1
|
Kounatidis D, Tentolouris N, Vallianou NG, Mourouzis I, Karampela I, Stratigou T, Rebelos E, Kouveletsou M, Stamatopoulos V, Tsaroucha E, Dalamaga M. The Pleiotropic Effects of Lipid-Modifying Interventions: Exploring Traditional and Emerging Hypolipidemic Therapies. Metabolites 2024; 14:388. [PMID: 39057711 PMCID: PMC11278853 DOI: 10.3390/metabo14070388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerotic cardiovascular disease poses a significant global health issue, with dyslipidemia standing out as a major risk factor. In recent decades, lipid-lowering therapies have evolved significantly, with statins emerging as the cornerstone treatment. These interventions play a crucial role in both primary and secondary prevention by effectively reducing cardiovascular risk through lipid profile enhancements. Beyond their primary lipid-lowering effects, extensive research indicates that these therapies exhibit pleiotropic actions, offering additional health benefits. These include anti-inflammatory properties, improvements in vascular health and glucose metabolism, and potential implications in cancer management. While statins and ezetimibe have been extensively studied, newer lipid-lowering agents also demonstrate similar pleiotropic effects, even in the absence of direct cardiovascular benefits. This narrative review explores the diverse pleiotropic properties of lipid-modifying therapies, emphasizing their non-lipid effects that contribute to reducing cardiovascular burden and exploring emerging benefits for non-cardiovascular conditions. Mechanistic insights into these actions are discussed alongside their potential therapeutic implications.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | | | - Eleni Tsaroucha
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
2
|
Marlęga-Linert J, Gąsecka A, van der Pol E, Kuchta A, Filipiak KJ, Fijałkowski M, Gruchała M, Nieuwland R, Mickiewicz A. Lipoprotein apheresis affects the concentration of extracellular vesicles in patients with elevated lipoprotein (a). Sci Rep 2024; 14:2762. [PMID: 38307884 PMCID: PMC10837138 DOI: 10.1038/s41598-024-51782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/09/2024] [Indexed: 02/04/2024] Open
Abstract
Lipoprotein apheresis (LA) is a therapeutic option for hyperlipoproteinemia(a) (hyper-Lp(a)) and atherosclerotic cardiovascular disease (ASCVD). LA improves blood rheology, reduces oxidative stress parameters and improves endothelial function. The underlying molecular mechanisms of LA beneficial effects are unknown, but it has been suggested that LA exhibits multiple activities beyond simply removing lipoproteins. We hypothesized that LA removes not only lipoproteins, but also extracellular vesicles (EVs). To test this hypothesis, we performed a prospective study in 22 patients undergoing LA for hyper-Lp(a) and ASCVD. Different EVs subtypes were measured before and directly after LA, and after 7 days. We used calibrated flow cytometry to detect total particle concentration (diameter > ~ 100 nm), total lipoproteins concentration (diameter > 200 nm, RI > 1.51), total EV concentration (diameter > 200 nm, RI < 1.41), concentrations of EVs derived from erythrocytes (CD235a+; diameter > 200 nm, RI < 1.41), leukocytes (CD45+; diameter > 200 nm, RI < 1.41) and platelets (CD61+, PEVs; diameter > 200 nm, RI < 1.41). LA reduced the concentrations of all investigated EVs subtypes and lipoproteins. Lp(a) concentration was lowered by 64.5% [(58% - 71%); p < 0.001]. Plasma concentrations of EVs > 200 nm in diameter derived from platelets (CD61 +), leukocytes (CD45+) and erythrocytes (CD235a+) decreased after single LA procedure by 42.7% [(12.8-54.7); p = 0.005], 42.6% [(29.7-54.1); p = 0.030] and 26.7% [(1.0-62.7); p = 0.018], respectively, compared to baseline. All EV subtypes returned to the baseline concentrations in blood plasma after 7 days. To conclude, LA removes not only Lp(a), but also cell-derived EVs, which may contribute to LA beneficial effects.
Collapse
Affiliation(s)
- Joanna Marlęga-Linert
- First Chair and Department of Cardiology, Medical University of Gdansk, Gdańsk, Poland
| | - Aleksandra Gąsecka
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
- Amsterdam Vesicle Center and Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Edwin van der Pol
- Amsterdam Vesicle Center and Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centres, Amsterdam, The Netherlands
- Biomedical Engineering and Physics, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Krzysztof J Filipiak
- Institute of Clinical Sciences, Maria Skłodowska-Curie Medical Academy in Warsaw, Warsaw, Poland
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Marcin Fijałkowski
- First Chair and Department of Cardiology, Medical University of Gdansk, Gdańsk, Poland
| | - Marcin Gruchała
- First Chair and Department of Cardiology, Medical University of Gdansk, Gdańsk, Poland
| | - Rienk Nieuwland
- Amsterdam Vesicle Center and Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Agnieszka Mickiewicz
- First Chair and Department of Cardiology, Medical University of Gdansk, Gdańsk, Poland.
| |
Collapse
|
3
|
Jung Y, Nelson HA, Lin DMH. Use of therapeutic plasma exchange to remove lipoprotein X in a patient with vanishing bile duct syndrome presenting with cholestasis, pseudohyponatremia, and hypercholesterolemia: A case report and review of literature. J Clin Apher 2024; 39:e22105. [PMID: 38334173 DOI: 10.1002/jca.22105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Lipoprotein X (Lp-X) is an abnormal lipoprotein found in multiple disease conditions, including liver dysfunction and cholestasis. High Lp-X concentrations can interfere with some laboratory testing that may result in spurious results. The detection of Lp-X can be challenging, and there is currently a lack of consensus regarding the management of Lp-X other than treating the underlying disease. CASE PRESENTATION A 42-year-old female with Hodgkin's lymphoma treated with dexamethasone, high dose cytarabine and cisplatin and vanishing bile duct syndrome confirmed by liver biopsy presented with cholestasis, pseudohyponatremia (sodium, 113 mmol/L; reference range 136-146 mmL/L; serum osmolality, 303 mOsm/kg), and hypercholesterolemia (> 2800 mg/dL, reference range < 200 mg/dL). Lp-X was confirmed by lipoprotein electrophoresis (EP). Although she did not manifest any specific signs or symptoms, therapeutic plasma exchange (TPE) was initiated based on laboratory findings of extreme hypercholesterolemia, spuriously abnormal serum sodium, and HDL values, and the potential for short- and long-term sequelae such as hyperviscosity syndrome, xanthoma, and neuropathy. During the hospitalization, she was treated with four 1.0 plasma volume TPE over 6 days using 5% albumin for replacement fluid. After the first TPE, total cholesterol (TC) decreased to 383 mg/dL and sodium was measured at 131 mmol/L. The patient was transitioned into outpatient maintenance TPE to eliminate the potential of Lp-X reappearance while the underlying disease was treated. Serial follow-up laboratory testing with lipoprotein EP showed the disappearance of Lp-X after nine TPEs over a 10-week period. LITERATURE REVIEW There are seven and four case reports of Lp-X treated with TPE and lipoprotein apheresis (LA), respectively. While all previous case reports showed a reduction in TC levels, none had monitored the disappearance of Lp-X after completing a course of therapeutic apheresis. CONCLUSION Clinicians should have a heightened suspicion for the presence of abnormal Lp-X in patients with cholestasis, hypercholesterolemia, and pseudohyponatremia. Once Lp-X is confirmed by lipoprotein EP, TPE should be initiated to reduce TC level and remove abnormal Lp-X. Most LA techniques are not expected to be beneficial since Lp-X lacks apolipoprotein B. Therefore, we suggest that inpatient course of TPE be performed every other day until serum sodium, TC and HDL levels become normalized. Outpatient maintenance TPE may also be considered to keep Lp-X levels low while the underlying disease is treated. Serum sodium, TC, and HDL levels should be monitored while on maintenance TPE.
Collapse
Affiliation(s)
- Yujung Jung
- Bloodworks Northwest, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Heather A Nelson
- Department of Pathology, University of Utah Health, Salt Lake City, Utah, USA
- ARUP Institute for Clinical and Experimental Pathology®, Salt Lake City, Utah, USA
| | - David Ming-Hung Lin
- Bloodworks Northwest, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Maiuolo J, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Macrì R, Scarano F, Coppoletta A, Cardamone A, Bosco F, Mollace R, Muscoli C, Palma E, Mollace V. The Generation of Nitric Oxide from Aldehyde Dehydrogenase-2: The Role of Dietary Nitrates and Their Implication in Cardiovascular Disease Management. Int J Mol Sci 2022; 23:ijms232415454. [PMID: 36555095 PMCID: PMC9779284 DOI: 10.3390/ijms232415454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Reduced bioavailability of the nitric oxide (NO) signaling molecule has been associated with the onset of cardiovascular disease. One of the better-known and effective therapies for cardiovascular disorders is the use of organic nitrates, such as glyceryl trinitrate (GTN), which increases the concentration of NO. Unfortunately, chronic use of this therapy can induce a phenomenon known as "nitrate tolerance", which is defined as the loss of hemodynamic effects and a reduction in therapeutic effects. As such, a higher dosage of GTN is required in order to achieve the same vasodilatory and antiplatelet effects. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a cardioprotective enzyme that catalyzes the bio-activation of GTN to NO. Nitrate tolerance is accompanied by an increase in oxidative stress, endothelial dysfunction, and sympathetic activation, as well as a loss of the catalytic activity of ALDH2 itself. On the basis of current knowledge, nitrate intake in the diet would guarantee a concentration of NO such as to avoid (or at least reduce) treatment with GTN and the consequent onset of nitrate tolerance in the course of cardiovascular diseases, so as not to make necessary the increase in GTN concentrations and the possible inhibition/alteration of ALDH2, which aggravates the problem of a positive feedback mechanism. Therefore, the purpose of this review is to summarize data relating to the introduction into the diet of some natural products that could assist pharmacological therapy in order to provide the NO necessary to reduce the intake of GTN and the phenomenon of nitrate tolerance and to ensure the correct catalytic activity of ALDH2.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Annarita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
5
|
Schettler VJJ, Schettler E. Beyond cholesterol-pleiotropic effects of lipoprotein apheresis. Ther Apher Dial 2022; 26 Suppl 1:35-40. [PMID: 36468323 DOI: 10.1111/1744-9987.13857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/21/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is a leading cause of mortality worldwide, which is caused mainly by atherosclerosis, a chronic inflammatory disease of blood vessels. Therefore, atherosclerosis represents a complex disorder, which induces damage or imbalance on different levels: for example, genes, cytokines, lipoproteins, cells, vessels, and organs. Lipoprotein apheresis (LA) is a well-established extracorporeal treatment of severe hyperlipoproteinemia. In addition, LA may have simultaneously crucial effects on many other atherogenic factors during the treatments, for example, as vascular inflammation, rheology, mobilization of adult stem cells and gene expressions in blood or endothelial cells, which will be discussed in this short review. In addition, stable microRNAs besides tissues also appear in extracellular compartments, for example, vessels, involved in atherosclerotic processes, were found to be reduced by LA treatments. In summary, LA represents a complex therapeutic procedure, that provides an ideal tool for the treatment of complex disorders such as atherosclerosis.
Collapse
Affiliation(s)
| | - Elke Schettler
- BRAVE - Benefit for Research on Arterial Hypertension, Dyslipidemia and Vascular Risk and Education e.V., Göttingen, Germany
| |
Collapse
|
6
|
Wang Z, Wang W, Gong R, Yao H, Fan M, Zeng J, Xu S, Lin R. Eradication of Helicobacter pylori alleviates lipid metabolism deterioration: a large-cohort propensity score-matched analysis. Lipids Health Dis 2022; 21:34. [PMID: 35369887 PMCID: PMC8978376 DOI: 10.1186/s12944-022-01639-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Background The impact of Helicobacter pylori (H. pylori) eradication on metabolism of lipid and the potential predictor of such changes remain unclear. Methods This study retrospectively included subjects who underwent at least two 13C urea breath tests between 2015 and 2019 at Wuhan Union Hospital. Based on two H. pylori13C examination results, subjects were divided into propensity score-matched persistently negative (HPN), persistently positive (HPP), and eradication (HPE) groups. The changes in lipid measurements from before to after H. pylori eradication, including high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol, and triglycerides, were compared within and between groups. Forty-two candidate factors were tested for their ability to predict lipid metabolism changes after H. pylori eradication. Results After propensity score matching, 3412 matched cases were analyzed. Within-group comparisons showed significantly decreased HDL (P < 0.001) and increased LDL (P < 0.001) at the second examination in both the HPE and HPP groups. Between-group comparisons showed that the HDL decrease of the HPE group was significantly larger and smaller when compared with the HPN (P = 0.001) and HPP (P = 0.004) group, respectively. Uni- and multivariate analyses showed that low diastolic blood pressure (DBP) (P = 0.002) and high mean platelet volume (MPV) (P = 0.001) before eradication were associated with increased HDL after eradication. Low total protein (TP) (P < 0.001) was associated with decreased LDL after eradication. Conclusions Compared with sustained H. pylori infectious states, H. pylori eradication alleviated the lipid metabolism deterioration but did not restore it to the uninfected level within 1.5 years after eradication. Patients with low DBP, high MPV, and low TP may reap a greater lipid-metabolism benefit from H. pylori eradication.
Collapse
|
7
|
Protective Role of Platelets in Myocardial Infarction and Ischemia/Reperfusion Injury. Cardiol Res Pract 2021; 2021:5545416. [PMID: 34123416 PMCID: PMC8169247 DOI: 10.1155/2021/5545416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Thrombotic occlusion of the coronary artery is a key component in the pathogenesis of myocardial ischemia and myocardial infarction (MI). The standard therapy for ischemia is revascularization and restoration of blood flow to previously ischemic myocardium. Paradoxically, reperfusion may result in further tissue damage called ischemia/reperfusion injury (IRI). Platelets play a major role in the pathogenesis of MI and IRI, since they contribute to the thrombus and microthrombi formation, inflammation, release of immunomodulatory mediators, and vasoconstrictive molecules. Antiplatelet therapies have proven efficacy in the prevention of thrombosis and play a protective role in cardiac IRI. Beyond the deterioration effect of platelets in MI and IRI, in the 90s the first reports on a protective effect of molecules released from platelets during MI appeared. However, the role of platelets in cardioprotection is still poorly understood. This review describes the involvement of platelets in MI, IRI, and inflammation. It mainly focuses on the protective role of platelets in MI and IRI. Platelets are involved in cardioprotection based on platelet-releasing molecules and antiplatelet therapy, apart from antiaggregatory effects. Additionally, the use of platelet-derived microparticles as possible markers of MI, with and without comorbidities, and their role in cardioprotection are discussed. This review is aimed at illustrating the present knowledge on the role of platelets in MI and IRI, especially in a context of cardioprotection.
Collapse
|