1
|
Zou X, Xu H, Qian W. The role and current research status of resveratrol in the treatment of osteoarthritis and its mechanisms: a narrative review. Drug Metab Rev 2024; 56:399-412. [PMID: 39376171 DOI: 10.1080/03602532.2024.2402751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative disease caused by various factors such as aging, obesity, trauma, and genetics. It is a challenging condition faced by orthopedic doctors in clinical practice and places a heavy burden on patients and their families. Currently, the treatment of OA primarily focuses on symptomatic relief and lacks ideal therapeutic methods. Resveratrol is a natural polyphenolic compound with anti-inflammatory and antioxidant properties, and in recent years, it has gained attention as a candidate drug for OA treatment. This article provides an overview of the research status on the role and mechanisms of resveratrol in treating OA. It has been found that resveratrol can prevent the development of OA by inhibiting inflammatory responses, protecting chondrocytes, maintaining cartilage homeostasis, promoting autophagy, and has shown certain therapeutic effects. This process may be related to the regulation of signaling pathways such as nuclear factor-kappa B (NF-κB), Toll-like receptor 4 (TLR4), and silent information regulator 1 (SIRT1). We summarize the current molecular mechanisms of resveratrol in treating OA, hoping to provide a reference for further research and application of resveratrol in OA treatment.
Collapse
Affiliation(s)
- Xiongfei Zou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Hongjun Xu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Wenwei Qian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
2
|
El Oirdi M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024; 17:692. [PMID: 38931359 PMCID: PMC11206774 DOI: 10.3390/ph17060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
There are a wide variety of phytochemicals collectively known as polyphenols. Their structural diversity results in a broad range of characteristics and biological effects. Polyphenols can be found in a variety of foods and drinks, including fruits, cereals, tea, and coffee. Studies both in vitro and in vivo, as well as clinical trials, have shown that they possess potent antioxidant activities, numerous therapeutic effects, and health advantages. Dietary polyphenols have demonstrated the potential to prevent many health problems, including obesity, atherosclerosis, high blood sugar, diabetes, hypertension, cancer, and neurological diseases. In this paper, the protective effects of polyphenols and the mechanisms behind them are investigated in detail, citing the most recent available literature. This review aims to provide a comprehensive overview of the current knowledge on the role of polyphenols in preventing and managing chronic diseases. The cited publications are derived from in vitro, in vivo, and human-based studies and clinical trials. A more complete understanding of these naturally occurring metabolites will pave the way for the development of novel polyphenol-rich diet and drug development programs. This, in turn, provides further evidence of their health benefits.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
3
|
Kong H, Han JJ, Dmitrii G, Zhang XA. Phytochemicals against Osteoarthritis by Inhibiting Apoptosis. Molecules 2024; 29:1487. [PMID: 38611766 PMCID: PMC11013217 DOI: 10.3390/molecules29071487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease that causes pathological changes in articular cartilage, synovial membrane, or subchondral bone. Conventional treatments for OA include surgical and non-surgical methods. Surgical treatment is suitable for patients in the terminal stage of OA. It is often the last choice because of the associated risks and high cost. Medication of OA mainly includes non-steroidal anti-inflammatory drugs, analgesics, hyaluronic acid, and cortico-steroid anti-inflammatory drugs. However, these drugs often have severe side effects and cannot meet the needs of patients. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Apoptosis is programmed cell death, which is a kind of physiologic cell suicide determined by heredity and conserved by evolution. Inhibition of apoptosis-related pathways has been found to prevent and treat a variety of diseases. Excessive apoptosis can destroy cartilage homeostasis and aggravate the pathological process of OA. Therefore, inhibition of apoptosis-related factors or signaling pathways has become an effective means to treat OA. Phytochemicals are active ingredients from plants, and it has been found that phytochemicals can play an important role in the prevention and treatment of OA by inhibiting apoptosis. We summarize preclinical and clinical studies of phytochemicals for the treatment of OA by inhibiting apoptosis. The results show that phytochemicals can treat OA by targeting apoptosis-related pathways. On the basis of improving some phytochemicals with low bioavailability, poor water solubility, and high toxicity by nanotechnology-based drug delivery systems, and at the same time undergoing strict clinical and pharmacological tests, phytochemicals can be used as a potential therapeutic drug for OA and may be applied in clinical settings.
Collapse
Affiliation(s)
- Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| | - Juan-Juan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| | - Gorbachev Dmitrii
- General Hygiene Department, Samara State Medical University, Samara 443000, Russia;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| |
Collapse
|
4
|
Brown K, Theofanous D, Britton RG, Aburido G, Pepper C, Sri Undru S, Howells L. Resveratrol for the Management of Human Health: How Far Have We Come? A Systematic Review of Resveratrol Clinical Trials to Highlight Gaps and Opportunities. Int J Mol Sci 2024; 25:747. [PMID: 38255828 PMCID: PMC10815776 DOI: 10.3390/ijms25020747] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol has long been proposed as being beneficial to human health across multiple morbidities, yet there is currently no conclusive clinical evidence to advocate its recommendation in any healthcare setting. A large cohort with high-quality clinical data and clearly defined biomarkers or endpoints are required to draw meaningful conclusions. This systematic review compiles every clinical trial conducted using a defined dose of resveratrol in a purified form across multiple morbidities to highlight the current 'state-of-play' and knowledge gaps, informing future trial designs to facilitate the realisation of resveratrol's potential benefits to human health. Over the last 20 years, there have been almost 200 studies evaluating resveratrol across at least 24 indications, including cancer, menopause symptoms, diabetes, metabolic syndrome, and cardiovascular disease. There are currently no consensus treatment regimens for any given condition or endpoint, beyond the fact that resveratrol is generally well-tolerated at a dose of up to 1 g/day. Additionally, resveratrol consistently reduces inflammatory markers and improves aspects of a dysregulated metabolism. In conclusion, over the last 20 years, the increasing weight of clinical evidence suggests resveratrol can benefit human health, but more large, high-quality clinical trials are required to transition this intriguing compound from health food shops to the clinic.
Collapse
Affiliation(s)
- Karen Brown
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Despoina Theofanous
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Robert G. Britton
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Grandezza Aburido
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Coral Pepper
- Odames Library, Victoria Building, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - Shanthi Sri Undru
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Lynne Howells
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| |
Collapse
|
5
|
Wang B, Jiang HM, Qi LM, Li X, Huang Q, Xie X, Xia Q. Deciphering resveratrol's role in modulating pathological pain: From molecular mechanisms to clinical relevance. Phytother Res 2024; 38:59-73. [PMID: 37795923 DOI: 10.1002/ptr.8021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Pathological pain, a multifaceted and debilitating ailment originating from injury or post-injury inflammation of the somatosensory system, poses a global health challenge. Despite its ubiquity, reliable therapeutic strategies remain elusive. To solve this problem, resveratrol, a naturally occurring nonflavonoid polyphenol, has emerged as a potential beacon of hope owing to its anti-inflammatory, antioxidant, and immunomodulatory capabilities. These properties potentially position resveratrol as an efficacious candidate for the management of pathological pain. This concise review summaries current experimental and clinical findings to underscore the therapeutic potential of resveratrol in pathological pain, casting light on the complex underlying pathophysiology. Our exploration suggests that resveratrol may exert its analgesic effect by the modulating pivotal signaling pathways, including PI3K/Akt/mTOR, TNFR1/NF-κB, MAPKs, and Nrf2. Moreover, resveratrol appears to attenuate spinal microglia activation, regulate primary receptors in dorsal root sensory neurons, inhibit pertinent voltage-gated ion channels, and curb the expression of inflammatory mediators and oxidative stress responses. The objective of this review is to encapsulate the pharmacological activity of resveratrol, including its probable signaling pathways, pharmacokinetics, and toxicology pertinent to the treatment of pathological pain. Hopefully, we aim to map out promising trajectories for the development of resveratrol as a potential analgesic.
Collapse
Affiliation(s)
- Biao Wang
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hai-Mei Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu-Ming Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Xia
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
6
|
Aldrich JL, Panicker A, Ovalle R, Sharma B. Drug Delivery Strategies and Nanozyme Technologies to Overcome Limitations for Targeting Oxidative Stress in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:1044. [PMID: 37513955 PMCID: PMC10383173 DOI: 10.3390/ph16071044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is an important, but elusive, therapeutic target for osteoarthritis (OA). Antioxidant strategies that target oxidative stress through the elimination of reactive oxygen species (ROS) have been widely evaluated for OA but are limited by the physiological characteristics of the joint. Current hallmarks in antioxidant treatment strategies include poor bioavailability, poor stability, and poor retention in the joint. For example, oral intake of exogenous antioxidants has limited access to the joint space, and intra-articular injections require frequent dosing to provide therapeutic effects. Advancements in ROS-scavenging nanomaterials, also known as nanozymes, leverage bioactive material properties to improve delivery and retention. Material properties of nanozymes can be tuned to overcome physiological barriers in the knee. However, the clinical application of these nanozymes is still limited, and studies to understand their utility in treating OA are still in their infancy. The objective of this review is to evaluate current antioxidant treatment strategies and the development of nanozymes as a potential alternative to conventional small molecules and enzymes.
Collapse
Affiliation(s)
| | | | | | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.L.A.)
| |
Collapse
|
7
|
Alcaide-Ruggiero L, Cugat R, Domínguez JM. Proteoglycans in Articular Cartilage and Their Contribution to Chondral Injury and Repair Mechanisms. Int J Mol Sci 2023; 24:10824. [PMID: 37446002 DOI: 10.3390/ijms241310824] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Proteoglycans are vital components of the extracellular matrix in articular cartilage, providing biomechanical properties crucial for its proper functioning. They are key players in chondral diseases, specifically in the degradation of the extracellular matrix. Evaluating proteoglycan molecules can serve as a biomarker for joint degradation in osteoarthritis patients, as well as assessing the quality of repaired tissue following different treatment strategies for chondral injuries. Despite ongoing research, understanding osteoarthritis and cartilage repair remains unclear, making the identification of key molecules essential for early diagnosis and effective treatment. This review offers an overview of proteoglycans as primary molecules in articular cartilage. It describes the various types of proteoglycans present in both healthy and damaged cartilage, highlighting their roles. Additionally, the review emphasizes the importance of assessing proteoglycans to evaluate the quality of repaired articular tissue. It concludes by providing a visual and narrative description of aggrecan distribution and presence in healthy cartilage. Proteoglycans, such as aggrecan, biglycan, decorin, perlecan, and versican, significantly contribute to maintaining the health of articular cartilage and the cartilage repair process. Therefore, studying these proteoglycans is vital for early diagnosis, evaluating the quality of repaired cartilage, and assessing treatment effectiveness.
Collapse
Affiliation(s)
- Lourdes Alcaide-Ruggiero
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
| | - Ramón Cugat
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
- Instituto Cugat y Mutualidad de Futbolistas Españoles, Delegación Catalana, 08023 Barcelona, Spain
| | - Juan Manuel Domínguez
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
| |
Collapse
|
8
|
Gambari L, Cellamare A, Grassi F, Grigolo B, Panciera A, Ruffilli A, Faldini C, Desando G. Overview of Anti-Inflammatory and Anti-Nociceptive Effects of Polyphenols to Halt Osteoarthritis: From Preclinical Studies to New Clinical Insights. Int J Mol Sci 2022; 23:ijms232415861. [PMID: 36555503 PMCID: PMC9779856 DOI: 10.3390/ijms232415861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Knee osteoarthritis (OA) is one of the most multifactorial joint disorders in adults. It is characterized by degenerative and inflammatory processes that are responsible for joint destruction, pain and stiffness. Despite therapeutic advances, the search for alternative strategies to target inflammation and pain is still very challenging. In this regard, there is a growing body of evidence for the role of several bioactive dietary molecules (BDMs) in targeting inflammation and pain, with promising clinical results. BDMs may be valuable non-pharmaceutical solutions to treat and prevent the evolution of early OA to more severe phenotypes, overcoming the side effects of anti-inflammatory drugs. Among BDMs, polyphenols (PPs) are widely studied due to their abundance in several plants, together with their benefits in halting inflammation and pain. Despite their biological relevance, there are still many questionable aspects (biosafety, bioavailability, etc.) that hinder their clinical application. This review highlights the mechanisms of action and biological targets modulated by PPs, summarizes the data on their anti-inflammatory and anti-nociceptive effects in different preclinical in vitro and in vivo models of OA and underlines the gaps in the knowledge. Furthermore, this work reports the preliminary promising results of clinical studies on OA patients treated with PPs and discusses new perspectives to accelerate the translation of PPs treatment into the clinics.
Collapse
Affiliation(s)
- Laura Gambari
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Antonella Cellamare
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Panciera
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Alberto Ruffilli
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Giovanna Desando
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: ; Tel.: +39-0516366803
| |
Collapse
|
9
|
Towards Precision Medicine for Osteoarthritis: Focus on the Synovial Fluid Proteome. Int J Mol Sci 2022; 23:ijms23179731. [PMID: 36077129 PMCID: PMC9455979 DOI: 10.3390/ijms23179731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/29/2022] Open
Abstract
Osteoarthritis (OA) is a joint degenerative disease that most affects old age. The study of proteomics in synovial fluid (SF) has the task of providing additional elements to diagnose and predict the progress of OA. This review aims to identify the most significant biomarkers in the study of OA and to stimulate their routine use. Some of the major components of the ECM, such as proteoglycan aggrecan and decorin, were found considerably reduced in OA. Some biomarkers have proved useful for staging the temporality of OA: Periostin was found to be increased in early OA, while CRTA1 and MMPs were found to be increased in late OA. In its natural attempt at tissue regeneration, Collagen III was found to be increased in early OA while decreased in late OA. Some molecules studied in other areas, such as ZHX3 (oncological marker), LYVE1, and VEGF (lymph and angiogenesis markers), also have been found to be altered in OA. It also has been recorded that alteration of the hormonal pathway, using a dosage of PPAR-γ and RETN, can influence the evolution of OA. IL-1, one of the most investigated biomarkers in OA-SF, is not as reliable as a target of OA in recent studies. The study of biomarkers in SF appears to be, in combination with the clinical and radiological aspects, an additional weapon to address the diagnosis and staging of OA. Therefore, it can guide us more appropriately towards the indication of arthroplasty in patients with OA.
Collapse
|
10
|
Yang S, Sun M, Zhang X. Protective Effect of Resveratrol on Knee Osteoarthritis and its Molecular Mechanisms: A Recent Review in Preclinical and Clinical Trials. Front Pharmacol 2022; 13:921003. [PMID: 35959426 PMCID: PMC9357872 DOI: 10.3389/fphar.2022.921003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Osteoarthritis (OA) is one of the progressing chronic joint associated with by many complex factors such as age, obesity, and trauma. Knee osteoarthritis (KOA) is the most common type of OA. KOA is characterized by articular cartilage destruction and degeneration, synovial inflammation, and abnormal subchondral bone changes. To date, no practical clinical approach has been able to modify the pathological progression of KOA. Drug therapy is limited to pain control and may lead to serious side effects when taken for a long time. Therefore, searching for safer and more reliable treatments has become necessary. Interestingly, more and more research has focused on natural products, and monomeric compounds derived from natural products have received much attention as drug candidates for KOA treatment. Resveratrol (RES), a natural phenolic compound, has various pharmacological and biological activities, including anti-cancer, anti-apoptotic, and anti-decay. Recently, studies on the effects of RES on maintaining the normal homeostasis of chondrocytes in KOA have received increasing attention, which seems to be attributed to the multi-targeted effects of RES on chondrocyte function. This review summarizes preclinical trials, clinical trials, and emerging tissue engineering studies of RES for KOA and discusses the specific mechanisms by which RES alleviates KOA. A better understanding of the pharmacological role of RES in KOA could provide clinical implications for intervention in the development of KOA.
Collapse
Affiliation(s)
| | - Mingli Sun
- *Correspondence: Mingli Sun, ; Xinan Zhang,
| | | |
Collapse
|
11
|
Deep Learning-Based CT Imaging to Evaluate the Therapeutic Effects of Acupuncture and Moxibustion Therapy on Knee Osteoarthritis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1135196. [PMID: 35637844 PMCID: PMC9148233 DOI: 10.1155/2022/1135196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022]
Abstract
The study was aimed at analyzing the application value of deep learning-based computed tomography (CT) in evaluating the effect of acupuncture for knee osteoarthritis (KOA). Specifically, 124 patients with KOA were selected in the test group (warm acupuncture and moxibustion) and the control group (simple acupuncture), with 62 cases in each group. Deep learning-based CT scanning was performed before and after treatment to compare the Lequesne-Mery, Visual Analog Scale (VAS), Western Ontario and McMaster Universities (WOMAC), Hospital Special Surgery (HSS), and Knee Society Score (KSS) scores as well as the overall effective rate. The results showed that the trabecular thickness, quantity, bone mineral density (BMD), connection density, structural model index, and articular cartilage thickness were different significantly between the two groups (P < 0.05). After treatment, the Lequesne-Mery was 4.78, the VAS was 0.87, and the WOMAC score was 14.89 of the test group, which were reduced (P < 0.05). The KSS and HSS scores of the test group were improved significantly after treatment (P < 0.05). The total effective rate of the test group was 85.48%, and that of the control group was 51.61%; the former was significantly higher than the latter (P < 0.05). In conclusion, acupuncture could improve the clinical effect on KOA patients, and CT scanning under deep learning algorithm could evaluate the clinical effect of acupuncture for KOA.
Collapse
|
12
|
Sirše M. Effect of Dietary Polyphenols on Osteoarthritis-Molecular Mechanisms. Life (Basel) 2022; 12:436. [PMID: 35330187 PMCID: PMC8955436 DOI: 10.3390/life12030436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis is a common crippling and degenerative disease resulting in irreversible functional changes due to damage of the cartilage and other tissues of the joint. With limited safe and effective pharmaceutical treatments, the demand and use for alternative therapeutic approaches with symptomatic relief for OA patients have increased. Clinical, pre-clinical, and in vitro studies have demonstrated that polyphenols can exert pain-relieving symptoms coupled with increased functional capacity in OA models. This review will highlight studies carried out in the last five years to define the efficacies and underlying mechanisms in polyphenols such as quercetin, resveratrol, curcumin, epigallocatechin-3-gallate, rosmarinic acid, genistein, ginger, berries, silver fir, pine bark, and Boswellia. Most of these studies indicate that polyphenols exhibit their beneficial roles through regulating changes at the biochemical and molecular levels, inducing or inhibiting various signaling pathways related to inflammation and oxidative stress. Polyphenols have also been implicated in modulating microRNA at the posttranscriptional level to counteract OA pathogenesis.
Collapse
Affiliation(s)
- Mateja Sirše
- Department of Orthopaedics, University Medical Centre Maribor, Ljubljanska Street 5, 2000 Maribor, Slovenia
| |
Collapse
|