1
|
Arnaldi P, Casarotto E, Relucenti M, Bellese G, Gagliani MC, Crippa V, Castagnola P, Cortese K. A NSC-34 cell line-derived spheroid model: Potential and challenges for in vitro evaluation of neurodegeneration. Microsc Res Tech 2024; 87:2785-2800. [PMID: 38988205 DOI: 10.1002/jemt.24651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Three-dimensional (3D) spheroid models aim to bridge the gap between traditional two-dimensional (2D) cultures and the complex in vivo tissue environment. These models, created by self-clustering cells to mimic a 3D environment with surrounding extracellular framework, provide a valuable research tool. The NSC-34 cell line, generated by fusing mouse spinal cord motor neurons and neuroblastoma cells, is essential for studying neurodegenerative diseases like amyotrophic lateral sclerosis (ALS), where abnormal protein accumulation, such as TAR-DNA-binding protein 43 (TDP-43), occurs in affected nerve cells. However, NSC-34 behavior in a 3D context remains underexplored, and this study represents the first attempt to create a 3D model to determine its suitability for studying pathology. We generated NSC-34 spheroids using a nonadhesive hydrogel-based template and characterized them for 6 days. Light microscopy revealed that NSC-34 cells in 3D maintained high viability, a distinct round shape, and forming stable membrane connections. Scanning electron microscopy identified multiple tunnel-like structures, while ultrastructural analysis highlighted nuclear bending and mitochondria alterations. Using inducible GFP-TDP-43-expressing NSC-34 spheroids, we explored whether 3D structure affected TDP-43 expression, localization, and aggregation. Spheroids displayed nuclear GFP-TDP-43 expression, albeit at a reduced level compared with 2D cultures and generated both TDP-35 fragments and TDP-43 aggregates. This study sheds light on the distinctive behavior of NSC-34 in 3D culture, suggesting caution in the use of the 3D model for ALS or TDP-43 pathologies. Yet, it underscores the spheroids' potential for investigating fundamental cellular mechanisms, cell adaptation in a 3D context, future bioreactor applications, and drug penetration studies. RESEARCH HIGHLIGHTS: 3D spheroid generation: NSC-34 spheroids, developed using a hydrogel-based template, showed high viability and distinct shapes for 6 days. Structural features: advanced microscopy identified tunnel-like structures and nuclear and mitochondrial changes in the spheroids. Protein dynamics: the study observed how 3D structures impact TDP-43 behavior, with altered expression but similar aggregation patterns to 2D cultures. Research implications: this study reveals the unique behavior of NSC-34 in 3D culture, suggests a careful approach to use this model for ALS or TDP-43 pathologies, and highlights its potential in cellular mechanism research and drug testing applications.
Collapse
Affiliation(s)
- Pietro Arnaldi
- Department of Experimental Medicine, Cellular Electron Microscopy Lab, University of Genoa, Genoa, Italy
| | - Elena Casarotto
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Department of Excellence 2018-2027, University of Milan, Milan, Italy
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Grazia Bellese
- Department of Experimental Medicine, Cellular Electron Microscopy Lab, University of Genoa, Genoa, Italy
| | - Maria Cristina Gagliani
- Department of Experimental Medicine, Cellular Electron Microscopy Lab, University of Genoa, Genoa, Italy
| | - Valeria Crippa
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Department of Excellence 2018-2027, University of Milan, Milan, Italy
| | | | - Katia Cortese
- Department of Experimental Medicine, Cellular Electron Microscopy Lab, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
2
|
Xie S, Jin L, Fu J, Yuan Q, Yin T, Ren J, Liu W. PTHrP participates in the bone destruction of middle ear cholesteatoma via promoting macrophage differentiation into osteoclasts induced by RANKL. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:655-666. [PMID: 39174879 PMCID: PMC11341230 DOI: 10.11817/j.issn.1672-7347.2024.230482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Progressive bone resorption and destruction is one of the most critical clinical features of middle ear cholesteatoma, potentially leading to various intracranial and extracranial complications. However, the mechanisms underlying bone destruction in middle ear cholesteatoma remain unclear. This study aims to explore the role of parathyroid hormone-related protein (PTHrP) in bone destruction associated with middle ear cholesteatoma. METHODS A total of 25 cholesteatoma specimens and 13 normal external auditory canal skin specimens were collected from patients with acquired middle ear cholesteatoma. Immunohistochemical staining was used to detect the expressions of PTHrP, receptor activator for nuclear factor-kappa B ligand (RANKL), and osteoprotegerin (OPG) in cholesteatoma and normal tissues. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect the presence of TRAP positive multi-nucleated macrophages in cholesteatoma and normal tissues. Mono-nuclear macrophage RAW264.7 cells were subjected to interventions, divided into a RANKL intervention group and a PTHrP+ RANKL co-intervention group. TRAP staining was used to detect osteoclast formation in the 2 groups. The mRNA expression levels of osteoclast-related genes, including TRAP, cathepsin K (CTSK), and nuclear factor of activated T cell cytoplasmic 1 (NFATc1), were measured using real-time polymerase chain reaction (real-time PCR) after the interventions. Bone resorption function of osteoclasts was assessed using a bone resorption pit analysis. RESULTS Immunohistochemical staining showed significantly increased expression of PTHrP and RANKL and decreased expression of OPG in cholesteatoma tissues (all P<0.05). PTHrP expression was significantly positively correlated with RANKL, the RANKL/OPG ratio, and negatively correlated with OPG expression (r=0.385, r=0.417, r=-0.316, all P<0.05). Additionally, the expression levels of PTHrP and RANKL were significantly positively correlated with the degree of bone destruction in cholesteatoma (r=0.413, r=0.505, both P<0.05). TRAP staining revealed a large number of TRAP-positive cells, including multi-nucleated osteoclasts with three or more nuclei, in the stroma surrounding the cholesteatoma epithelium. After 5 days of RANKL or PTHrP+RANKL co-intervention, the number of osteoclasts was significantly greater in the PTHrP+RANKL co-intervention group than that in the RANKL group (P<0.05), with increased mRNA expression levels of TRAP, CTSK, and NFATc1 (all P<0.05). Scanning electron microscopy of bone resorption pits showed that the number (P<0.05) and size of bone resorption pits on bone slices were significantly greater in the PTHrP+RANKL co-intervention group compared with the RANKL group. CONCLUSIONS PTHrP may promote the differentiation of macrophages in the surrounding stroma of cholesteatoma into osteoclasts through RANKL induction, contributing to bone destruction in middle ear cholesteatoma.
Collapse
Affiliation(s)
- Shumin Xie
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008.
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008.
| | - Li Jin
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China
| | - Jinfeng Fu
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China
| | - Qiulin Yuan
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China
| | - Tuanfang Yin
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China
| | - Jihao Ren
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011.
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China.
| |
Collapse
|
3
|
Aventaggiato M, Valentini F, Caissutti D, Relucenti M, Tafani M, Misasi R, Zicari A, Di Martino S, Virtuoso S, Neri A, Mardente S. Biological Effects of Small Sized Graphene Oxide Nanosheets on Human Leukocytes. Biomedicines 2024; 12:256. [PMID: 38397858 PMCID: PMC10887315 DOI: 10.3390/biomedicines12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Since the discovery of graphene, there has been a wide range of the literature dealing with its versatile structure and easy binding of biomolecules as well as its large loading capacity. In the emerging field of immunotherapy, graphene and its derivatives have potential uses as drug delivery platforms directly into tumour sites or as adjuvants in cancer vaccines, as they are internalized by monocytes which in turn may activate adaptive anti-tumoral immune responses. In this study, we expose cells of the innate immune system and a human acute monocytic leukemia cell line (THP-1) to low doses of small-sized GO nanosheets functionalized with bovine serum albumin (BSA) and fluorescein isothiocyanate (FITC), to study their acute response after internalization. We show by flow cytometry, uptake in cells of GO-BSA-FITC reaches 80% and cell viability and ROS production are both unaffected by exposure to nanoparticles. On the contrary, GO-BSA nanosheets seem to have an inhibitory effect on ROS production, probably due to their antioxidant properties. We also provided results on chemotaxis of macrophages derived from peripheral blood monocytes treated with GO-BSA. In conclusion, we showed the size of nanosheets, the concentration used and the degree of functionalization were important factors for biocompatibility of GO in immune cells. Its low cytotoxicity and high adaptability to the cells of the innate immune system make it a good candidate for deployment in immunotherapy, in particular for delivering protein antigens to monocytes which activate adaptive immunity.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Federica Valentini
- Department of Sciences and Chemical Technologies, Tor Vergata University, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Daniela Caissutti
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy;
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Roberta Misasi
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Alessandra Zicari
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Sara Di Martino
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Sara Virtuoso
- Higher Institute of Health (ISS), Viale Regina Elena 299, 00161 Rome, Italy;
| | - Anna Neri
- Department of Biomedicine and Prevention, Tor Vergata University, Viale Montpellier, 1, 00133 Rome, Italy;
| | - Stefania Mardente
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| |
Collapse
|
4
|
Delsmann MM, Bonik P, Ocokoljic A, Häussler SM, Püschel K, Praetorius M, Amling M, Peichl J, Rolvien T. Cholesteatoma Severely Impacts the Integrity and Bone Material Quality of the Incus. Calcif Tissue Int 2023; 113:609-617. [PMID: 37872266 PMCID: PMC10673740 DOI: 10.1007/s00223-023-01144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
Cholesteatoma can lead to progressive destruction of the auditory ossicles along with conductive hearing loss but precise data on the microstructural, cellular, and compositional aspects of affected ossicles are not available. Here, we obtained incus specimens from patients who had cholesteatoma with conductive hearing loss. Incudes were evaluated by micro-computed tomography, histomorphometry on undecalcified sections, quantitative backscattered electron imaging, and nanoindentation. Results were compared with two control groups taken from patients with chronic otitis media as well as from skeletally intact donors at autopsy. The porosity of incus specimens was higher in cholesteatoma than in chronic otitis media, along with a higher osteoclast surface per bone surface. Histomorphometric assessment revealed higher osteoid levels and osteocyte numbers in cholesteatoma incudes. Incudes affected by cholesteatoma also showed lower matrix mineralization compared with specimens from healthy controls and chronic otitis media. Furthermore, the modulus-to-hardness ratio was higher in cholesteatoma specimens compared with controls. Taken together, we demonstrated increased porosity along with increased osteoclast indices, impaired matrix mineralization, and altered biomechanical properties as distinct features of the incus in cholesteatoma. Based on our findings, a possible impact of impaired bone quality on conductive hearing loss should be further explored.
Collapse
Affiliation(s)
- Maximilian M Delsmann
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Bonik
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Ana Ocokoljic
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sophia M Häussler
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark Praetorius
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan Peichl
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
5
|
Familiari P, Relucenti M, Lapolla P, Palmieri M, Antonelli M, Cristiano L, Barbaranelli C, Catalano M, D'Angelo L, Familiari G, Santoro A, Frati A, Bruzzaniti P. Adult IDH Wild-Type Glioblastoma Ultrastructural Investigation Suggests a Possible Correlation between Morphological Biomarkers and Ki-67 Index. Biomedicines 2023; 11:1968. [PMID: 37509607 PMCID: PMC10377045 DOI: 10.3390/biomedicines11071968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma is an aggressive brain tumor with an average life expectancy between 14 and 16 months after diagnosis. The Ki-67 labeling index (LI), a measure of cellular proliferation, is emerging as a prognostic marker in GBM. In this study, we investigated the ultrastructure of glioblastoma tissue from 9 patients with the same molecular profile (adult IDH wild-type glioblastoma, wild-type ATRX, and positive for TP53 expression, GFAP expression, and EGFR overexpression) to find possible ultrastructural features to be used as biomarkers and correlated with the only parameter that differs among our samples, the Ki-67 LI. Our main results were the visualization of the anatomical basis of astrocyte-endothelial cells crosstalk; the ultrastructural in situ imaging of clusters of hyperactivated microglia cells (MsEVs); the ultrastructural in situ imaging of microglia cells storing lipid vesicles (MsLVs); the ultrastructural in situ imaging of neoplastic cells mitophagy (NCsM). The statistical analysis of our data indicated that MsEVs and MsLVs correlate with the Ki-67 LI value. We can thus assume they are good candidates to be considered morphological biomarkers correlating to Ki-67 LI. The role of NCsM instead must be further evaluated. Our study findings demonstrate that by combining ultrastructural characteristics with molecular information, we can discover biomarkers that have the potential to enhance diagnostic precision, aid in treatment decision-making, identify targets for therapy, and enable personalized treatment plans tailored to each patient. However, further research with larger sample sizes is needed to validate these findings and fully utilize the potential of ultrastructural analysis in managing glioblastoma.
Collapse
Affiliation(s)
- Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Michela Relucenti
- Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| | - Pierfrancesco Lapolla
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza University of Rome, 00185 Rome, Italy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Mauro Palmieri
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Manila Antonelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | | - Myriam Catalano
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Luca D'Angelo
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine, and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Santoro
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Frati
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza University of Rome, 00185 Rome, Italy
- Department of Neurosurgery, Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, 86077 Pozzilli, Italy
| | - Placido Bruzzaniti
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza University of Rome, 00185 Rome, Italy
- Fabrizio Spaziani Hospital, 03100 Frosinone, Italy
| |
Collapse
|
6
|
Effect of Ciprofloxacin-Loaded Niosomes on Escherichia coli and Staphylococcus aureus Biofilm Formation. Pharmaceutics 2022; 14:pharmaceutics14122662. [PMID: 36559155 PMCID: PMC9788229 DOI: 10.3390/pharmaceutics14122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Infections caused by bacterial biofilms represent a global health problem, causing considerable patient morbidity and mortality in addition to an economic burden. Escherichia coli, Staphylococcus aureus, and other medically relevant bacterial strains colonize clinical surfaces and medical devices via biofilm in which bacterial cells are protected from the action of the immune system, disinfectants, and antibiotics. Several approaches have been investigated to inhibit and disperse bacterial biofilms, and the use of drug delivery could represent a fascinating strategy. Ciprofloxacin (CIP), which belongs to the class of fluoroquinolones, has been extensively used against various bacterial infections, and its loading in nanocarriers, such as niosomes, could support the CIP antibiofilm activity. Niosomes, composed of two surfactants (Tween 85 and Span 80) without the presence of cholesterol, are prepared and characterized considering the following features: hydrodynamic diameter, ζ-potential, morphology, vesicle bilayer characteristics, physical-chemical stability, and biological efficacy. The obtained results suggest that: (i) niosomes by surfactants in the absence of cholesterol are formed, can entrap CIP, and are stable over time and in artificial biological media; (ii) the CIP inclusion in nanocarriers increase its stability, with respect to free drug; (iii) niosomes preparations were able to induce a relevant inhibition of biofilm formation.
Collapse
|
7
|
Artini M, Imperlini E, Buonocore F, Relucenti M, Porcelli F, Donfrancesco O, Tuccio Guarna Assanti V, Fiscarelli EV, Papa R, Selan L. Anti-Virulence Potential of a Chionodracine-Derived Peptide against Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates from Cystic Fibrosis Patients. Int J Mol Sci 2022; 23:13494. [PMID: 36362282 PMCID: PMC9657651 DOI: 10.3390/ijms232113494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing several chronic infections resistant to currently available antibiotics. Its pathogenicity is related to the production of different virulence factors such as biofilm and protease secretion. Pseudomonas communities can persist in biofilms that protect bacterial cells from antibiotics. Hence, there is a need for innovative approaches that are able to counteract these virulence factors, which play a pivotal role, especially in chronic infections. In this context, antimicrobial peptides are emerging drugs showing a broad spectrum of antibacterial activity. Here, we tested the anti-virulence activity of a chionodracine-derived peptide (KHS-Cnd) on five P. aeruginosa clinical isolates from cystic fibrosis patients. We demonstrated that KHS-Cnd impaired biofilm development and caused biofilm disaggregation without affecting bacterial viability in nearly all of the tested strains. Ultrastructural morphological analysis showed that the effect of KHS-Cnd on biofilm could be related to a different compactness of the matrix. KHS-Cnd was also able to reduce adhesion to pulmonary cell lines and to impair the invasion of host cells by P. aeruginosa. A cytotoxic effect of KHS-Cnd was observed only at the highest tested concentration. This study highlights the potential of KHS-Cnd as an anti-biofilm and anti-virulence molecule against P. aeruginosa clinical strains.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Esther Imperlini
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Michela Relucenti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Fernando Porcelli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Orlando Donfrancesco
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Vanessa Tuccio Guarna Assanti
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Relucenti M, Francescangeli F, De Angelis ML, D’Andrea V, Miglietta S, Donfrancesco O, Li X, Chen R, Zeuner A, Familiari G. A Different Exosome Secretion Pattern Characterizes Patient-Derived Colorectal Cancer Multicellular Spheroids and Their Mouse Xenografts. BIOLOGY 2022; 11:biology11101427. [PMID: 36290331 PMCID: PMC9599039 DOI: 10.3390/biology11101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Exosomes have a role in tumorigenesis and metastatic dissemination, their material content and size being associated with poor prognosis of colorectal cancer (CRC). Our work aims to investigate their secretion patterns in CRC stem cells in patient-derived multicellular tumor spheroids (MTSs) and their mouse xenografts, to unveil possible differences in terms of exosome amount, size, and secretion site between in vitro and in vivo models. Our results show that MTSs’ exosome secretion pattern depends on their structural complexity: few-layer spheroids show a lesser exosome secretion, limited to the apical domain of cancer cells; secretion increases in multilayered spheroids and is visible from apical and basolateral cancer cells domains. In xenograft models, exosome secretion occurs from all cancer cell domains, and it is quantitatively greater than that observed in spheroids. The influence of the surrounding environment of non-tumor cells may account for the difference in exosome secretion patterns between spheroids and xenografts. Abstract Up-to-date in vitro and in vivo preclinical models expressing the patient-specific cancer lineage responsible for CRC and its metastatic behavior and responsiveness to therapy are needed. Exosomes’ role in tumorigenesis and the metastatic process was demonstrated, and the material content and size of the exosomes are associated with a poor prognosis of CRC. Exosomes are generally imagined after their recovery from blood serum as isolated entities, and our work aims to investigate them “in situ” in their native environment by scanning and transmission electron microscopy to understand their secretion modalities. We studied CRC stem cells in patient-derived multicellular tumor spheroids (MTSs) and in their mouse xenograft to find possible differences in terms of exosome amount, size, and secretion site between in vitro and in vivo models. We observed that MTSs’ exosome secretion patterns depend on their structural complexity: few-layer MTSs show a lesser exosome secretion, limited to the apical domain of cancer cells, secretion increases in multilayered MTSs, and it develops from apical and basolateral cancer cells domains. In xenograft models, exosome secretion occurs from all cancer cell domains, and it is quantitatively greater than that observed in MTSs. This difference in exosome secretion pattern between MTSs and xenografts may be due to the influence of surrounding non-tumor cells.
Collapse
Affiliation(s)
- Michela Relucenti
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence:
| | - Federica Francescangeli
- Department of Oncology and Molecular Medicine, National Institute of Health (Istituto Superiore di Sanità), 00161 Rome, Italy
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, National Institute of Health (Istituto Superiore di Sanità), 00161 Rome, Italy
| | - Vito D’Andrea
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Selenia Miglietta
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Orlando Donfrancesco
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Xiaobo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, National Institute of Health (Istituto Superiore di Sanità), 00161 Rome, Italy
| | - Giuseppe Familiari
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
9
|
Schürmann M, Goon P, Sudhoff H. Review of potential medical treatments for middle ear cholesteatoma. Cell Commun Signal 2022; 20:148. [PMID: 36123729 PMCID: PMC9487140 DOI: 10.1186/s12964-022-00953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Middle ear cholesteatoma (MEC), is a destructive, and locally invasive lesion in the middle ear driven by inflammation with an annual incidence of 10 per 100,000. Surgical extraction/excision remains the only treatment strategy available and recurrence is high (up to 40%), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review was targeted at connecting the dysregulated inflammatory network of MEC to pathogenesis and identification of pharmaceutical targets. We summarized the numerous basic research endeavors undertaken over the last 30+ years to identify the key targets in the dysregulated inflammatory pathways and judged the level of evidence for a given target if it was generated by in vitro, in vivo or clinical experiments. MEC pathogenesis was found to be connected to cytokines characteristic for Th1, Th17 and M1 cells. In addition, we found that the inflammation created damage associated molecular patterns (DAMPs), which further promoted inflammation. Similar positive feedback loops have already been described for other Th1/Th17 driven inflammatory diseases (arthritis, Crohn’s disease or multiple sclerosis). A wide-ranging search for molecular targeted therapies (MTT) led to the discovery of over a hundred clinically approved drugs already applied in precision medicine. Based on exclusion criteria designed to enable fast translation as well as efficacy, we condensed the numerous MTTs down to 13 top drugs. The review should serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history. Video Abstract
Middle ear cholesteatoma (MEC) is a destructive and locally invasive ulcerated lesion in the middle ear driven by inflammation which occurs in 10 out of 100,000 people annually. Surgical extraction/excision is the only treatment strategy available and recurrence is high (up to 40% after ten years), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review is focused on the connections between inflammation and MEC pathogenesis. These connections can be used as attack points for pharmaceuticals. For this we summarized the results of research undertaken over the last 30 + years. MEC pathogenesis can be described by specific inflammatory dysregulation already known from arthritis, Crohn’s disease or multiple sclerosis. A hallmark of this dysregulation are positive feedback loops of the inflammation further amplifying itself in a vicious circle-like manner. We have identified over one hundred drugs which are already used in clinic to treat other inflammatory diseases, and could potentially be repurposed to treat MEC. To improve and expedite clinical success rates, we applied certain criteria based on our literature searches and condensed these drugs down to the 13 top drugs. We hope the review will serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history.
Collapse
Affiliation(s)
- Matthias Schürmann
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany
| | - Peter Goon
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.,Department of Medicine, National University of Singapore, and National University Health System, Singapore, Singapore
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.
| |
Collapse
|
10
|
Vrenna G, Artini M, Ragno R, Relucenti M, Fiscarelli EV, Tuccio Guarna Assanti V, Papa R, Selan L. Anti-Virulence Properties of Coridothymus capitatus Essential Oil against Pseudomonas aeruginosa Clinical Isolates from Cystic Fibrosis Patients. Microorganisms 2021; 9:2257. [PMID: 34835383 PMCID: PMC8623622 DOI: 10.3390/microorganisms9112257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen responsible for nosocomial infections, and is often involved in airway infections of cystic fibrosis (CF) patients. P. aeruginosa virulence is related to its ability to form biofilm, trigger different types of motilities, and produce toxins (for example, bacterial pigments). In this scenario, essential oils (EOs) have gained notoriety for their role in phenotype modulation, including virulence modulation. Among different EOs previously analyzed, herein we investigated the activity of Coridothymus capitatus EO (CCEO) against specific virulence factors produced by P. aeruginosa isolated from CF patients. CCEO showed inhibition of new biofilm formation and reduction in mature biofilm in about half of the tested strains. On selected strains, SEM analysis provided interesting information regarding CCEO action in a pre-adhesion assay. CCEO treatment showed a dramatic modification of the extracellular matrix (ECM) structure. Our results clearly showed a drastic reduction in pyocyanin production (between 84% and 100%) for all tested strains in the presence of CCEO. Finally, CCEO was also able to strongly affect P. aeruginosa swarming and swimming motility for almost all tested strains. In consideration of the novel results obtained on clinical strains isolated from CF patients, CCEO may be a potential candidate to limit P. aeruginosa virulence.
Collapse
Affiliation(s)
- Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (G.V.); (M.A.)
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (G.V.); (M.A.)
| | - Rino Ragno
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Michela Relucenti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, via Alfonso Borelli 50, 00161 Rome, Italy;
| | - Ersilia Vita Fiscarelli
- Unit Cystic Fibrosis Diagnostic Microbiology and Immunology Diagnostics, Diagnostic Medicine and Laboratory Department, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (E.V.F.); (V.T.G.A.)
| | - Vanessa Tuccio Guarna Assanti
- Unit Cystic Fibrosis Diagnostic Microbiology and Immunology Diagnostics, Diagnostic Medicine and Laboratory Department, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (E.V.F.); (V.T.G.A.)
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (G.V.); (M.A.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (G.V.); (M.A.)
| |
Collapse
|
11
|
The Ultrastructural Analysis of Human Colorectal Cancer Stem Cell-Derived Spheroids and Their Mouse Xenograft Shows That the Same Cells Types Have Different Ratios. BIOLOGY 2021; 10:biology10090929. [PMID: 34571806 PMCID: PMC8465655 DOI: 10.3390/biology10090929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
Spheroids from primary colorectal cancer cells and their mice xenografts have emerged as useful preclinical models for cancer research as they replicate tumor features more faithfully as compared to cell lines. While 3D models provide a reliable system for drug discovery and testing, their structural complexity represents a challenge and their structure-function relationships are only partly understood. Here, we present a comparative ultrastructural and flow citometric analysis of patient colorectal cancer-derived spheroids and their mice xenografts. Ultrastructural observations highlighted that multicellular spheroids and their xenografts contain the same cancer cell types but with different ratios, specifically multicellular spheroids were enriched in cells with a stem-like phenotype, while xenografts had an increased amount of lipid droplets-containing cells. The flow cytometric analysis for stem cell marker and activity showed enrichment of stem-like cells presence and activity in spheroids while xenografts had the inverse response. Our results evidence the effects on cancer cells of different in vitro and in vivo microenvironments. Those differences have to be paid into account in designing innovative experimental models for personalized drug testing.
Collapse
|
12
|
Papa R, Vrenna G, D’Angelo C, Casillo A, Relucenti M, Donfrancesco O, Corsaro MM, Fiscarelli EV, Tuccio Guarna Assanti V, Tutino ML, Parrilli E, Artini M, Selan L. Anti-Virulence Activity of the Cell-Free Supernatant of the Antarctic Bacterium Psychrobacter sp. TAE2020 against Pseudomonas aeruginosa Clinical Isolates from Cystic Fibrosis Patients. Antibiotics (Basel) 2021; 10:944. [PMID: 34438994 PMCID: PMC8388993 DOI: 10.3390/antibiotics10080944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen often involved in airway infections of cystic fibrosis (CF) patients. Its pathogenicity is related to several virulence factors, such as biofilm formation, motility and production of toxins and proteases. The expression of these virulence factors is controlled by quorum sensing (QS). Thus, QS inhibition is considered a novel strategy for the development of antipathogenic compounds acting on specific bacterial virulence programs without affecting bacterial vitality. In this context, cold-adapted marine bacteria living in polar regions represent an untapped reservoir of biodiversity endowed with an interesting chemical repertoire. In this paper, we investigated the biological activity of a supernatant derived from a novel Antarctic bacterium (SN_TAE2020) against specific virulence factors produced by P. aeruginosa strains isolated from FC patients. Our results clearly show a reduction in pyocyanin and protease production in the presence of SN_TAE2020. Finally, SN_TAE2020 was also able to strongly affect swarming and swimming motility for almost all tested strains. Furthermore, the effect of SN_TAE2020 was investigated on biofilm growth and texture, captured by SEM analysis. In consideration of the novel results obtained on clinical strains, polar bacteria might represent potential candidates for the discovery of new compounds limiting P. aeruginosa virulence in CF patients.
Collapse
Affiliation(s)
- Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (G.V.); (L.S.)
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (G.V.); (L.S.)
| | - Caterina D’Angelo
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.M.C.); (M.L.T.); (E.P.)
| | - Angela Casillo
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.M.C.); (M.L.T.); (E.P.)
| | - Michela Relucenti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy; (M.R.); (O.D.)
| | - Orlando Donfrancesco
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy; (M.R.); (O.D.)
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.M.C.); (M.L.T.); (E.P.)
| | - Ersilia Vita Fiscarelli
- Unit Cystic Fibrosis Diagnostic Microbiology and Immunology Diagnostics, Diagnostic Medicine and Laboratory Department, Bambino Gesù Children’s IRCCS Hospital, 00165 Rome, Italy; (E.V.F.); (V.T.G.A.)
| | - Vanessa Tuccio Guarna Assanti
- Unit Cystic Fibrosis Diagnostic Microbiology and Immunology Diagnostics, Diagnostic Medicine and Laboratory Department, Bambino Gesù Children’s IRCCS Hospital, 00165 Rome, Italy; (E.V.F.); (V.T.G.A.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.M.C.); (M.L.T.); (E.P.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.M.C.); (M.L.T.); (E.P.)
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (G.V.); (L.S.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (G.V.); (L.S.)
| |
Collapse
|
13
|
Biocompatibility and Antibiofilm Properties of Calcium Silicate-Based Cements: An In Vitro Evaluation and Report of Two Clinical Cases. BIOLOGY 2021; 10:biology10060470. [PMID: 34073519 PMCID: PMC8226987 DOI: 10.3390/biology10060470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Calcium silicate-based cements are successfully applied in the different fields of endodontics and vital pulp therapy. To better assess the properties of these bioactive materials, the present in vitro and in vivo study aimed to compare the biocompatibility and antibiofilm properties of ProRoot MTA and Biodentine. Human osteogenic sarcoma (Saos-2) cells were cultured in the presence of both materials and evaluated. Moreover, the bioactive cements were in vivo applied to perform vital pulp therapy on immature permanent teeth affected by reversible pulpitis. Saos-2 cells’ viability was slightly greater in the presence of ProRootMTA than Biodentine and cells would grow in a better way on ProRootMTA disks than on Biodentine ones. Moreover, ProRootMTA showed a powerful antibiofilm effect towards Streptococcus mutans. The in vitro results were clinically supported by a 100% success rate after 2 years of follow-up. Abstract Calcium silicate-based cements have reached excellent levels of performance in endodontics, providing predictable and successful results. To better assess the properties of these bioactive materials, the present study aimed to compare the biocompatibility and antibiofilm properties of ProRoot MTA and Biodentine. Human osteogenic sarcoma (Saos-2) cells were cultured on ProRoot MTA and Biodentine samples or in the presence of both cement extracts. Cell viability assay, measurement of reactive oxygen species (ROS), immunofluorescence analysis, as well as morphological evaluations were conducted. Moreover, Streptococcus mutans was used to assess the biofilm forming ability on ProRoot MTA and Biodentine disks. Finally, both cements were applied in vivo to treat immature permanent teeth affected by reversible pulpitis. Results: Cell viability assay demonstrated that Saos-2 cells had a dose- and time-dependent cytotoxicity to both analyzed cements, although cells exposed to ProRoot MTA showed a better cell vitality than those exposed to Biodentine (p < 0.001). Both cements demonstrated ROS production while this was greater in the case of Biodentine than ProRoot MTA (p < 0.001). Immunofluorescence images of the cytoskeleton and focal adhesions showed no differences in Saos-2 cells grown in the presence of ProRoot MTA eluate; whereas in the Biodentine groups, cells showed a morphology and focal adhesions more similar to that of the control sample, as the eluate concentration decreased. Morphological analysis revealed that Saos-2 cells were more flattened and exhibited better spreading when attached to ProRoot MTA disks than to Biodentine ones. The antibiofilm properties showed a time-dependent powerful inhibition of S. mutans superficial colonization and an antibiofilm effect of both cements. Clinically, complete root formation of the treated elements was achieved using the two studied cements, showing stable results over time. ProRoot MTA and Biodentine was demonstrated to be biocompatible and to possess antibiofilm properties. Their clinical application in vital pulp therapy provided successful outcomes after 2 years of follow-up.
Collapse
|
14
|
Valentini F, Pallecchi P, Relucenti M, Donfrancesco O, Sottili G, Pettiti I, Mussi V. Characterization of Calcium Carbonate Nanoparticles with Architectural Application for the Consolidation of Pietraforte. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1918138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Federica Valentini
- Department of Sciences and Chemical Technologies, Tor Vergata University, Rome, Italy
| | - Pasquino Pallecchi
- Soprintendenza Archeologia, Belle Arti e Paesaggio per la città metropolitana di Firenze e le province di Pistoia e Prato, Florence, Italy
| | - Michela Relucenti
- Department of Anatomical Legal Histological Sciences and of the Locomotor Apparatus, Sapienza University, Rome, Italy
| | - Orlando Donfrancesco
- Department of Anatomical Legal Histological Sciences and of the Locomotor Apparatus, Sapienza University, Rome, Italy
| | | | - Ida Pettiti
- Department of Chemistry, Sapienza University, Rome, Italy
| | - Valentina Mussi
- IMM-CNR Institute of Microelectronics and Microsystems, National Research Council, Rome, Italy
| |
Collapse
|
15
|
Relucenti M, Familiari G, Donfrancesco O, Taurino M, Li X, Chen R, Artini M, Papa R, Selan L. Microscopy Methods for Biofilm Imaging: Focus on SEM and VP-SEM Pros and Cons. BIOLOGY 2021; 10:biology10010051. [PMID: 33445707 PMCID: PMC7828176 DOI: 10.3390/biology10010051] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Simple Summary Bacterial biofilms cause infections that are often resistant to antibiotic treatments. Research about the formation and elimination of biofilms cannot be undertaken without detailed imaging techniques. In this review, traditional and cutting-edge microscopy methods to study biofilm structure, ultrastructure, and 3-D architecture, with particular emphasis on conventional scanning electron microscopy and variable pressure scanning electron microscopy, are addressed, with the respective advantages and disadvantages. When ultrastructural characterization of biofilm matrix and its embedded bacterial cells is needed, as in studies on the effects of drug treatments on biofilm, scanning electron microscopy with customized protocols such as the osmium tetroxide (OsO4), ruthenium red (RR), tannic acid (TA), and ionic liquid (IL) must be preferred over other methods for the following: unparalleled image quality, magnification and resolution, minimal sample loss, and actual sample structure preservation. The first step to make a morphological assessment of the effect of the various pharmacological treatments on clinical biofilms is the production of images that faithfully reflect the structure of the sample. The extraction of quantitative parameters from images, possible using specific software, will allow for the scanning electron microscopy morphological evaluation to no longer be considered as an accessory technique, but a quantitative method to all effects. Abstract Several imaging methodologies have been used in biofilm studies, contributing to deepening the knowledge on their structure. This review illustrates the most widely used microscopy techniques in biofilm investigations, focusing on traditional and innovative scanning electron microscopy techniques such as scanning electron microscopy (SEM), variable pressure SEM (VP-SEM), environmental SEM (ESEM), and the more recent ambiental SEM (ASEM), ending with the cutting edge Cryo-SEM and focused ion beam SEM (FIB SEM), highlighting the pros and cons of several methods with particular emphasis on conventional SEM and VP-SEM. As each technique has its own advantages and disadvantages, the choice of the most appropriate method must be done carefully, based on the specific aim of the study. The evaluation of the drug effects on biofilm requires imaging methods that show the most detailed ultrastructural features of the biofilm. In this kind of research, the use of scanning electron microscopy with customized protocols such as osmium tetroxide (OsO4), ruthenium red (RR), tannic acid (TA) staining, and ionic liquid (IL) treatment is unrivalled for its image quality, magnification, resolution, minimal sample loss, and actual sample structure preservation. The combined use of innovative SEM protocols and 3-D image analysis software will allow for quantitative data from SEM images to be extracted; in this way, data from images of samples that have undergone different antibiofilm treatments can be compared.
Collapse
Affiliation(s)
- Michela Relucenti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy; (G.F.); (O.D.)
- Correspondence: ; Tel.: +39-0649918061
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy; (G.F.); (O.D.)
| | - Orlando Donfrancesco
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy; (G.F.); (O.D.)
| | - Maurizio Taurino
- Department of Clinical and Molecular Medicine, Unit of Vascular Surgery, Sant’Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1039, 00189 Rome, Italy;
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, China; (X.L.); (R.C.)
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, China; (X.L.); (R.C.)
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (L.S.)
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (L.S.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (L.S.)
| |
Collapse
|
16
|
Influence of Different Heat Treatments on Torsional and Cyclic Fatigue Resistance of Nickel–Titanium Rotary Files: A Comparative Study. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165604] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protaper Universal (PTU), Protaper Gold (PTG) (Maillefer, Ballaigues, CH), EdgeTaper (ET), and EdgeTaper Platinum (ETP) (Albuquerque, NM, USA) were tested for both torsional and flexural resistance. The aim of the present study was to evaluate the influence of proprietary heat treatment on the metallurgical properties of the aforementioned instruments. Four groups of 30 different instruments (size 20.07) were tested, then divided into two subgroups of 15 instruments—one for the cyclic fatigue test in a curved canal (90°—2 mm radius) at 300 rpm and 2.5 Ncm. The time to fracture (TtF) and fragment length (FL) were recorded. The other subgroup was subjected to the torsional test (300 rpm, 5.5 Ncm). The torque to fracture and TtF were recorded. All the instruments underwent a SEM analysis. The heat-treated instruments showed a significantly higher fatigue resistance than the non-heat-treated instruments (p < 0.05). No significant differences were found in the torsional resistance between the ET and PTU, and the ETP and PTG. However, when comparing all the groups, the heat-treated instruments showed less torsional resistance. The improvement from heat treatment was mainly found in the cyclic fatigue resistance.
Collapse
|
17
|
Characterization of Scardovia wiggsiae Biofilm by Original Scanning Electron Microscopy Protocol. Microorganisms 2020; 8:microorganisms8060807. [PMID: 32471210 PMCID: PMC7355790 DOI: 10.3390/microorganisms8060807] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/11/2023] Open
Abstract
Early childhood caries (ECC) is a severe manifestation of carious pathology with rapid and disruptive progression. The ECC microbiota includes a wide variety of bacterial species, among which is an anaerobic newly named species, Scardovia wiggsiae, a previously unidentified Bifidobacterium. Our aim was to provide the first ultrastructural characterization of S. wiggsiae and its biofilm by scanning electron microscopy (SEM) using a protocol that faithfully preserved the biofilm architecture and allowed an investigation at very high magnifications (order of nanometers) and with the appropriate resolution. To accomplish this task, we analyzed Streptococcus mutans’ biofilm by conventional SEM and VP-SEM protocols, in addition, we developed an original procedure, named OsO4-RR-TA-IL, which avoids dehydration, drying and sputter coating. This innovative protocol allowed high-resolution and high-magnification imaging (from 10000× to 35000×) in high-vacuum and high-voltage conditions. After comparing three methods, we chose OsO4-RR-TA-IL to investigate S. wiggsiae. It appeared as a fusiform elongated bacterium, without surface specialization, arranged in clusters and submerged in a rich biofilm matrix, which showed a well-developed micro-canalicular system. Our results provide the basis for the development of innovative strategies to quantify the effects of different treatments, in order to establish the best option to counteract ECC in pediatric patients.
Collapse
|