1
|
da Cunha Agostini L, Almeida TC, da Silva GN. ANRIL, H19 and TUG1: a review about critical long non-coding RNAs in cardiovascular diseases. Mol Biol Rep 2023; 51:31. [PMID: 38155319 DOI: 10.1007/s11033-023-09007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 12/30/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. They are non-transmissible diseases that affect the cardiovascular system and have different etiologies such as smoking, lipid disorders, diabetes, stress, sedentary lifestyle and genetic factors. To date, lncRNAs have been associated with increased susceptibility to the development of cardiovascular diseases such as hypertension, acute myocardial infarction, stroke, angina and heart failure. In this way, lncRNAs are becoming a very promising point for the prevention and diagnosis of cardiovascular diseases. Therefore, this review highlights the most important and recent discoveries about the mechanisms of action of the lncRNAs ANRIL, H19 and TUG1 and their clinical relevance in these pathologies. This may contribute to early detection of cardiovascular diseases in order to prevent the pathological phenotype from becoming established.
Collapse
Affiliation(s)
- Lívia da Cunha Agostini
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/nº, Ouro Prêto, Minas Gerais, CEP 35402-163, Brazil
| | - Tamires Cunha Almeida
- Escola Superior Instituto Butantan (ESIB), Laboratório de Dor e Sinalização, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/nº, Ouro Prêto, Minas Gerais, CEP 35402-163, Brazil.
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Prêto, Brazil.
| |
Collapse
|
2
|
Chen L, Zhao M, Zhou M, Luo J, Li S, Liu X, Cheng Z, Zhuo Y, Zeng W, Zhang Z, Zhou L. LncRNA RP1-276N6.2 Expression and RP1-276N6.2 Gene Polymorphisms Contribute to the Risk of Coronary Artery Disease in Chinese Han Population. DNA Cell Biol 2023; 42:746-752. [PMID: 37843894 DOI: 10.1089/dna.2023.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in coronary artery disease (CAD) processes. However, the relationship between the gene polymorphisms of lncRNA RP1-276N6.2 as a novel molecule and susceptibility to CAD remains unclear. In our case-control study, 949 CAD patients and 892 healthy controls were genotyped using the TaqMan genotyping assay. The quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay were performed to examine the expression levels of RP1-276N6.2 and SLC22A3(OCT3). We observed that CAD patients had significantly lower RP1-276N6.2 levels than those healthy participants (p < 0.05). Compared to the wild-type genotype, the rs611950 T allele and the rs10499313 AG genotype and G allele significantly increased the premature CAD risk (p = 0.02, p = 0.002, and p = 0.01, respectively), while the rs505000 G allele reduced this risk (p = 0.01); moreover, the rs505000 CG genotype significantly enhanced the delayed CAD risk (p = 0.03), and the rs505000 G allele reduced the expression levels of RP1-276N6.2 and SLC22A3 (p < 0.05 and p < 0.05, respectively). In addition, RP1-276N6.2 positively regulated the mRNA and secreted protein levels of SLC22A3 (p < 0.05). In conclusion, the RP1-276N6.2 gene polymorphisms were closely associated with CAD risk. LncRNA RP1-276N6.2 may be a potential genetic target for CAD early diagnosis and treatment.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Mingming Zhao
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Mingsha Zhou
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jia Luo
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Shan Li
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xing Liu
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zheng Cheng
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yang Zhuo
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Weiqi Zeng
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhiyu Zhang
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Markers D. Retracted: Relationship between Long Noncoding RNA H19 Polymorphisms and Risk of Coronary Artery Disease in a Chinese Population: A Case-Control Study. DISEASE MARKERS 2023; 2023:9761794. [PMID: 37476633 PMCID: PMC10356359 DOI: 10.1155/2023/9761794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
[This retracts the article DOI: 10.1155/2020/9839612.].
Collapse
|
4
|
Ilieva M, Uchida S. Potential Involvement of LncRNAs in Cardiometabolic Diseases. Genes (Basel) 2023; 14:213. [PMID: 36672953 PMCID: PMC9858747 DOI: 10.3390/genes14010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Characterized by cardiovascular disease and diabetes, cardiometabolic diseases are a major cause of mortality around the world. As such, there is an urgent need to understand the pathogenesis of cardiometabolic diseases. Increasing evidence suggests that most of the mammalian genome are transcribed as RNA, but only a few percent of them encode for proteins. All of the RNAs that do not encode for proteins are collectively called non-protein-coding RNAs (ncRNAs). Among these ncRNAs, long ncRNAs (lncRNAs) are considered as missing keys to understand the pathogeneses of various diseases, including cardiometabolic diseases. Given the increased interest in lncRNAs, in this study, we will summarize the latest trend in the lncRNA research from the perspective of cardiometabolism and disease by focusing on the major risk factors of cardiometabolic diseases: obesity, cholesterol, diabetes, and hypertension. Because genetic inheritance is unavoidable in cardiometabolic diseases, we paid special attention to the genetic factors of lncRNAs that may influence cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark or
| |
Collapse
|
5
|
Yang Y, Wang Z, Xu Y, Liu X, Sun Y, Li W. Knockdown of lncRNA H19 alleviates ox-LDL-induced HCAECs inflammation and injury by mediating miR-20a-5p/HDAC4 axis. Inflamm Res 2022; 71:1109-1121. [PMID: 35854140 DOI: 10.1007/s00011-022-01604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Coronary artery disease (CAD) seriously disturbs the life of people. LncRNA H19 is reported to promote the progression of CAD; Nevertheless, the detailed mechanism by which H19 modulates CAD development is unclear. METHODS Clinical samples of CAD patients were collected, meanwhile we established in vitro and in vivo models of CAD by treating HCAECs with ox-LDL and feeding ApoE-/- mice with high fat diets (HFD). MTT assay was adopted to assess the cell viability. Transwell detection was applied to test the migration, and apoptosis was tested by flow cytometry. The levels of inflammatory cytokines were examined by ELISA. The relation among H19, miR-20a-5p and HDAC4 was explored by dual luciferase reporter and RIP assay. RESULTS H19 and HDAC4 levels were elevated, while miR-20a-5p was reduced in plasma of CAD patients and ox-LDL-treated HCAECs. ox-LDL increased H19 level and induced apoptosis and inflammation in HCAECs, while silencing of H19 rescued this phenomenon. In addition, the level of H19 was negatively correlated with miR-20a-5p, and miR-20a-5p inhibitor restored the effect of H19 silencing on HCAECs function. HDAC4 was the downstream mRNA of miR-20a-5p, and miR-20a-5p upregulation reversed ox-LDL-induced HCAECs injury through targeting HDAC4. Furthermore, H19 silencing significantly alleviated the coronary atherosclerotic plaques and inhibited the inflammatory responses in vivo. CONCLUSIONS We proved that knockdown of H19 alleviated ox-LDL-induced HCAECs injury via miR-20a-5p/HDAC4 axis, which might provide a new tactics against CAD.
Collapse
Affiliation(s)
- Yilin Yang
- Department of Geriatrics, Changsha Third Hospital, No. 176, Laodong West Road, Tianxin District, Changsha, 410004, Hunan Province, People's Republic of China
| | - Zhaofei Wang
- Department of Cardiology, Changsha First Hospital, Changsha, 410010, Hunan Province, People's Republic of China
| | - Ying Xu
- Department of Geriatrics, Changsha Third Hospital, No. 176, Laodong West Road, Tianxin District, Changsha, 410004, Hunan Province, People's Republic of China
| | - Xiaofang Liu
- Department of Geriatrics, Changsha Third Hospital, No. 176, Laodong West Road, Tianxin District, Changsha, 410004, Hunan Province, People's Republic of China
| | - Yehai Sun
- Department of Geriatrics, Changsha Third Hospital, No. 176, Laodong West Road, Tianxin District, Changsha, 410004, Hunan Province, People's Republic of China
| | - Wei Li
- Department of Geriatrics, Changsha Third Hospital, No. 176, Laodong West Road, Tianxin District, Changsha, 410004, Hunan Province, People's Republic of China.
| |
Collapse
|
6
|
The multifaceted actions of the lncRNA H19 in cardiovascular biology and diseases. Clin Sci (Lond) 2022; 136:1157-1178. [PMID: 35946958 PMCID: PMC9366862 DOI: 10.1042/cs20210994] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases are the leading cause of death and debility worldwide. Various molecular mechanisms have been studied to better understand the development and progression of cardiovascular pathologies with hope to eradicate these diseases. With the advancement of the sequencing technology, it is revealed that the majority of our genome is non-coding. A growing body of literature demonstrates the critical role of long non-coding RNAs (lncRNAs) as epigenetic regulators of gene expression. LncRNAs can regulate cellular biological processes through various distinct molecular mechanisms. The abundance of lncRNAs in the cardiovascular system indicates their significance in cardiovascular physiology and pathology. LncRNA H19, in particular, is a highly evolutionarily conserved lncRNA that is enriched in cardiac and vascular tissue, underlining its importance in maintaining homeostasis of the cardiovascular system. In this review, we discuss the versatile function of H19 in various types of cardiovascular diseases. We highlight the current literature on H19 in the cardiovascular system and demonstrate how dysregulation of H19 induces the development of cardiovascular pathophysiology.
Collapse
|
7
|
Huang SF, Zhao G, Peng XF, Ye WC. The Pathogenic Role of Long Non-coding RNA H19 in Atherosclerosis via the miR-146a-5p/ANGPTL4 Pathway. Front Cardiovasc Med 2021; 8:770163. [PMID: 34820432 PMCID: PMC8606739 DOI: 10.3389/fcvm.2021.770163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
The abnormally expressed long non-coding RNA (lncRNA) H19 has a crucial function in the development and progression of cardiovascular disease; however, its role in atherosclerosis is yet to be known. We aimed to examine the impacts of lncRNA H19 on atherogenesis as well as the involved mechanism. The outcomes from this research illustrated that the expression of lncRNA H19 was elevated in mouse blood and aorta with lipid-loaded macrophages and atherosclerosis. Adeno-associated virus (AAV)-mediated lncRNA H19 overexpression significantly increased the atherosclerotic plaque area in apoE−/− mice supplied with a Western diet. The upregulation of lncRNA H19 decreased the miR-146a-5p expression but increased the levels of ANGPTL4 in mouse blood and aorta and THP-1 cells. Furthermore, lncRNA H19 overexpression promoted lipid accumulation in oxidized low-density lipoprotein (ox-LDL)-induced THP-1 macrophages. However, the knockdown of lncRNA H19 served as a protection against atherosclerosis in apoE−/− mice and lowered the accumulation of lipids in ox-LDL-induced THP-1 macrophages. lncRNA H19 promoted the expression of ANGPTL4 via competitively binding to miR-146a-5p, thus promoting lipid accumulation in atherosclerosis. These findings altogether demonstrated that lncRNA H19 facilitated the accumulation of lipid in macrophages and aggravated the progression of atherosclerosis through the miR-146a-5p/ANGPTL4 pathway. Targeting lncRNA H19 might be an auspicious therapeutic approach for preventing and treating atherosclerotic disease.
Collapse
Affiliation(s)
- Shi-Feng Huang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Guifang Zhao
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Wen-Chu Ye
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
8
|
Das T, Das TK, Khodarkovskaya A, Dash S. Non-coding RNAs and their bioengineering applications for neurological diseases. Bioengineered 2021; 12:11675-11698. [PMID: 34756133 PMCID: PMC8810045 DOI: 10.1080/21655979.2021.2003667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Engineering of cellular biomolecules is an emerging landscape presenting creative therapeutic opportunities. Recently, several strategies such as biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems have been developed to improve specific biological functions, however, have been confounded with fundamental and technical roadblocks. Rapidly emerging investigations on the bioengineering prospects of mammalian ribonucleic acid (RNA) is expected to result in significant biomedical advances. More specifically, the current trend focuses on devising non-coding (nc) RNAs as therapeutic candidates for complex neurological diseases. Given the pleiotropic and regulatory role, ncRNAs such as microRNAs and long non-coding RNAs are deemed as attractive therapeutic candidates. Currently, the list of non-coding RNAs in mammals is evolving, which presents the plethora of hidden possibilities including their scope in biomedicine. Herein, we critically review on the emerging repertoire of ncRNAs in neurological diseases such as Alzheimer’s disease, Parkinson’s disease, neuroinflammation and drug abuse disorders. Importantly, we present the advances in engineering of ncRNAs to improve their biocompatibility and therapeutic feasibility as well as provide key insights into the applications of bioengineered non-coding RNAs that are investigated for neurological diseases.
Collapse
Affiliation(s)
- Tuhin Das
- Quanta Therapeutics, San Francisco, CA, 94158, USA.,RayBiotech, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | - Tushar Kanti Das
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Anne Khodarkovskaya
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA
| | - Sabyasachi Dash
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024 India
| |
Collapse
|
9
|
Dysregulated Circulating Apoptosis- and Autophagy-Related lncRNAs as Diagnostic Markers in Coronary Artery Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5517786. [PMID: 34513991 PMCID: PMC8426068 DOI: 10.1155/2021/5517786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/03/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Objective Increasing evidence emphasizes the implications of dysregulated apoptosis and autophagy cellular processes in coronary artery disease (CAD). Herein, we aimed to explore apoptosis- and autophagy-related long noncoding RNAs (lncRNAs) in peripheral blood of CAD patients. Methods The mRNA and lncRNA expression profiles were retrieved from the Gene Expression Omnibus (GEO) database. With ∣fold change | >1.5 and adjusted p value < 0.05, differentially expressed apoptosis- and autophagy-related mRNAs were screened between CAD and healthy blood samples. Also, differentially expressed lncRNAs were identified for CAD. Using the psych package, apoptosis- and autophagy-related lncRNAs were defined with Spearson's correlation analysis. Receiver operating characteristic (ROC) curves were conducted for the assessment of the diagnosed efficacy of these apoptosis- and autophagy-related lncRNAs. Results Our results showed that 24 apoptosis- and autophagy-related mRNAs were abnormally expressed in CAD than normal controls. 12 circulating upregulated and 1 downregulated apoptosis- and autophagy-related lncRNAs were identified for CAD. The ROCs confirmed that AC004485.3 (AUC = 0.899), AC004920.3 (AUC = 0.93), AJ006998.2 (AUC = 0.776), H19 (AUC = 0.943), RP5-902P8.10 (AUC = 0.956), RP5-1114G22.2 (AUC = 0.883), RP11-247A12.1 (AUC = 0.885), RP11-288L9.4 (AUC = 0.928), RP11-344B5.2 (AUC = 0.858), RP11-452C8.1 (AUC = 0.929), RP11-565A3.1 (AUC = 0.893), and XXbac-B33L19.4 (AUC = 0.932) exhibited good performance in differentiating CAD from healthy controls. Conclusion Collectively, our findings proposed that circulating apoptosis- and autophagy-related lncRNAs could become underlying diagnostic markers for CAD in clinical practice.
Collapse
|
10
|
Xi X, Ma Y, Xu Y, Ogbuehi AC, Liu X, Deng Y, Xi J, Pan H, Lin Q, Li B, Ning W, Jiang X, Li H, Li S, Hu X. The Genetic and Epigenetic Mechanisms Involved in Irreversible Pulp Neural Inflammation. DISEASE MARKERS 2021; 2021:8831948. [PMID: 33777260 PMCID: PMC7968449 DOI: 10.1155/2021/8831948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
AIM To identify the critical genetic and epigenetic biomarkers by constructing the long noncoding RNA- (lncRNA-) related competing endogenous RNA (ceRNA) network involved in irreversible pulp neural inflammation (pulpitis). MATERIALS AND METHODS The public datasets regarding irreversible pulpitis were downloaded from the gene expression omnibus (GEO) database. The differential expression analysis was performed to identify the differentially expressed genes (DEGs) and DElncRNAs. Functional enrichment analysis was performed to explore the biological processes and signaling pathways enriched by DEGs. By performing a weighted gene coexpression network analysis (WGCNA), the significant gene modules in each dataset were identified. Most importantly, DElncRNA-DEmRNA regulatory network and DElncRNA-associated ceRNA network were constructed. A transcription factor- (TF-) DEmRNA network was built to identify the critical TFs involved in pulpitis. RESULT Two datasets (GSE92681 and GSE77459) were selected for analysis. DEGs involved in pulpitis were significantly enriched in seven signaling pathways (i.e., NOD-like receptor (NLR), Toll-like receptor (TLR), NF-kappa B, tumor necrosis factor (TNF), cell adhesion molecules (CAMs), chemokine, and cytokine-cytokine receptor interaction pathways). The ceRNA regulatory relationships were established consisting of three genes (i.e., LCP1, EZH2, and NR4A1), five miRNAs (i.e., miR-340-5p, miR-4731-5p, miR-27a-3p, miR-34a-5p, and miR-766-5p), and three lncRNAs (i.e., XIST, MIR155HG, and LINC00630). Six transcription factors (i.e., GATA2, ETS1, FOXP3, STAT1, FOS, and JUN) were identified to play pivotal roles in pulpitis. CONCLUSION This paper demonstrates the genetic and epigenetic mechanisms of irreversible pulpitis by revealing the ceRNA network. The biomarkers identified could provide research direction for the application of genetically modified stem cells in endodontic regeneration.
Collapse
Affiliation(s)
- Xiaoxi Xi
- Department of Stomatology, Northeast Petroleum University Affiliated Hospital, Fazhan Road, High Tech District, 163000 Daqing City, Heilongjiang Province, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuzhen Xu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | | | - Xiangqiong Liu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Yupei Deng
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Junming Xi
- Department of Stomatology, Northeast Petroleum University Affiliated Hospital, Fazhan Road, High Tech District, 163000 Daqing City, Heilongjiang Province, China
| | - Haitong Pan
- Department of Stomatology, Daqing Oilfield General Hospital, Zhongkang Street No. 9, Saertu District, 163000 Daqing City, Heilongjiang Province, China
| | - Qian Lin
- Department of Prosthetics, School of Stomatology, Second Affiliated Dental Hospital of Jiamusi University, Hongqi Street No. 522, Jiamusi City, Heilongjiang Province, China
| | - Bo Li
- Department of Stomatology, South District Hospital, Daqing Oilfield General Hospital Group, Tuqiang Fourth Street No. 14, Hong Gang District, Daqing City, Heilongjiang Province, China
| | - Wanchen Ning
- Department of Conservative Dentistry and Periodontology, Ludwig-Maximilians-University of Munich, Goethestrasse 70, 80336 Munich, Germany
| | - Xiao Jiang
- Stomatological Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Hanluo Li
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Simin Li
- Stomatological Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Xianda Hu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| |
Collapse
|
11
|
Ghafouri-Fard S, Gholipour M, Taheri M. The Emerging Role of Long Non-coding RNAs and Circular RNAs in Coronary Artery Disease. Front Cardiovasc Med 2021; 8:632393. [PMID: 33708807 PMCID: PMC7940190 DOI: 10.3389/fcvm.2021.632393] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Coronary artery disease (CAD) is a common disorder caused by atherosclerotic processes in the coronary arteries. This condition results from abnormal interactions between numerous cell types in the artery walls. The main participating factors in this process are accumulation of lipid deposits, endothelial cell dysfunction, macrophage induction, and changes in smooth muscle cells. Several lines of evidence underscore participation of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in the pathogenesis of CAD. Several lncRNAs such as H19, ANRIL, MIAT, lnc-DC, IFNG-AS1, and LEF1-AS1 have been shown to be up-regulated in the biological materials obtained from CAD patients. On the other hand, Gas5, Chast, HULC, DICER1-AS1, and MEG3 have been down-regulated in CAD patients. Meanwhile, a number of circRNAs have been demonstrated to influence function of endothelial cells or vascular smooth muscle cells, thus contributing to the pathogenesis of CAD. In the current review, we summarize the function of lncRNAs and circRNAs in the development and progression of CAD.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|