1
|
Ghimire S, Subedi K, Zhang X, Wu C. Efficacy of Bacillus subtilis probiotic in preventing necrotic enteritis in broilers: a systematic review and meta-analysis. Avian Pathol 2024; 53:451-466. [PMID: 38776185 DOI: 10.1080/03079457.2024.2359596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024]
Abstract
Probiotics can enhance broiler chicken health by improving intestinal microbiota, potentially replacing antibiotics. They protect against bacterial diseases like necrotic enteritis (NE) in poultry. Understanding their role is crucial for managing bacterial diseases, including NE. This study conducted a meta-analysis to assess the effects of Bacillus subtilis probiotic supplementation on feed conversion ratio (FCR), NE lesion score, and mortality. Additionally, a systematic review analysed gut microbiota changes in broilers challenged with Clostridium perfringens with or without the probiotic supplementation. Effect sizes from the studies were estimated in terms of standardized mean difference (SMD). Random effect models were fitted to estimate the pooled effect size and 95% confidence interval (CI) of the pooled effect size between the control [probiotic-free + C. perfringens] and the treatment [Bacillus subtilis supplemented + C. perfringens] groups. Overall variance was computed by heterogeneity (Q). The meta-analysis showed that Bacillus subtilis probiotic supplementation significantly improved FCR and reduced NE lesion score but had no effect on mortality rates. The estimated overall effects of probiotic supplementation on FCR, NE lesion score and mortality percentage in terms of SMD were -0.91 (CI = -1.34, -0.49; P < 0.001*); -0.67 (CI = -1.11, -0.22; P = 0.006*), and -0.32 (CI = -0.70, 0.06; P = 0.08), respectively. Heterogeneity analysis indicated significant variations across studies for FCR (Q = 69.66; P < 0.001*) and NE lesion score (Q = 42.35; P < 0.001*) while heterogeneity was not significant for mortality (Q = 2.72; P = 0.74). Bacillus subtilis probiotic supplementation enriched specific gut microbiota including Streptococcus, Butyricicoccus, Faecalibacterium, and Ruminococcus. These microbiotas were found to upregulate expression of various genes such as TJ proteins occluding, ZO-1, junctional adhesion 2 (JAM2), interferon gamma, IL12-β and transforming growth factor-β4. Moreover, downregulated mucin-2 expression was involved in restoring the intestinal physical barrier, reducing intestinal inflammation, and recovering the physiological functions of damaged intestines. These findings highlight the potential benefits of probiotic supplementation in poultry management, particularly in combating bacterial diseases and promoting intestinal health.
Collapse
Affiliation(s)
- Shweta Ghimire
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Keshab Subedi
- Christiana Care Health Systems, Institute for Research on Equity and Community Health (iREACH), Wilmington, DE, USA
| | - Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
2
|
Chen X, Cui J, Wang Y, Han K, Huo N, Wang J. Dietary supplementation with Bacillus subtilis KC1 alleviates the negative effects of Mycoplasma gallisepticum on growth performance and amino acid metabolism of broiler chickens. Front Vet Sci 2024; 11:1477575. [PMID: 39507220 PMCID: PMC11538993 DOI: 10.3389/fvets.2024.1477575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
The aim of this study was to explore whether and how Bacillus subtilis KC1 can enhance the growth performance of Mycoplasma gallisepticum (MG)-infected broilers. Broilers were randomly divided into 4 groups: the control group (basal diet), the MG group (basal diet + MG challenge), the KC group (basal diet + B. subtilis KC1 supplementation), the KC + MG group (basal diet + B. subtilis KC1 supplementation + MG challenge). The results showed that, compared to the control group, MG group exhibited significantly reduced body weight and average daily gain, and increased feed conversion ratio of broilers. However, compared to the MG group, the B. subtilis KC1 + MG group exhibited significantly improved above indicators of growth performance. In addition, compared to the MG group, B. subtilis KC1 + MG group exhibited increased superoxide dismutase levels and reduced levels of malondialdehyde, interleukin-1β, and tumor necrosis factor-α of broilers. Furthermore, metabolomics and transcriptomics analyses indicated that MG infection disrupted amino acid metabolism in broilers, whereas B. subtilis KC1 supplementation alleviated the abnormal amino acid metabolism caused by MG. These results suggested that B. subtilis KC1 may alleviate the poor growth performance caused by MG infection in broilers by improving amino acid metabolism.
Collapse
Affiliation(s)
| | | | | | - Keguang Han
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Nairui Huo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Jian Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
3
|
Xu Z, Feng X, Song Z, Li X, Li K, Li M, Wang X, Liu B, Sun C. Cell-Free Supernatant of Bacillus subtilis G2B9-Q Improves Intestinal Health and Modulates Immune Response to Promote Mouse Recovery in Clostridium perfringens Infection. Curr Microbiol 2024; 81:243. [PMID: 38935166 DOI: 10.1007/s00284-024-03669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/17/2024] [Indexed: 06/28/2024]
Abstract
Clostridium perfringens is one of the critical causative agents causing diarrhea in piglets, with significant economic losses to the pig industry. Under normal gut microbiota homeostasis and well-managed barns, diarrhea caused by C. perfringens could be controlled. Some reports show that probiotics, such as Bacillus subtilis, are beneficial in preventing necrotic enteritis (NE) in chickens, but few reports on piglets. Clostridium perfringens was found in the piglets' diarrhea with intestinal microbiota dysbiosis in our survey. Bacillus subtilis G2B9-Q, which was isolated from the feces of healthy pigs, was found to have anti-Clostridium activity after screening. Clostridium perfringens was used to challenge mice by intraperitoneal injection for modeling to evaluate the anti-infective activity of cell-free supernatant (CFS) of B. subtilis G2B9-Q and different concentrations of B. subtilis G2B9-Q by oral administration. The results showed that G2B9-Q can mitigate intestinal lesions caused by C. perfringens infection, reduce inflammatory reactions, and modulate intestinal microbiota. The CFS of G2B9-Q can alleviate the pathological damage of intestinal tissues caused by C. perfringens infection, reduce the concentration of TNF-α and IL-10 in the sera of mice, as well as the relative expression levels of alpha toxin (CPA), perfringolysin O (PFO) toxin, IL-10, IL-22, and TNF-α in the jejunum and colon tissues, and alleviate the changes in gut microbiota structure caused by C. perfringens infection, which showed better therapeutic effects and indicated that the metabolites of G2B9-Q are essential mediators for their beneficial effects. Therefore, the CFS of G2B9-Q could potentially replace antibiotics in treating C. perfringens infection.
Collapse
Affiliation(s)
- Zhiqiang Xu
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China
| | - Zhanyun Song
- Changchun Customs District, Changchun, Jilin, China
| | - Xiang Li
- Changchun Customs District, Changchun, Jilin, China
| | - Ke Li
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China
| | - Mengjiao Li
- Changchun Customs District, Changchun, Jilin, China
| | | | - Bo Liu
- Changchun Customs District, Changchun, Jilin, China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China.
| |
Collapse
|
4
|
Mekonnen YT, Savini F, Indio V, Seguino A, Giacometti F, Serraino A, Candela M, De Cesare A. Systematic review on microbiome-related nutritional interventions interfering with the colonization of foodborne pathogens in broiler gut to prevent contamination of poultry meat. Poult Sci 2024; 103:103607. [PMID: 38493536 PMCID: PMC10959702 DOI: 10.1016/j.psj.2024.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
This systematic review aimed to compile the available body of knowledge about microbiome-related nutritional interventions contributing to improve the chicken health and having an impact on the reduction of colonization by foodborne pathogens in the gut. Original research articles published between 2012 and 2022 were systematically searched in Scopus and PubMed. A total of 1,948 articles were retrieved and 140 fulfilled the inclusion criteria. Overall, 73 papers described 99 interventions against colonization by Escherichia coli and related organisms; 10 papers described 15 interventions against Campylobacter spp.; 36 papers described 54 interventions against Salmonella; 40 papers described 54 interventions against Clostridium perfringens. A total of 197 microbiome-related interventions were identified as effective against one or more of the listed pathogens and included probiotics (n = 80), prebiotics (n = 23), phytobiotics (n = 25), synbiotics (n = 12), organic acids (n = 12), enzymes (n = 4), essential oils (n = 14) and combination of these (n = 27). The identified interventions were mostly administered in the feed (173/197) or through oral gavage (11/197), in the drinking water (7/197), in ovo (2/197), intra amniotic (2/197), in fresh or reused litter (1/197) or both in the feed and water (1/197). The interventions enhanced the beneficial microbial communities in the broiler gut as Lactic acid bacteria, mostly Lactobacillus spp., or modulated multiple microbial populations. The mechanisms promoting the fighting against colonization by foodborne pathogens included competitive exclusion, production of short chain fatty acids, decrease of gut pH, restoration of the microbiome after dysbiosis events, promotion of a more stable microbial ecology, expression of genes improving the integrity of intestinal mucosa, enhancing of mucin production and improvement of host immune response. All the studies extracted from the literature described in vivo trials but performed on a limited number of animals under experimental settings. Moreover, they detailed the effect of the intervention on the chicken gut without details on further impact on poultry meat safety.
Collapse
Affiliation(s)
- Yitagele Terefe Mekonnen
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Federica Savini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy.
| | - Alessandro Seguino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| |
Collapse
|
5
|
Chen P, Lv H, Du M, Liu W, Che C, Zhao J, Liu H. Bacillus subtilis HW2 enhances growth performance and alleviates gut injury via attenuation of endoplasmic reticulum stress and regulation of gut microbiota in broilers under necrotic enteritis challenge. Poult Sci 2024; 103:103661. [PMID: 38547540 PMCID: PMC11000119 DOI: 10.1016/j.psj.2024.103661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
This study investigated the effects of Bacillus subtilis HW2 on the growth performance, immune response, endoplasmic reticulum (ER) stress, and intestinal health in broilers with necrotic enteritis. Three hundred 1-day-old male Cobb 500 broilers (33.88 ± 2.34 g) were randomly allocated to 5 groups including non-infected control (NC group), basal diet + necrotic enteritis challenge (NE group), basal diet + 1 × 106 CFU/g B. subtilis HW2 + necrotic enteritis challenge (L-Pro group), basal diet + 5 × 106 CFU/g B. subtilis HW2 + necrotic enteritis challenge (M-Pro group), and basal diet + 1 × 107 CFU/g B. subtilis HW2 + necrotic enteritis challenge (H-Pro group), with 6 replicates per group. All broilers except NC group were orally given with sporulated coccidian oocysts at day 14 and Clostridium perfringens from days 19 to 21. Results showed that L-Pro and M-Pro groups improved growth performance and intestinal morphology in necrotic enteritis-challenged broilers, and L-Pro, M-Pro, and H-Pro groups improved intestinal barrier function and immune response and decreased ER stress in necrotic enteritis-challenged broilers. Analysis of the gut microbiota revealed that L-Pro group increased the abundances of Alistipes, Coprobacter, Barnesiella, and Limosilactobacillus, decreased Erysipelatoclostridium abundance on day 42 in necrotic enteritis-challenged broilers. M-Pro group increased Turicibacter abundance on day 28 and the abundances of Alistipes, Barnesiella, and Limosilactobacillus on day 42 in necrotic enteritis-challenged broilers. H-Pro group decreased Romboutsia abundance on day 28 and unidentified_Clostridia abundance on day 42 in necrotic enteritis-challenged broilers. Analysis of short-chain fatty acids (SCFAs) revealed higher isobutyric acid and isovaleric acid levels in L-Pro and M-Pro groups than NE group. Correlation analysis revealed the correlations between the biochemical parameters and gut microbiota as well as SCFAs, especially Romboutsia, Barnesiella, Coprobacter, isobutyric acid, and isovaleric acid. Overall, our results indicated that B. subtilis HW2 supplementation could ameliorate necrotic enteritis infection-induced gut injury. The optimal dietary supplementation dosage of Bacillus subtilis HW2 was 5 × 106 CFU/g.
Collapse
Affiliation(s)
- Peng Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengmeng Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Weiyong Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chuanyan Che
- College of Animal Science and Technology, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Hao Z, Ding X, Wang J. Effects of gut bacteria and their metabolites on gut health of animals. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:223-252. [PMID: 38763528 DOI: 10.1016/bs.aambs.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The intestine tract is a vital site for the body to acquire nutrients, serving as the largest immune organ. Intestinal health is crucial for maintaining a normal physiological state. Abundant microorganisms reside in the intestine, colonized in a symbiotic manner. These microorganisms can generate various metabolites that influence host physiological activities. Microbial metabolites serve as signaling molecules or metabolic substrates in the intestine, and some intestinal microorganisms act as probiotics and promote intestinal health. Researches on host, probiotics, microbial metabolites and their interactions are ongoing. This study reviews the effects of gut bacteria and their metabolites on intestinal health to provide useful references for animal husbandry.
Collapse
Affiliation(s)
- Zhuang Hao
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Xuedong Ding
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Jing Wang
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
7
|
Cai Y, Xiao C, Tian B, Dorthe S, Meuter A, Song B, Song Z. Dietary probiotic based on a dual-strain Bacillus subtilis improves immunity, intestinal health, and growth performance of broiler chickens. J Anim Sci 2024; 102:skae183. [PMID: 39022917 PMCID: PMC11416885 DOI: 10.1093/jas/skae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
The study investigated the effects of dietary probiotic of dual-strain Bacillus subtilis on production performance, intestinal barrier parameters, and microbiota in broiler chickens. In a randomized trial, male broiler chickens were allocated into 3 groups, a control group (basal diet), BS300 group (basal diet with 300 mg/kg of B. subtilis), and BS500 group (basal diet with 500 mg/kg of B. subtilis). The inclusion of 500 mg/kg of B. subtilis significantly reduced the feed conversion ratio by 4.55% during the starting phase. Both 300 and 500 mg/kg of B. subtilis supplementation increased jejunal villus height (by 17.89% and 24.8%, respectively) significantly and decreased jejunal crypt depth (by 27.2% and 31.9%, respectively) on day 21. The addition of 500 mg/kg of B. subtilis significantly elevated the gene expression of occludin on day 35. Moreover, of B. subtilis supplementation enhanced cytokine levels and immunoglobulins in both serum and jejunal mucosa. Microbial analysis indicated that B. subtilis increased the abundance of potential probiotics (Sutterella) and butyrate-producing bacteria (Lachnoclostridium, Tyzzerella, Anaerostipes, Clostridium_sensu_stricto_13, Prevotellaceae_NK3B31_group, and Lachnospiraceae_UCG-010). The abundances of Anaerostipes and Sutterella, are significantly correlated with growth performance and immune function. In conclusion, dietary supplementation with B. subtilis improved the growth performance, potentially through the regulation of immunity, intestinal barrier function, and microbiota in broilers. Notably, 500 mg/kg of B. subtilis exhibited more benefits for broilers compared to the 300 mg/kg.
Collapse
Affiliation(s)
- Yuanli Cai
- College of Life Science, Qilu Normal University, Jinan, Shandong 250200, China
| | - Chuanpi Xiao
- Department of Animal Science and Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Bo Tian
- Department of Animal Science and Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Sandvang Dorthe
- Animal and Plant Health & Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Antoine Meuter
- Animal and Plant Health & Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Bochen Song
- Department of Animal Science and Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhigang Song
- Department of Animal Science and Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
8
|
Yuan H, Bai G, Lin Y, Yu X, Yang Q, Dou R, Sun H, Zhao Z, Li Z, Chen Z, Xu L. Effects of dietary Nisin on growth performance, immune function, and gut health of broilers challenged by Clostridium perfringens. J Anim Sci 2024; 102:skae017. [PMID: 38266070 PMCID: PMC11254313 DOI: 10.1093/jas/skae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/22/2024] [Indexed: 01/26/2024] Open
Abstract
Nisin (Ni) is a polypeptide bacteriocin produced by lactic streptococci (probiotics) that can inhibit the majority of gram-positive bacteria, and improve the growth performance of broilers, and exert antioxidative and anti-inflammatory properties. The present study investigated the potential preventive effect of Nisin on necrotic enteritis induced by Clostridium perfringens (Cp) challenge. A total of 288 Arbor Acres broiler chickens of 1-d-olds were allocated using 2 × 2 factorial arrangement into four groups with six replicates (12 chickens per replicate), including: (1) control group (Con, basal diet), (2) Cp challenge group (Cp, basal diet + 1.0 × 108 CFU/mL Cp), (3) Ni group (Ni, basal diet + 100 mg/kg Ni), and (4) Ni + Cp group (Ni + Cp, basal diet + 100 mg/kg Ni + 1.0 × 108 CFU/mL Cp). The results showed that Cp challenge decreased the average daily gain (ADG) of days 15 to 21 (P<0.05) and increased interleukin-6 (IL-6) content in the serum (P < 0.05), as well as a significant reduction in villus height (VH) and the ratio of VH to crypt depth (VCR) (P<0.05) and a significant increase in crypt depth (CD) of jejunum (P<0.05). Furthermore, the mRNA expressions of Occludin and Claudin-1 were downregulated (P<0.05), while the mRNA expressions of Caspase3, Caspase9, Bax, and Bax/Bcl-2 were upregulated (P<0.05) in the jejunum. However, the inclusion of dietary Ni supplementation significantly improved body weight (BW) on days 21 and 28, ADG of days 15 to 21 (P<0.05), decreased CD in the jejunum, and reduced tumor necrosis factor-α (TNF-α) content in the serum (P<0.05). Ni addition upregulated the mRNA levels of Claudin-1 expression and downregulated the mRNA expression levels of Caspase9 in the jejunum (P<0.05). Moreover, Cp challenge and Ni altered the cecal microbiota composition, which manifested that Cp challenge decreased the relative abundance of phylum Fusobacteriota and increased Shannon index (P<0.05) and the trend of phylum Proteobacteria (0.05
Collapse
Affiliation(s)
- Hua Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guangdong Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yu Lin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xilong Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Qinghui Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Renkai Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hao Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zeyu Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhihui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Liangmei Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Yang T, Sun Y, Dai Z, Liu J, Xiao S, Liu Y, Wang X, Yang S, Zhang R, Yang C, Dai B. Microencapsulated Sodium Butyrate Alleviates Immune Injury and Intestinal Problems Caused by Clostridium Perfringens through Gut Microbiota. Animals (Basel) 2023; 13:3784. [PMID: 38136821 PMCID: PMC10741131 DOI: 10.3390/ani13243784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Microencapsulated sodium butyrate (MS-SB) is an effective sodium butyrate additive which can reduce the release of sodium butyrate (SB) in the fore gastrointestinal tract. In this study, we assess the protective effects and mechanisms of MS-SB in Clostridium perfringens (C. perfringens)-challenged broilers. Broiler chickens were pre-treated with SB or MS-SB for 56 days and then challenged with C. perfringens three times. Our results indicate that the addition of MS-SB or SB before C. perfringens infection significantly decreased the thymus index (p < 0.05). Serum IgA, IgY, and IgM concentrations were significantly increased (p < 0.05), while pro-inflammatory IL-1β, IL-6, and TNF-α were significantly decreased (p < 0.05) under MS-SB or SB supplementation. Compared with SB, MS-SB presented a stronger performance, with higher IgA content, as well as a lower IL-1β level when normal or C. perfringens-challenged. While C. perfringens challenge significantly decreased the villus height (p < 0.05), MS-SB or SB administration significantly increased the villus height and villus height/crypt depth (V/C ratio) (p < 0.05). Varying degrees of SB or MS-SB increased the concentrations of volatile fatty acids (VFAs) during C. perfringens challenge, where MS-SB presented a stronger performance, as evidenced by the higher content of isovaleric acid and valeric acid. Microbial analysis demonstrated that both SB or MS-SB addition and C. perfringens infection increase variation in the microbiota community. The results also indicate that the proportions of Bacteroides, Faecalibacterium, Clostridia, Ruminococcaceae, Alistipes, and Clostridia were significantly higher in the MS-SB addition group while, at same time, C. perfringens infection increased the abundance of Bacteroides and Alistipes. In summary, dietary supplementation with SB or MS-SB improves the immune status and morphology of intestinal villi, increases the production of VFAs, and modulates cecal microbiota in chickens challenged with C. perfringens. Moreover, MS-SB was more effective than SB with the same supplemental amount.
Collapse
Affiliation(s)
- Ting Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Yaowei Sun
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Zhenglie Dai
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Shiping Xiao
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Yulan Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Xiuxi Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Shenglan Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Caimei Yang
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Bing Dai
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| |
Collapse
|
10
|
Ningsih N, Respati AN, Astuti D, Triswanto T, Purnamayanti L, Yano AA, Putra RP, Jayanegara A, Ratriyanto A, Irawan A. Efficacy of Bacillus subtilis to replace in-feed antibiotics of broiler chickens under necrotic enteritis-challenged experiments: a systematic review and meta-analysis. Poult Sci 2023; 102:102923. [PMID: 37494807 PMCID: PMC10393822 DOI: 10.1016/j.psj.2023.102923] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023] Open
Abstract
Necrotic enteritis (NE) and coccidiosis are among the most prevalent infectious diseases in broiler chickens, contributing to large profitability losses. Bacillus subtilis is a promising direct-fed probiotic to counter various pathogens infection in broiler chickens. Here, we performed a meta-analysis to investigate the effects of B. subtilis on broiler chickens performance. A total of 28 studies were selected according to a PRISMA checklist. Random-effect model and mixed-effect model of meta-analysis were fitted to estimate the overall effects of B. subtilis (BS) treatment compared to either the control group (CON) or NE-infected group (NEinf) as a baseline. Hedges' g effect size and its variance were used as estimators of standardized mean difference (SMD) calculation where the results were presented at a 95% confidence interval (95% CI) of the SMD. Overall, NEinf broiler chickens depressed (P < 0.01) body weight (BW), average daily gain (ADG), and feed intake, and elevated (P < 0.01) feed conversion ratio (FCR). Treatment with BS improved ADG and final BW of NEinf with no difference (P = 0.15) between BS and antibiotics (AB), indicating that they had comparable efficacy to treat NE in broiler chickens. BS supplemented to uninfected CON (BSS) improved (P < 0.01) final BW, ADG, and FCR. Compared to CON, BS, and AB failed to recover the FCR but these treatments decreased (P < 0.01) FCR when compared to the NEinf group with similar efficacy (P = 0.97). As expected, NEinf birds had a higher mortality rate (P < 0.01) and higher lesion score (P < 0.01) compared to CON, and treatment using AB and BS successfully decreased (P < 0.01) the mortality rate and lesion score. Compared to BS, AB was more effective to lower (P = 0.01) mortality rate, but comparable (P = 0.65) to minimize lesion score. To conclude, B. subtilis could be an effective natural additive to replace in-feed antibiotics in broiler chickens challenged with C. perfringens. However, the efficacy to reduce mortality rate was better with antibiotics treatment.
Collapse
Affiliation(s)
- Niati Ningsih
- Department of Animal Science, Politeknik Negeri Jember, Jember 68101, Indonesia
| | - Adib Norma Respati
- Department of Animal Science, Politeknik Negeri Jember, Jember 68101, Indonesia
| | - Dian Astuti
- Agrotechnology Innovation Center, Universitas Gadjah Mada, Sleman 55573, Indonesia
| | - T Triswanto
- Department of Feed Technology, PT. Charoen Pokphand Indonesia, Jakarta Utara 14350, Indonesia
| | - Lailatul Purnamayanti
- Animal Husbandry Study Program, Politeknik Selaparang Lombok, West Nusa Tenggara 83653, Indonesia
| | | | - Reza Pratama Putra
- Animal Health Vocational Program, Jambi University, Muaro Jambi 36361, Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | | | - Agung Irawan
- Universitas Sebelas Maret, Surakarta 57126, Indonesia; Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
11
|
Fan YC, Wu YT, Wu YHS, Wang CL, Chou CH, Chen YC, Tsai HJ. Investigation of Trehalose Supplementation Impacting Campylobacter jejuni and Clostridium perfringens from Broiler Farming. Vet Sci 2023; 10:466. [PMID: 37505870 PMCID: PMC10385778 DOI: 10.3390/vetsci10070466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
In 2006, the European Commission banned the use of antibiotic promoters in animal feed. However, there is a new situation in poultry disease where it is necessary to study feed additives, which can overcome the diseases that were previously controlled through the addition of antibiotics and antimicrobial growth promoters in the feed. Therefore, trehalose was investigated to determine whether it impacts the growth performance and pathogenic bacteria (C. jejuni and C. perfringens) inoculation in broilers. In the first experiment, the tolerance of broilers to the addition of trehalose to their feed was investigated. There was no significant difference (p > 0.05) in body weight changes, daily weight gain, feed intake or feed conversion ratio during the feeding period. Within a 35-day feeding period, it was concluded that a trehalose dosage up to 10% does not exert a negative effect on broiler farming. Moreover, there was no significant difference (p > 0.05) in the broilers' growth performance, as well as C. jejuni and C. perfringens counts in the intestines and feces of broilers observed over a 5-week feeding period. However, Lactobacillus counts significantly increased in these groups with 3% and 5% trehalose supplementation. The findings indicate that trehalose supplementation in the feed cannot directly decrease C. jejuni and C. perfringens counts but may enhance gut health by raising Lactobacillus counts in chicken gut, particularly when enteropathogenic bacteria are present.
Collapse
Affiliation(s)
- Yang-Chi Fan
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Yi-Tei Wu
- Department of Animal Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Yi-Hsieng Samuel Wu
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming Chiao Tung University-Yangming Campus, 155, Sec. 2, Linong Street, Taipei 112, Taiwan
| | - Chia-Lan Wang
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Hsiang-Jung Tsai
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| |
Collapse
|
12
|
Yosi F, Metzler-Zebeli BU. Dietary Probiotics Modulate Gut Barrier and Immune-Related Gene Expression and Histomorphology in Broiler Chickens under Non- and Pathogen-Challenged Conditions: A Meta-Analysis. Animals (Basel) 2023; 13:1970. [PMID: 37370480 DOI: 10.3390/ani13121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Data published in the literature about the favorable effects of dietary probiotics on gut health in broiler chickens are inconsistent. To obtain a more comprehensive understanding, we conducted a meta-analysis to assess the effects of probiotics on the gut barrier and immune-related gene expression, histomorphology, and growth in chickens that were either challenged or non-challenged with pathogens. From the 54 articles published between 2012 and 2022, subsets of data, separately for non-challenged and challenged conditions, for response variables were created. The mean dietary probiotic concentrations ranged from 4.7 to 6.2 and 4.7 to 7.2 log10 colony-forming unit/kg under non-challenged and challenged conditions, respectively. Probiotics increased the expression of genes for mucins and tight junction proteins in the jejunum and ileum at weeks 3 and 6. The stimulatory effect of probiotics on tight junction protein expression was partly stronger in challenged than in non-challenged birds. Meta-regressions also showed an anti-inflammatory effect of probiotics under challenged conditions by modulating the expression of cytokines. Probiotics improved villus height at certain ages in the small intestine while not influencing growth performance. Dietary metabolizable energy, crude protein, and days post-infection modified the effects of probiotics on the observed variables. Overall, meta-regressions support the beneficial effects of probiotics on gut integrity and structure in chickens.
Collapse
Affiliation(s)
- Fitra Yosi
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Animal Science, Faculty of Agriculture, University of Sriwijaya, Palembang 30662, Indonesia
| | - Barbara U Metzler-Zebeli
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
13
|
Obianwuna UE, Agbai Kalu N, Wang J, Zhang H, Qi G, Qiu K, Wu S. Recent Trends on Mitigative Effect of Probiotics on Oxidative-Stress-Induced Gut Dysfunction in Broilers under Necrotic Enteritis Challenge: A Review. Antioxidants (Basel) 2023; 12:antiox12040911. [PMID: 37107286 PMCID: PMC10136232 DOI: 10.3390/antiox12040911] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
Gut health includes normal intestinal physiology, complete intestinal epithelial barrier, efficient immune response, sustained inflammatory balance, healthy microbiota, high nutrient absorption efficiency, nutrient metabolism, and energy balance. One of the diseases that causes severe economic losses to farmers is necrotic enteritis, which occurs primarily in the gut and is associated with high mortality rate. Necrotic enteritis (NE) primarily damages the intestinal mucosa, thereby inducing intestinal inflammation and high immune response which diverts nutrients and energy needed for growth to response mediated effects. In the era of antibiotic ban, dietary interventions like microbial therapy (probiotics) to reduce inflammation, paracellular permeability, and promote gut homeostasis may be the best way to reduce broiler production losses. The current review highlights the severity effects of NE; intestinal inflammation, gut lesions, alteration of gut microbiota balance, cell apoptosis, reduced growth performance, and death. These negative effects are consequences of; disrupted intestinal barrier function and villi development, altered expression of tight junction proteins and protein structure, increased translocation of endotoxins and excessive stimulation of proinflammatory cytokines. We further explored the mechanisms by which probiotics mitigate NE challenge and restore the gut integrity of birds under disease stress; synthesis of metabolites and bacteriocins, competitive exclusion of pathogens, upregulation of tight junction proteins and adhesion molecules, increased secretion of intestinal secretory immunoglobulins and enzymes, reduction in pro-inflammatory cytokines and immune response and the increased production of anti-inflammatory cytokines and immune boost via the modulation of the TLR/NF-ĸ pathway. Furthermore, increased beneficial microbes in the gut microbiome improve nutrient utilization, host immunity, and energy metabolism. Probiotics along with biosecurity measures could mitigate the adverse effects of NE in broiler production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nenna Agbai Kalu
- Department of Animal Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Zhang Q, Li J, Wang G, Wang L, Zhang Z, Fang Z, Lin Y, Xu S, Feng B, Zhuo Y, Hua L, Jiang X, Zhao X, Wu D, Che L. The replacement of bacitracin methylene disalicylate with Bacillus subtilis PB6 in the diet of male Cherry Valley Ducks reduces the feed conversion ratio by improving intestinal health and modulating gut microbiota. Poult Sci 2022; 101:102155. [PMID: 36155883 PMCID: PMC9519614 DOI: 10.1016/j.psj.2022.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/31/2022] [Accepted: 08/21/2022] [Indexed: 12/05/2022] Open
Abstract
In this study, we compared the impacts of Bacillus subtilis PB6 (BS) and bacitracin methylene disalicylate (BMD) on the growth performance, intestinal morphology, expression of tight connection protein, and cecal microbiota community of male ducks through a 42-d trial. Three-hundred and sixty male Cherry Valley meat-type ducklings (1-day-old) were distributed into 3 groups of 6 replicates: CON group (control, basal diet), BMD group (basal diet + 45 mg/kg BMD, active ingredient dose in the feed), and BS group (basal diet + 2 × 107 CFU/kg BS in the feed). Results showed that supplementing the diet with BS reduced the average daily feed intake (ADFI) during d 15 to 42 and d 1 to 42 compared with the CON group (P = 0.032). It also reduced feed conversion ratio (FCR) during d 15 to 42 and d 1 to 42 (P < 0.05) relative to the other groups. The ileal villus height (VH) and villus height /crypt depth ratio (V/C) were increased (P < 0.05) in both the BS and BMD groups, and the jejunal VH and V/C ratio were increased in the BS group (P < 0.05). Relative to the CON, BS supplementation was associated with numerical augmentation of goblet cells in the jejunal mucosa and upregulation of jejunal zonula occludens (ZO-1) and ileal mucin2 (P < 0.05) mRNA levels. Analysis showed a negative correlation between FCR (d 0-42) and VH, V/C, and the number of goblet cells in the jejunum (P < 0.05). Additionally, BMD or BS supplementation altered the alpha diversity of colonic microbiota (P < 0.05). Correlation analysis revealed that Butyricimonas, Enterobacteriaceae, Clostridiaceae, and Tannerellaceae were positively associated with the acetic acid and butyrate concentrations (P < 0.05). Taken together, the supplementation of BS in the diet of male ducks was conducive to reducing FCR by meliorating intestinal morphology, upregulating ZO-1 and mucin2 mRNA levels, regulating the abundance of microbiota, and metabolites, and having a greater effect than BMD supplementation.
Collapse
Affiliation(s)
- Qianqian Zhang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Guixiang Wang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizhi Wang
- Kemin (China) Technologies Co., Ltd., Zhuhai, China
| | | | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Ogbuewu IP, Mabelebele M, Sebola NA, Mbajiorgu C. Bacillus Probiotics as Alternatives to In-feed Antibiotics and Its Influence on Growth, Serum Chemistry, Antioxidant Status, Intestinal Histomorphology, and Lesion Scores in Disease-Challenged Broiler Chickens. Front Vet Sci 2022; 9:876725. [PMID: 35573393 PMCID: PMC9096611 DOI: 10.3389/fvets.2022.876725] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
In commercial poultry production, chickens are reared under intensive conditions, which may allow infections to spread quickly. Antibiotics are used at sub-therapeutic doses in livestock and poultry feed to prevent diseases and improve productivity. However, restrictions on the use of antibiotics at sub-therapeutic concentrations in livestock feed due to growing concerns of antimicrobial resistance (AMR), together with antibiotic residues in meat and eggs has prompted poultry researchers and feed producers to look for viable alternatives. Thus, there is increasing interest in developing natural alternatives to in-feed antibiotics to improve chicken productivity and health. Probiotics, specifically from the genus Bacillus have proven to be effective due to their spore-forming capabilities. Furthermore, their ability to withstand heat during feed processing and be stored for a long time without losing viability as well as their potential to function in the acidic medium of the chicken gut, provide them with several advantages over conventional probiotics. Several studies regarding the antimicrobial and antioxidant activities of Bacillus probiotics and their positive impact in chicken nutrition have been documented. Therefore, the present review shields light on the positive effect of Bacillus probiotics as alternatives to in-feed antibiotics on growth performance, serum chemistry, antioxidant status, intestinal histomorphology and lesion scores of disease-challenged broiler chickens and the mechanisms by which they exert their actions. It is concluded that Bacillus probiotics supplementation improve growth, health and productive indices of disease-challenged broiler chickens and can be a good alternative to in-feed antibiotics. However, more studies are required on the effect of Bacillus probiotics supplementation in broiler chickens to maximize productivity and achieve the ultimate goal of stopping the usage of antibiotics at sub-therapeutic doses in broiler chicken feed to enhance performance.
Collapse
Affiliation(s)
- Ifeanyi Princewill Ogbuewu
- Department of Agriculture and Animal Health, University of South Africa, Florida, South Africa
- Department of Animal Science and Technology, Federal University of Technology, Owerri, Nigeria
| | - Monnye Mabelebele
- Department of Agriculture and Animal Health, University of South Africa, Florida, South Africa
| | | | - Christian Mbajiorgu
- Department of Agriculture and Animal Health, University of South Africa, Florida, South Africa
| |
Collapse
|