavy burden on individuals, society, and healthcare systems. Therefore, it is critical to identify CVD's underlying mechanism(s) and target them using effective agents. Natural compounds have shown promise as antioxidants with cardioprotective functions against CVD injuries due to their antioxidative solid capacity and high safety profile. Several CVDs, such as heart failure, ischemia/reperfusion, atherosclerosis, and cardiomyopathies, are closely linked to mitochondrial dysfunction. It is well established that activating the AMPK/SIRT1/PGC-1α pathway during CVD promotes mitochondrial function. Therefore, targeting the AMPK/SIRT1/PGC-1α pathway provides a foundation for novel therapeutic strategies to combat CVD. A key goal of our search was to find natural compounds that target this biological pathway and have beneficial effects on CVD.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
| | - Vahid Pourbarkhordar
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Alur V, Vastrad B, Raju V, Vastrad C, Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2024; 29:53. [DOI: 10.1186/s43043-024-00212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder. The specific molecular mechanism of PCOS remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of PCOS.
Methods
The next-generation sequencing (NGS) dataset GSE199225 was downloaded from the gene expression omnibus (GEO) database and NGS dataset analyzed is obtained from in vitro culture of PCOS patients’ muscle cells and muscle cells of healthy lean control women. Differentially expressed gene (DEG) analysis was performed using DESeq2. The g:Profiler was utilized to analyze the gene ontology (GO) and REACTOME pathways of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed and module analysis was performed using HiPPIE and cytoscape. The miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed. The hub genes were validated by using receiver operating characteristic (ROC) curve analysis.
Results
We have identified 957 DEG in total, including 478 upregulated genes and 479 downregulated gene. GO terms and REACTOME pathways illustrated that DEG were significantly enriched in regulation of molecular function, developmental process, interferon signaling and platelet activation, signaling, and aggregation. The top 5 upregulated hub genes including HSPA5, PLK1, RIN3, DBN1, and CCDC85B and top 5 downregulated hub genes including DISC1, AR, MTUS2, LYN, and TCF4 might be associated with PCOS. The hub gens of HSPA5 and KMT2A, together with corresponding predicted miRNAs (e.g., hsa-mir-34b-5p and hsa-mir-378a-5p), and HSPA5 and TCF4 together with corresponding predicted TF (e.g., RCOR3 and TEAD4) were found to be significantly correlated with PCOS.
Conclusions
These study uses of bioinformatics analysis of NGS data to obtain hub genes and key signaling pathways related to PCOS and its associated complications. Also provides novel ideas for finding biomarkers and treatment methods for PCOS and its associated complications.
Collapse
|
3
|
Bai Y, Niu Z, Yang Z, Sun Y, Yan W, Wu A, Wei C. Integrated bioinformatics and machine learning algorithms reveal the unfolded protein response pathways and immune infiltration in acute myocardial infarction. J Thorac Dis 2024; 16:6496-6515. [PMID: 39552895 PMCID: PMC11565340 DOI: 10.21037/jtd-24-622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/30/2024] [Indexed: 11/19/2024]
Abstract
Background The unfolded protein response (UPR) is a critical biological process related to a variety of physiological functions and cardiac disease. However, the role of UPR-related genes in acute myocardial infarction (AMI) has not been well characterized. Therefore, this study aims to elucidate the mechanism and role of the UPR in the context of AMI. Methods Gene expression profiles related to AMI and UPR pathway were downloaded from the Gene Expression Omnibus database and PathCards database, respectively. Differentially expressed genes (DEGs) were identified and then functionally annotated. The random forest (RF) and least absolute shrinkage and selection operator (LASSO) regression analysis were conducted to identify potential diagnostic UPR-AMI biomarkers. Furthermore, the results were validated by using external data sets, and discriminability was measured by the area under the curve (AUC). A nomogram based on the feature genes was developed to predict the AMI-risk rate. Then we utilized two algorithms, CIBERSORT and MCPcounter, to investigate the relationship between the key genes and immune microenvironment. Additionally, we performed uniform clustering of AMI samples based on the expression of UPR pathway-related genes. The weighted gene co-expression network analysis was conducted to identify the key modules in various clusters, enrichment analysis was performed for the genes existing in different modules. Results A total of 14 DEGs related to the UPR pathway were identified. Among the 14 DEGs, CEBPB, ATF3, EIF2S3, and TSPYL2 were subsequently identified as biomarkers by the LASSO and RF algorithms. A diagnostic model was constructed with these four genes, and the AUC was 0.939. The calibration curves, receiver operating characteristic (ROC) curves, and the decision curve analysis of the nomogram exhibited good performance. Furthermore, immune cell infiltration analysis revealed that four feature genes were linked with the infiltration of immune cells such as neutrophils. The cluster analysis of the AMI samples identified two distinct clusters, each with differential expression of genes related to the UPR pathway, immune cell infiltration, and inflammatory cytokine secretion. Weighted gene coexpression network analysis and enrichment analysis showed that both clusters were associated with the UPR. Conclusions Our study highlights the importance of the UPR pathway in the pathogenesis of myocardial infarction, and identifies four genes CEBPB, ATF3, EIF2S3, and TSPYL2 as diagnostic biomarkers for AMI, providing new ideas for the clinical diagnosis and treatment of AMI.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zequn Niu
- Computer Science and Technology, The Open University of China, Beijing, China
| | - Zhenyu Yang
- Department of Endocrinology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weidong Yan
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Alghusen IM, Carman MS, Wilkins HM, Strope TA, Gimore C, Fedosyuk H, Shawa J, Ephrame SJ, Denson AR, Wang X, Swerdlow RH, Slawson C. O-GlcNAc impacts mitophagy via the PINK1-dependent pathway. Front Aging Neurosci 2024; 16:1387931. [PMID: 39175808 PMCID: PMC11339348 DOI: 10.3389/fnagi.2024.1387931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
Background The accumulation of dysfunctional mitochondria is an early feature of Alzheimer's disease (AD). The impaired turnover of damaged mitochondria increases reactive oxygen species production and lowers ATP generation, leading to cellular toxicity and neurodegeneration. Interestingly, AD exhibits a disruption in the global post-translational modification β-N-acetylglucosamine (O-GlcNAc). O-GlcNAc is a ubiquitous single sugar modification found in the nuclear, cytoplasmic, and mitochondrial proteins. Cells maintain a homeostatic level of O-GlcNAc by cycling the addition and removal of the sugar by O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA), respectively. Methods We used patient-derived induced pluripotent stem cells, a transgenic mouse model of AD, SH-SY5Y neuroblastoma cell lines to examine the effect of sustained O-GlcNAcase inhibition by Thiamet-G (TMG) or OGT deficiency on mitophagy using biochemical analyses. Results Here, we established an essential role for O-GlcNAc in regulating mitophagy (mitochondria-selective autophagy). Stimulating mitophagy using urolithin A (UA) decreases cellular O-GlcNAc and elevates mitochondrial O-GlcNAc. Sustained elevation in O-GlcNAcylation via pharmacologically inhibiting OGA using Thiamet-G (TMG) increases the mitochondrial level of mitophagy protein PTEN-induced kinase 1 (PINK1) and autophagy-related protein light chain 3 (LC3). Moreover, we detected O-GlcNAc on PINK1 and TMG increases its O-GlcNAcylation level. Conversely, decreasing cellular O-GlcNAcylation by knocking down OGT decreases both PINK1 protein expression and LC3 protein expression. Mitochondria isolated from CAMKII-OGT-KO mice also had decreased PINK1 and LC3. Moreover, human brain organoids treated with TMG showed significant elevation in LC3 compared to control. However, TMG-treated AD organoids showed no changes in LC3 expression. Conclusion Collectively, these data demonstrate that O-GlcNAc plays a crucial role in the activation and progression of mitophagy, and this activation is disrupted in AD.
Collapse
Affiliation(s)
- Ibtihal M. Alghusen
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Marisa S. Carman
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Heather M. Wilkins
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Taylor A. Strope
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Caleb Gimore
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Halyna Fedosyuk
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jad Shawa
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sophiya John Ephrame
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aspin R. Denson
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Xiaowan Wang
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Chad Slawson
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
5
|
Deng J, Wang D, Shi Y, Lin L, Gao W, Sun Y, Song X, Li Y, Li J. Mitochondrial unfolded protein response mechanism and its cardiovascular protective effects. Biomed Pharmacother 2024; 177:116989. [PMID: 38959609 DOI: 10.1016/j.biopha.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a cytoprotective response in response to cellular stress that is activated in response to mitochondrial stress to maintain intra-protein homeostasis, thereby protecting the cell from a variety of stimuli. The activation of this response has been linked to cardiovascular diseases. Here, we reviewed the current understanding of UPRmt and discussed its specific molecular mechanism, mainly in mammals, as well as addressing its protective role against cardiovascular diseases, so as to provide direction for further research on UPRmt and therapies targeting cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Jinlan Deng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weihan Gao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiayinan Song
- Chinese University of Traditional Chinese Medicine,Beijing University of Chinese Medicine, Chaoyang, China
| | - Yunlun Li
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
6
|
Torres AK, Fleischhart V, Inestrosa NC. Mitochondrial unfolded protein response (UPR mt): what we know thus far. Front Cell Dev Biol 2024; 12:1405393. [PMID: 38882057 PMCID: PMC11176431 DOI: 10.3389/fcell.2024.1405393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Mitochondria are key organelles for the optimal function of the cell. Among their many functions, they maintain protein homeostasis through their own proteostatic machinery, which involves proteases and chaperones that regulate protein import and folding inside mitochondria. In the early 2000s, the mitochondrial unfolded protein response (UPRmt) was first described in mammalian cells. This stress response is activated by the accumulation of unfolded/misfolded proteins within the mitochondrial matrix, which results in the transmission of a signal to the nucleus to increase the expression of proteases and chaperones to address the abnormal mitochondrial protein load. After its discovery, this retrograde signaling pathway has also been described in other organisms of different complexities, suggesting that it is a conserved stress response. Although there are some specific differences among organisms, the mechanism of this stress response is mostly similar and involves the transmission of a signal from mitochondria to the nucleus that induces chromatin remodeling to allow the binding of specific transcription factors to the promoters of chaperones and proteases. In the last decade, proteins and signaling pathways that could be involved in the regulation of the UPRmt, including the Wnt signaling pathway, have been described. This minireview aims to summarize what is known about the mechanism of the UPRmt and its regulation, specifically in mammals and C. elegans.
Collapse
Affiliation(s)
- Angie K Torres
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Veronika Fleischhart
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
7
|
Ma T, Xu G, Gao T, Zhao G, Huang G, Shi J, Chen J, Song J, Xia J, Ma X. Engineered Exosomes with ATF5-Modified mRNA Loaded in Injectable Thermogels Alleviate Osteoarthritis by Targeting the Mitochondrial Unfolded Protein Response. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21383-21399. [PMID: 38626424 DOI: 10.1021/acsami.3c17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Osteoarthritis (OA) progression is highly associated with chondrocyte mitochondrial dysfunction and disorders of catabolism and anabolism of the extracellular matrix (ECM) in the articular cartilage. The mitochondrial unfolded protein response (UPRmt), which is an integral component of the mitochondrial quality control (MQC) system, is essential for maintaining chondrocyte homeostasis. We successfully validated the pivotal role of activating transcription factor 5 (ATF5) in upregulating the UPRmt, mitigating IL-1β-induced inflammation and mitochondrial dysfunction, and promoting balanced metabolism in articular cartilage ECM, proving its potential as a promising therapeutic target for OA. Modified mRNAs (modRNAs) have emerged as novel and efficient gene delivery vectors for nucleic acid therapeutic approaches. In this study, we combined Atf5-modRNA (modAtf5) with engineered exosomes derived from bone mesenchymal stem cells (ExmodAtf5) to exert cytoprotective effects on chondrocytes in articular cartilage via Atf5. However, the rapid localized metabolization of ExmodAtf5 limits its application. PLGA-PEG-PLGA (Gel), an injectable thermosensitive hydrogel, was used as a carrier of ExmodAtf5 (Gel@ExmodAtf5) to achieve a sustained release of ExmodAtf5. In vitro and in vivo, the use of Gel@ExmodAtf5 was shown to be a highly effective strategy for OA treatment. The in vivo therapeutic effect of Gel@ExmodAtf5 was evidenced by the preservation of the intact cartilage surface, low OARSI scores, fewer osteophytes, and mild subchondral bone sclerosis and cystic degeneration. Consequently, the combination of ExmodAtf5 and PLGA-PEG-PLGA could significantly enhance the therapeutic efficacy and prolong the exosome release. In addition, the mitochondrial protease ClpP enhanced chondrocyte autophagy by modulating the mTOR/Ulk1 pathway. As a result of our research, Gel@ExmodAtf5 can be considered to be effective at alleviating the progression of OA.
Collapse
Affiliation(s)
- Tiancong Ma
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Guangyu Xu
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Tian Gao
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Guanglei Zhao
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Gangyong Huang
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Jingsheng Shi
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Jie Chen
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Jian Song
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Jun Xia
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| | - Xiaosheng Ma
- Department of Orthopaedic Surgery, Huashan Hospital Fudan University, 12th Wulumuqi Middle Road, Jing'an District, Shanghai 200040, China
- Fudan University, 220th Handan Road, Yang'pu District, Shanghai 200082, China
| |
Collapse
|
8
|
Lian X, Wang X, Xie Y, Sheng H, He J, Peng T, Xie N, Wang C, Lian Y. ATF5-regulated Mitochondrial Unfolded Protein Response Attenuates Neuronal Damage in Epileptic Rat by Reducing Endoplasmic Reticulum Stress Through Mitochondrial ROS. Neurochem Res 2024; 49:388-401. [PMID: 37847329 DOI: 10.1007/s11064-023-04042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Endoplasmic reticulum (ER) dysfunction caused by excessive ER stress is a crucial mechanism underlying seizures-induced neuronal injury. Studies have shown that mitochondrial reactive oxygen species (ROS) are closely related to ER stress, and our previous study showed that activating transcription factor 5 (ATF5)-regulated mitochondrial unfolded protein response (mtUPR) modulated mitochondrial ROS generation in a hippocampal neuronal culture model of seizures. However, the effects of ATF5-regulated mtUPR on ER stress and the underlying mechanisms remain uncertain in epilepsy. In this study, ATF5 upregulation by lentivirus infection attenuated seizures-induced neuronal damage and apoptosis in a rat model of pilocarpine-induced epilepsy, whereas ATF5 downregulation by lentivirus infection had the opposite effects. ATF5 upregulation potentiated mtUPR by increasing the expression of mitochondrial chaperone heat shock protein 60 (HSP60) and caseinolytic protease proteolytic subunit (ClpP) and reducing mitochondrial ROS generation in pilocarpine-induced seizures in rats. Additionally, upregulation of ATF5 reduced the expression of glucose-regulated protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP), suggesting suppression of ER stress; Moreover, ATF5 upregulation attenuated apoptosis-related proteins such as B-cell lymphoma-2 (BCL2) downregulation, BCL2-associated X (BAX) and cleaved-caspase-3 upregulation. However, ATF5 downregulation exerted the opposite effects. Furthermore, pretreatment with the mitochondria-targeted antioxidant mito-TEMPO attenuated the harmful effects of ATF5 downregulation on ER stress and neuronal apoptosis by reducing mitochondrial ROS generation. Overall, our study suggested that ATF5-regulated mtUPR exerted neuroprotective effects against pilocarpine-induced seizures in rats and the underlying mechanisms might involve mitochondrial ROS-mediated ER stress.
Collapse
Affiliation(s)
- Xiaolei Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyi Wang
- Institutes of Biological and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Hanqing Sheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Jiao He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Cui Wang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
9
|
Shi L, Tan Y, Zheng W, Cao G, Zhou H, Li P, Cui J, Song Y, Feng L, Li H, Shan W, Zhang B, Yi W. CTRP3 alleviates mitochondrial dysfunction and oxidative stress injury in pathological cardiac hypertrophy by activating UPRmt via the SIRT1/ATF5 axis. Cell Death Discov 2024; 10:53. [PMID: 38278820 PMCID: PMC10817931 DOI: 10.1038/s41420-024-01813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
Pathological cardiac hypertrophy is an independent risk factor for heart failure. Disruption of mitochondrial protein homeostasis plays a key role in pathological cardiac hypertrophy; however, the mechanism of maintaining mitochondrial homeostasis in pathological cardiac hypertrophy remains unclear. In this study, we investigated the regulatory mechanisms of mitochondrial protein homeostasis in pathological cardiac hypertrophy. Wildtype (WT) mice, knockout mice, and mice transfected with lentivirus overexpressing mouse C1q-tumor necrosis factor-related protein-3 (CTRP3) underwent transverse aortic constriction or sham surgery. After 4 weeks, cardiac function, mitochondrial function, and oxidative stress injury were examined. For mechanistic studies, neonatal rat cardiomyocytes were treated with small interfering RNA or overexpression plasmids for the relevant genes. CTRP3 overexpression attenuated transverse aortic constriction (TAC) induced pathological cardiac hypertrophy, mitochondrial dysfunction, and oxidative stress injury compared to that in WT mice. TAC or Ang II resulted in compensatory activation of UPRmt, but this was not sufficient to counteract pathologic cardiac hypertrophy. CTRP3 overexpression further induced activation of UPRmt during pathologic cardiac hypertrophy and thereby alleviated pathologic cardiac hypertrophy, whereas CTRP3 knockout or knockdown inhibited UPRmt. ATF5 was a key regulatory molecule of UPRmt, as ATF5 knockout prevented the cardioprotective effect of CTRP3 in TAC mice. In vitro, SIRT1 was identified as a possible downstream CTRP3 effector molecule, and SIRT1 knockout blocked the cardioprotective effects of CTRP3. Our results also suggest that ATF5 may be regulated by SIRT1. Our study demonstrates that CTRP3 activates UPRmt via the SIRT1/ATF5 axis under pathological myocardial hypertrophy, thus attenuating mitochondrial dysfunction and oxidative stress injury.
Collapse
Affiliation(s)
- Lei Shi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yanzhen Tan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wenying Zheng
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Guojie Cao
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Haitao Zhou
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Panpan Li
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Lele Feng
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hong Li
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
10
|
Alghusen IM, Carman MS, Wilkins H, Ephrame SJ, Qiang A, Dias WB, Fedosyuk H, Denson AR, Swerdlow RH, Slawson C. O-GlcNAc regulates the mitochondrial integrated stress response by regulating ATF4. Front Aging Neurosci 2023; 15:1326127. [PMID: 38192280 PMCID: PMC10773771 DOI: 10.3389/fnagi.2023.1326127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Background Accumulation of mitochondrial dysfunctional is a hallmark of age-related neurodegeneration including Alzheimer's disease (AD). Impairment of mitochondrial quality control mechanisms leading to the accumulation of damaged mitochondria and increasing neuronal stress. Therefore, investigating the basic mechanisms of how mitochondrial homeostasis is regulated is essential. Herein, we investigate the role of O-GlcNAcylation, a single sugar post-translational modification, in controlling mitochondrial stress-induced transcription factor Activating Transcription Factor 4 (ATF4). Mitochondrial dysfunction triggers the integrated stress response (ISRmt), in which the phosphorylation of eukaryotic translation initiation factor 2α results in the translation of ATF4. Methods We used patient-derived induced pluripotent stem cells, a transgenic mouse model of AD, SH-SY5Y neuroblastoma and HeLa cell-lines to examine the effect of sustained O-GlcNAcase inhibition by Thiamet-G (TMG) on ISRmt using biochemical analyses. Results We show that TMG elevates ATF4 protein levels upon mitochondrial stress in SH-SY5Y neuroblastoma and HeLa cell-lines. An indirect downstream target of ATF4 mitochondrial chaperone glucose-regulated protein 75 (GRP75) is significantly elevated. Interestingly, knock-down of O-GlcNAc transferase (OGT), the enzyme that adds O-GlcNAc, in SH-SY5Y increases ATF4 protein and mRNA expression. Additionally, ATF4 target gene Activating Transcription Factor 5 (ATF5) is significantly elevated at both the protein and mRNA level. Brains isolated from TMG treated mice show elevated levels of ATF4 and GRP75. Importantly, ATF4 occupancy increases at the ATF5 promoter site in brains isolated from TMG treated mice suggesting that O-GlcNAc is regulating ATF4 targeted gene expression. Interestingly, ATF4 and GRP75 are not induced in TMG treated familial Alzheimer's Disease mice model. The same results are seen in a human in vitro model of AD. Conclusion Together, these results indicate that in healthy conditions, O-GlcNAc regulates the ISRmt through regulating ATF4, while manipulating O-GlcNAc in AD has no effect on ISRmt.
Collapse
Affiliation(s)
- Ibtihal M. Alghusen
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Marisa S. Carman
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Heather Wilkins
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sophiya John Ephrame
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Amy Qiang
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Wagner B. Dias
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Halyna Fedosyuk
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aspin R. Denson
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Chad Slawson
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
11
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Romero-Domínguez JM, Reche-López D, López-Cabrera A, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Suárez-Carrillo A, Romero-González A, Sánchez-Alcázar JA. Mitochondrial Quality Control via Mitochondrial Unfolded Protein Response (mtUPR) in Ageing and Neurodegenerative Diseases. Biomolecules 2023; 13:1789. [PMID: 38136659 PMCID: PMC10741690 DOI: 10.3390/biom13121789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria play a key role in cellular functions, including energy production and oxidative stress regulation. For this reason, maintaining mitochondrial homeostasis and proteostasis (homeostasis of the proteome) is essential for cellular health. Therefore, there are different mitochondrial quality control mechanisms, such as mitochondrial biogenesis, mitochondrial dynamics, mitochondrial-derived vesicles (MDVs), mitophagy, or mitochondrial unfolded protein response (mtUPR). The last item is a stress response that occurs when stress is present within mitochondria and, especially, when the accumulation of unfolded and misfolded proteins in the mitochondrial matrix surpasses the folding capacity of the mitochondrion. In response to this, molecular chaperones and proteases as well as the mitochondrial antioxidant system are activated to restore mitochondrial proteostasis and cellular function. In disease contexts, mtUPR modulation holds therapeutic potential by mitigating mitochondrial dysfunction. In particular, in the case of neurodegenerative diseases, such as primary mitochondrial diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), or Friedreich's Ataxia (FA), there is a wealth of evidence demonstrating that the modulation of mtUPR helps to reduce neurodegeneration and its associated symptoms in various cellular and animal models. These findings underscore mtUPR's role as a promising therapeutic target in combating these devastating disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jose Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.); (M.Á.-C.); (M.M.-C.); (M.T.-R.); (A.S.-C.); (A.R.-G.)
| |
Collapse
|
12
|
Zhang B, Yang J, Li X, Zhu H, Sun J, Jiang L, Xue C, Zhang L, Xu C, Xing S, Jin Z, Liu J, Yu S, Duan W. Tetrahydrocurcumin ameliorates postinfarction cardiac dysfunction and remodeling by inhibiting oxidative stress and preserving mitochondrial function via SIRT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155127. [PMID: 37812853 DOI: 10.1016/j.phymed.2023.155127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Myocardial infarction (MI) often leads to sudden cardiac death. Persistent myocardial ischemia increases oxidative stress and impairs mitochondrial function, contributing significantly to postinfarction cardiac dysfunction and remodeling, and the subsequent progression to heart failure (HF). Tetrahydrocurcumin (THC), isolated from the rhizome of turmeric, has antioxidant properties and has been shown to protect against cardiovascular diseases. However, its effects on HF after MI are poorly understood. PURPOSE The objective was the investigation of the pharmacological effects of THC and its associated mechanisms in the pathogenesis of HF after MI. METHODS A total of 120 mice (C57BL/6, male) were used for the in vivo experiments. An MI mouse model was created by permanent ligation of the left anterior descending coronary artery. The mice received oral dose of THC at 120 mg/kg/d and the effects on MI-induced myocardial injury were evaluated by assessment of cardiac function, histopathology, myocardial oxidative levels, and mitochondrial function. Molecular mechanisms were investigated by intraperitoneal injection of 50 mg/kg of the SIRT3 selective inhibitor 3-TYP. Meanwhile, mouse neonatal cardiomyocytes were isolated and cultured in a hypoxic incubator to verify the effects of THC in vitro. Lastly, SIRT3 and Nrf2 were silenced using siRNAs to further explore the regulatory mechanism of key molecules in this process. RESULTS The mouse hearts showed significant impairment in systolic function after MI, together with enlarged infarct size, increased myocardial fibrosis, cardiac hypertrophy, and apoptosis of cardiomyocytes. A significant reversal of these changes was seen after treatment with THC. Moreover, THC markedly reduced reactive oxygen species generation and protected mitochondrial function, thus mitigating oxidative stress in the post-MI myocardium. Mechanistically, THC counteracted reduced Nrf2 nuclear accumulation and SIRT3 signaling in the MI mice while inhibition of Nrf2 or SIRT3 reversed the effects of THC. Cell experiments showed that Nrf2 silencing markedly reduced SIRT3 levels and deacetylation activity while inhibition of SIRT3 signaling had little impact on Nrf2 expression. CONCLUSION This is the first demonstration that THC protects against the effects of MI. THC reduced both oxidative stress and mitochondrial damage by regulating Nrf2-SIRT3 signaling. The results suggest the potential of THC in treating myocardial ischemic diseases.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China; Department of Surgery, The 954th Hospital of the Chinese People's Liberation Army, Shannan, Tibet 856100, China
| | - Jiachang Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Xiayun Li
- College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hanzhao Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Jingwei Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Liqing Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Chao Xue
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Liyun Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Chennian Xu
- Department of Cardiothoracic Surgery, The 79th Group Military Hospital of the People's Liberation Army, Liaoyang, Liaoning 111000, China
| | - Shishi Xing
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China.
| | - Weixun Duan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
13
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
14
|
Zhu C, Piao Z, Jin L. HDAC5 inhibition attenuates ventricular remodeling and cardiac dysfunction. Orphanet J Rare Dis 2023; 18:266. [PMID: 37667300 PMCID: PMC10476361 DOI: 10.1186/s13023-023-02896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND This study aimed to investigate the role of histone deacetylase 5 (HDAC5) in ventricular remodeling and explore the therapeutic potential of the HDAC5 inhibitor LMK235. METHODS A transverse aortic constriction (TAC) mouse model and angiotensin II (Ang II)-treated H9C2 cells were used to evaluate the effects of HDAC5 inhibition with LMK235 on ventricular remodeling and cardiac dysfunction. Additionally, the involvement of the extracellular signal-regulated kinase (ERK)/early growth response protein 1 (EGR1) signaling pathway in regulating myocyte enhancer factor 2 A (MEF2A) expression was assessed. RESULTS HDAC5 was upregulated in TAC mice and Ang II-treated H9C2 cells, suggesting its involvement in ventricular remodeling and cardiac dysfunction. LMK235 treatment significantly improved cardiac function in TAC mice and attenuated TAC-induced ventricular remodeling and Ang II-induced H9C2 cell hypertrophy. Mechanically, HDAC5 inhibition activated the ERK/EGR1 signaling pathway. CONCLUSIONS Our findings demonstrate that HDAC5 may suppress the activation of ERK/EGR1 signaling to regulate MEF2A expression and therefore participate in cardiac pathophysiology.
Collapse
Affiliation(s)
- Chenxi Zhu
- Department of Cardiology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, No. 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
| | - Zhehao Piao
- Department of Cardiology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, No. 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
| | - Li Jin
- Department of Cardiology, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, No. 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
15
|
Mitochondrial protein import and UPR mt in skeletal muscle remodeling and adaptation. Semin Cell Dev Biol 2023; 143:28-36. [PMID: 35063351 DOI: 10.1016/j.semcdb.2022.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 01/03/2023]
Abstract
The biogenesis of mitochondria requires the coordinated expression of the nuclear and the mitochondrial genomes. However, the vast majority of gene products within the organelle are encoded in the nucleus, synthesized in the cytosol, and imported into mitochondria via the protein import machinery, which permit the entry of proteins to expand the mitochondrial network. Once inside, proteins undergo a maturation and folding process brought about by enzymes comprising the unfolded protein response (UPRmt). Protein import and UPRmt activity must be synchronized and matched with mtDNA-encoded subunit synthesis for proper assembly of electron transport chain complexes to avoid proteotoxicity. This review discusses the functions of the import and UPRmt systems in mammalian skeletal muscle, as well as how exercise alters the equilibrium of these pathways in a time-dependent manner, leading to a new steady state of mitochondrial content resulting in enhanced oxidative capacity and improved muscle health.
Collapse
|
16
|
Wang Y, Li J, Zhang Z, Wang R, Bo H, Zhang Y. Exercise Improves the Coordination of the Mitochondrial Unfolded Protein Response and Mitophagy in Aging Skeletal Muscle. Life (Basel) 2023; 13:life13041006. [PMID: 37109535 PMCID: PMC10142204 DOI: 10.3390/life13041006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) and mitophagy are two mitochondrial quality control (MQC) systems that work at the molecular and organelle levels, respectively, to maintain mitochondrial homeostasis. Under stress conditions, these two processes are simultaneously activated and compensate for each other when one process is insufficient, indicating mechanistic coordination between the UPRmt and mitophagy that is likely controlled by common upstream signals. This review focuses on the molecular signals regulating this coordination and presents evidence showing that this coordination mechanism is impaired during aging and promoted by exercise. Furthermore, the bidirectional regulation of reactive oxygen species (ROS) and AMPK in modulating this mechanism is discussed. The hierarchical surveillance network of MQC can be targeted by exercise-derived ROS to attenuate aging, which offers a molecular basis for potential therapeutic interventions for sarcopenia.
Collapse
Affiliation(s)
- Yan Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
- School of Physical Education, Guangdong Institute of Petrochemical Technology, Maoming 525000, China
| | - Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Runzi Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| |
Collapse
|
17
|
Mitochondrial Unfolded Protein Response and Integrated Stress Response as Promising Therapeutic Targets for Mitochondrial Diseases. Cells 2022; 12:cells12010020. [PMID: 36611815 PMCID: PMC9818186 DOI: 10.3390/cells12010020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The development and application of high-throughput omics technologies have enabled a more in-depth understanding of mitochondrial biosynthesis metabolism and the pathogenesis of mitochondrial diseases. In accordance with this, a host of new treatments for mitochondrial disease are emerging. As an essential pathway in maintaining mitochondrial proteostasis, the mitochondrial unfolded protein response (UPRmt) is not only of considerable significance for mitochondrial substance metabolism but also plays a fundamental role in the development of mitochondrial diseases. Furthermore, in mammals, the integrated stress response (ISR) and UPRmt are strongly coupled, functioning together to maintain mitochondrial function. Therefore, ISR and UPRmt show great application prospects in the treatment of mitochondrial diseases. In this review, we provide an overview of the molecular mechanisms of ISR and UPRmt and focus on them as potential targets for mitochondrial disease therapy.
Collapse
|
18
|
ATF5 is a regulator of exercise-induced mitochondrial quality control in skeletal muscle. Mol Metab 2022; 66:101623. [PMID: 36332794 PMCID: PMC9661517 DOI: 10.1016/j.molmet.2022.101623] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES The Mitochondrial Unfolded Protein Response (UPRmt) is a compartment-specific mitochondrial quality control (MQC) mechanism that uses the transcription factor ATF5 to induce the expression of protective enzymes to restore mitochondrial function. Acute exercise is a stressor that has the potential to temporarily disrupt organellar protein homeostasis, however, the roles of ATF5 and the UPRmt in maintaining basal mitochondrial content, function and exercise-induced MQC mechanisms in skeletal muscle are not known. METHODS ATF5 KO and WT mice were examined at rest or after a bout of acute endurance exercise. We measured protein content in whole muscle, nuclear, cytosolic and mitochondrial fractions, in addition to mRNA transcript levels in whole muscle. Using isolated mitochondria, we quantified rates of oxygen consumption and ROS emission to observe the effects of the absence of ATF5 on organelle function. RESULTS ATF5 KO mice exhibited a larger and less functional muscle mitochondrial pool, most likely a culmination of enhanced biogenesis via increased PGC-1α expression, and attenuated mitophagy. The absence of ATF5 resulted in a reduction in antioxidant proteins and increases in mitochondrial ROS emission, cytosolic cytochrome c, and the expression of mitochondrial chaperones. KO muscle also displayed enhanced exercise-induced stress kinase signaling, but a blunted mitophagic and UPRmt gene expression response, complemented by significant increases in the basal mRNA abundance and nuclear localization of ATF4. Instead of promoting its nuclear translocation, acute exercise caused the enrichment of ATF5 in mitochondrial fractions. We also identified PGC-1α as an additional regulator of the basal expression of UPRmt genes. CONCLUSION The transcription factor ATF5 retains a critical role in the maintenance of mitochondrial homeostasis and the appropriate response of muscle to acute exercise for the optimization of mitochondrial quality control.
Collapse
|
19
|
Zhou Z, Fan Y, Zong R, Tan K. The mitochondrial unfolded protein response: A multitasking giant in the fight against human diseases. Ageing Res Rev 2022; 81:101702. [PMID: 35908669 DOI: 10.1016/j.arr.2022.101702] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Mitochondria, which serve as the energy factories of cells, are involved in cell differentiation, calcium homeostasis, amino acid and fatty acid metabolism and apoptosis. In response to environmental stresses, mitochondrial homeostasis is regulated at both the organelle and molecular levels to effectively maintain the number and function of mitochondria. The mitochondrial unfolded protein response (UPRmt) is an adaptive intracellular stress mechanism that responds to stress signals by promoting the transcription of genes encoding mitochondrial chaperones and proteases. The mechanism of the UPRmt in Caenorhabditis elegans (C. elegans) has been clarified over time, and the main regulatory factors include ATFS-1, UBL-5 and DVE-1. In mammals, the activation of the UPRmt involves eIF2α phosphorylation and the uORF-regulated expression of CHOP, ATF4 and ATF5. Several additional factors, such as SIRT3 and HSF1, are also involved in regulating the UPRmt. A deep and comprehensive exploration of the UPRmt can provide new directions and strategies for the treatment of human diseases, including aging, neurodegenerative diseases, cardiovascular diseases and diabetes. In this review, we mainly discuss the function of UPRmt, describe the regulatory mechanisms of UPRmt in C. elegans and mammals, and summarize the relationship between UPRmt and various human diseases.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ruikai Zong
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
20
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
21
|
Liu M, Lv J, Pan Z, Wang D, Zhao L, Guo X. Mitochondrial dysfunction in heart failure and its therapeutic implications. Front Cardiovasc Med 2022; 9:945142. [PMID: 36093152 PMCID: PMC9448986 DOI: 10.3389/fcvm.2022.945142] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
The ATP consumption in heart is very intensive to support muscle contraction and relaxation. Mitochondrion is the power plant of the cell. Mitochondrial dysfunction has long been believed as the primary mechanism responsible for the inability of energy generation and utilization in heart failure. In addition, emerging evidence has demonstrated that mitochondrial dysfunction also contributes to calcium dysregulation, oxidative stress, proteotoxic insults and cardiomyocyte death. These elements interact with each other to form a vicious circle in failing heart. The role of mitochondrial dysfunction in the pathogenesis of heart failure has attracted increasing attention. The complex signaling of mitochondrial quality control provides multiple targets for maintaining mitochondrial function. Design of therapeutic strategies targeting mitochondrial dysfunction holds promise for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Miaosen Liu
- Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jialan Lv
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhicheng Pan
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongfei Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liding Zhao
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiaogang Guo,
| |
Collapse
|
22
|
Bai Y, Wu J, Yang Z, Wang X, Zhang D, Ma J. Mitochondrial quality control in cardiac ischemia/reperfusion injury: new insights into mechanisms and implications. Cell Biol Toxicol 2022; 39:33-51. [PMID: 35951200 DOI: 10.1007/s10565-022-09716-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
The current effective method for the treatment of myocardial infarction is timely restoration of the blood supply to the ischemic area of the heart. Although reperfusion is essential for reestablishing oxygen and nutrient supplies, it often leads to additional myocardial damage, creating an important clinical dilemma. Reports from long-term studies have confirmed that mitochondrial damage is the critical mechanism in cardiac ischemia/reperfusion (I/R) injury. Mitochondria are dynamic and possess a quality control system that targets mitochondrial quantity and quality by modifying mitochondrial fusion, fission, mitophagy, and biogenesis and protein homeostasis to maintain a healthy mitochondrial network. The system of mitochondrial quality control involves complex molecular machinery that is highly interconnected and associated with pathological changes such as oxidative stress, calcium overload, and endoplasmic reticulum (ER) stress. Because of the critical role of the mitochondrial quality control systems, many reports have suggested that defects in this system are among the molecular mechanisms underlying myocardial reperfusion injury. In this review, we briefly summarize the important role of the mitochondrial quality control in cardiomyocyte function and focus on the current understanding of the regulatory mechanisms and molecular pathways involved in mitochondrial quality control in cardiac I/R damage.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zhenyu Yang
- Department of Endocrinology, South China Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Xu'an Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
23
|
Paerhati P, Liu J, Jin Z, Jakoš T, Zhu S, Qian L, Zhu J, Yuan Y. Advancements in Activating Transcription Factor 5 Function in Regulating Cell Stress and Survival. Int J Mol Sci 2022; 23:ijms23137129. [PMID: 35806136 PMCID: PMC9266924 DOI: 10.3390/ijms23137129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Activating transcription factor 5 (ATF5) belongs to the activating transcription factor/cyclic adenosine monophosphate (cAMP) response element-binding protein family of basic region leucine zipper transcription factors. ATF5 plays an important role in cell stress regulation and is involved in cell differentiation and survival, as well as centrosome maintenance and development. Accumulating evidence demonstrates that ATF5 plays an oncogenic role in cancer by regulating gene expressions involved in tumorigenesis and tumor survival. Recent studies have indicated that ATF5 may also modify the gene expressions involved in other diseases. This review explores in detail the regulation of ATF5 expression and signaling pathways and elucidates the role of ATF5 in cancer biology. Furthermore, an overview of putative therapeutic strategies that can be used for restoring aberrant ATF5 activity in different cancer types is provided.
Collapse
Affiliation(s)
- Pameila Paerhati
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Jing Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Zhedong Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Tanja Jakoš
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Shunyin Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Z.); (L.Q.)
| | - Lan Qian
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Z.); (L.Q.)
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
- Correspondence:
| |
Collapse
|
24
|
Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Perez R, Sánchez-Alcázar JA. UPR mt activation improves pathological alterations in cellular models of mitochondrial diseases. Orphanet J Rare Dis 2022; 17:204. [PMID: 35581596 PMCID: PMC9115953 DOI: 10.1186/s13023-022-02331-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/26/2022] [Indexed: 12/23/2022] Open
Abstract
Background Mitochondrial diseases represent one of the most common groups of genetic diseases. With a prevalence greater than 1 in 5000 adults, such diseases still lack effective treatment. Current therapies are purely palliative and, in most cases, insufficient. Novel approaches to compensate and, if possible, revert mitochondrial dysfunction must be developed. Results In this study, we tackled the issue using as a model fibroblasts from a patient bearing a mutation in the GFM1 gene, which is involved in mitochondrial protein synthesis. Mutant GFM1 fibroblasts could not survive in galactose restrictive medium for more than 3 days, making them the perfect screening platform to test several compounds. Tetracycline enabled mutant GFM1 fibroblasts survival under nutritional stress. Here we demonstrate that tetracycline upregulates the mitochondrial Unfolded Protein Response (UPRmt), a compensatory pathway regulating mitochondrial proteostasis. We additionally report that activation of UPRmt improves mutant GFM1 cellular bioenergetics and partially restores mitochondrial protein expression. Conclusions Overall, we provide compelling evidence to propose the activation of intrinsic cellular compensatory mechanisms as promising therapeutic strategy for mitochondrial diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02331-8.
Collapse
Affiliation(s)
- Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Carmen J Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Rocío Piñero-Perez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain. .,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Seville, Spain.
| |
Collapse
|
25
|
Oxidative Stress and Heart Failure: Mechanisms, Signalling Pathways, and Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9829505. [PMID: 35464761 PMCID: PMC9023191 DOI: 10.1155/2022/9829505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
|
26
|
Slavin MB, Memme JM, Oliveira AN, Moradi N, Hood DA. Regulatory networks controlling mitochondrial quality control in skeletal muscle. Am J Physiol Cell Physiol 2022; 322:C913-C926. [PMID: 35353634 DOI: 10.1152/ajpcell.00065.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The adaptive plasticity of mitochondria within skeletal muscle is regulated by signals converging on a myriad of regulatory networks that operate during conditions of increased (i.e. exercise) and decreased (inactivity, disuse) energy requirements. Notably, some of the initial signals that induce adaptive responses are common to both conditions, differing in their magnitude and temporal pattern, to produce vastly opposing mitochondrial phenotypes. In response to exercise, signaling to PGC-1α and other regulators ultimately produces an abundance of high quality mitochondria, leading to reduced mitophagy and a higher mitochondrial content. This is accompanied by the presence of an enhanced protein quality control system that consists of the protein import machinery as well chaperones and proteases termed the UPRmt. The UPRmt monitors intra-organelle proteostasis, and strives to maintain a mito-nuclear balance between nuclear- and mtDNA-derived gene products via retrograde signaling from the organelle to the nucleus. In addition, antioxidant capacity is improved, affording greater protection against oxidative stress. In contrast, chronic disuse conditions produce similar signaling but result in decrements in mitochondrial quality and content. Thus, the interactive cross-talk of the regulatory networks that control organelle turnover during wide variations in muscle use and disuse remain incompletely understood, despite our improving knowledge of the traditional regulators of organelle content and function. This brief review acknowledges existing regulatory networks and summarizes recent discoveries of novel biological pathways involved in determining organelle biogenesis, dynamics, mitophagy, protein quality control and antioxidant capacity, identifying ample protein targets for therapeutic intervention that determine muscle and mitochondrial health.
Collapse
Affiliation(s)
- Mikhaela B Slavin
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Jonathan M Memme
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Ashley N Oliveira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Neushaw Moradi
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
27
|
Wang G, Fan Y, Cao P, Tan K. Insight into the mitochondrial unfolded protein response and cancer: opportunities and challenges. Cell Biosci 2022; 12:18. [PMID: 35180892 PMCID: PMC8857832 DOI: 10.1186/s13578-022-00747-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved protective transcriptional response that maintains mitochondrial proteostasis by inducing the expression of mitochondrial chaperones and proteases in response to various stresses. The UPRmt-mediated transcriptional program requires the participation of various upstream signaling pathways and molecules. The factors regulating the UPRmt in Caenorhabditis elegans (C. elegans) and mammals are both similar and different. Cancer cells, as malignant cells with uncontrolled proliferation, are exposed to various challenges from endogenous and exogenous stresses. Therefore, in cancer cells, the UPRmt is hijacked and exploited for the repair of mitochondria and the promotion of tumor growth, invasion and metastasis. In this review, we systematically introduce the inducers of UPRmt, the biological processes in which UPRmt participates, the mechanisms regulating the UPRmt in C. elegans and mammals, cross-tissue signal transduction of the UPRmt and the roles of the UPRmt in promoting cancer initiation and progression. Disrupting proteostasis in cancer cells by targeting UPRmt constitutes a novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Ge Wang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China.,Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China
| | - Pengxiu Cao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China.
| |
Collapse
|