1
|
Liu L, Jia D, He Z, Wen B, Zhang X, Han S. Individualized functional connectome abnormalities obtained using two normative model unveil neurophysiological subtypes of obsessive compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111122. [PMID: 39154932 DOI: 10.1016/j.pnpbp.2024.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The high heterogeneity observed among patients with obsessive-compulsive disorder (OCD) underscores the need to identify neurophysiological OCD subtypes to facilitate personalized diagnosis and treatment. In this study, our aim was to identify potential OCD subtypes based on individualized functional connectome abnormalities. We recruited a total of 99 patients with OCD and 104 healthy controls (HCs) matched for demographic characteristics. Individualized functional connectome abnormalities were obtained using normative models of functional connectivity strength (FCS) and used as features to unveil OCD subtypes. Sensitivity analyses were conducted to assess the reproducibility and robustness of the clustering outcomes. Patients exhibited significant intersubject heterogeneity in individualized functional connectome abnormalities. Two subtypes with distinct patterns of FCS abnormalities relative to HCs were identified. Subtype 1 patients primarily exhibited significantly decreased FCS in regions including the frontal gyrus, insula, hippocampus, and precentral/postcentral gyrus, whereas subtype 2 patients demonstrated increased FCS in widespread brain regions. When all patients were combined, no significant differences were observed. Additionally, the identified subtypes showed significant differences in age of onset. Furthermore, sensitivity analyses confirmed the reproducibility of our subtyping results. In conclusion, the identified OCD subtypes shed new light on the taxonomy and neurophysiological heterogeneity of OCD.
Collapse
Affiliation(s)
- Liang Liu
- School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China
| | - Dongyao Jia
- School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China.
| | - Zihao He
- School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaopan Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Teng C, Zhang W, Zhang D, Shi X, Wu X, Qiao H, Guan C, Hu X, Zhang N. Association between clinical features and decreased degree centrality and variability in dynamic functional connectivity in the obsessive-compulsive disorder. Neuroimage Clin 2024; 44:103665. [PMID: 39270630 PMCID: PMC11416513 DOI: 10.1016/j.nicl.2024.103665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Neuroimaging studies have indicated widespread brain structural and functional disruptions in patients with obsessive-compulsive disorder (OCD). However, the underlying mechanism of these changes remains unclear. A total of 45 patients with OCD and 42 healthy controls (HC) were enrolled. The study investigated local degree centrality (DC) abnormalities and employed abnormal regions of DC as seeds to investigate variability in dynamic functional connectivity (dFC) in the whole brain using a sliding window approach to analyze resting-state functional magnetic resonance imaging. The relationship between abnormal DC and dFC as well as the clinical features of OCD were examined using correlation analysis. Our findings suggested decreased DC in the bilateral thalamus, bilateral precuneus, and bilateral cuneus in OCD patients and a nominally negative correlation between the DC value in the thalamus and illness severity measured using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). In addition, seed-based dFC analysis showed that compared to measurements in the HC, the patients had decreased dFC variability between the left thalamus and the left cuneus and right lingual gyrus, and between the bilateral cuneus and bilateral postcentral gyrus, and a nominally positive correlation between the duration of illness and dFC variability between the left cuneus and left postcentral gyrus. These results indicated that OCD patients had decreased hub importance in the bilateral thalamus and cuneus throughout the entire brain. This reduction was associated with impaired coupling with dynamic function in the visual cortex and sensorimotor network and provided novel insights into the neurophysiological mechanisms underlying OCD.
Collapse
Affiliation(s)
- Changjun Teng
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Da Zhang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - XiaoMeng Shi
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Wu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huifen Qiao
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengbin Guan
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiao Hu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ning Zhang
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Qiao Y, Song X, Yan J, Pan W, Chia C, Zhao D, Niu CM, Xie Q, Jin H. Neurological activation during verbal fluency task and resting-state functional connectivity abnormalities in obsessive-compulsive disorder: a functional near-infrared spectroscopy study. Front Psychiatry 2024; 15:1416810. [PMID: 39279815 PMCID: PMC11392768 DOI: 10.3389/fpsyt.2024.1416810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Objective This study aims to investigate the activation of frontotemporal functional brain areas in patients with Obsessive-Compulsive Disorder (OCD) during a Verbal Fluency Task (VFT), and to compare their brain functional connectivity in a resting state with that of healthy controls. The goal is to deepen our understanding of the neuropathological mechanisms underlying OCD. Methods 32 patients with OCD and 32 controls matched for age, gender, handedness, and years of education participated in this study, they were divided into OCD group and healthy comtrol group. We conducted VFT task tests and 10-minute resting state tests on both groups by using functional Near-Infrared Spectroscopy (fNIRS). The VFT was utilized to assess the activation (beta values) and the integral and centroid values of the frontal and bilateral temporal lobes, including brain areas BA9 and 46 (dorsolateral prefrontal cortex), BA10 (frontal pole), BA45 (inferior frontal gyrus), BA21 (middle temporal gyrus), and BA22 (superior temporal gyrus). We evaluated the functional connectivity levels of these areas during the resting state. Differences in these measures between OCD patients and healthy controls were analyzed using two-sample independent t-tests and non-parametric Mann-Whitney U tests. Results During VFT, OCD had smaller integral values(z=5.371, p<0.001; t=4.720, p<0.001), and larger centroid values(t=-2.281, p=0.026; z=-2.182, p=0.029) compared to healthy controls, along with a reduced number of activated channels detected by fNIRS. Additionally, activation values (β) in various functional brain areas, including BA9, BA46, BA10, BA45, BA21, and BA22, were significantly lower in the OCD group (all p< 0.01). In the resting state, notable disparities in functional connectivity were observed between the inferior frontal gyrus (IFG) and dorsolateral prefrontal cortex (DLPFC) in the OCD group, in comparison to the control group. Specifically, there was a significant increase in connectivity between the left IFG and right DLPFC, suggesting the presence of altered connectivity patterns in these areas. Conclusions The study highlights significant disparities in neural activation and functional connectivity between OCD patients and healthy controls during VFT. Specifically, reduced activation was noted in the frontal and bilateral temporal lobes of OCD patients, alongside alterations in resting-state functional connectivity between the IFG and DLPFC. These findings contribute to our understanding of the neurobiological underpinnings of OCD and may guide future therapeutic strategies.
Collapse
Affiliation(s)
- Yongjun Qiao
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Song
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Yan
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiu Pan
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chinhsuan Chia
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Zhao
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanxin M Niu
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Jin
- Department of Psychiatry, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Shang T, Chen Y, Ding Z, Qin W, Li S, Wei S, Ding Z, Yang X, Qi J, Qin X, Lv D, Li T, Pan Z, Zhan C, Xiao J, Sun Z, Wang N, Yu Z, Li C, Li P. Altered dynamic neural activities in individuals with obsessive-compulsive disorder and comorbid depressive symptoms. Front Psychiatry 2024; 15:1403933. [PMID: 39176228 PMCID: PMC11339690 DOI: 10.3389/fpsyt.2024.1403933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/19/2024] [Indexed: 08/24/2024] Open
Abstract
Objectives Depressive symptoms are the most prevalent comorbidity in individuals with obsessive-compulsive disorder (OCD). The objective of this study was to investigate the dynamic characteristics of resting-state neural activities in OCD patients with depressive symptoms. Methods We recruited 29 OCD patients with depressive symptoms, 21 OCD patients without depressive symptoms, and 27 healthy controls, and collected data via structural and functional magnetic resonance imaging (fMRI). We analyzed the fMRI results using the dynamic amplitude of low-frequency fluctuation (dALFF) and support vector machine (SVM) techniques. Results Compared with OCD patients without depressive symptoms, OCD patients with depressive symptoms exhibited an increased dALFF in the left precuneus and decreased dALFF in the right medial frontal gyrus. The SVM indicated that the integration of aberrant dALFF values in the left precuneus and right medial frontal gyrus led to an overall accuracy of 80%, a sensitivity of 79%, and a specificity of 100% in detecting depressive symptoms among OCD patients. Conclusion Therefore, our study reveals that OCD patients with depressive symptoms display neural activities with unique dynamic characteristics in the resting state. Accordingly, abnormal dALFF values in the left precuneus and right medial frontal gyrus could be used to identify depressive symptoms in OCD patients.
Collapse
Affiliation(s)
- Tinghuizi Shang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yunhui Chen
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhenning Ding
- Medical Imaging Department, Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Weiqi Qin
- The Second Affiliated Hospital, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Shancong Li
- The Second Affiliated Hospital, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Siyi Wei
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhipeng Ding
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xu Yang
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jiale Qi
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xiaoqing Qin
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Dan Lv
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Tong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zan Pan
- Infection Control Department, Harbin Puning Hospital, Harbin, Heilongjiang, China
| | - Chuang Zhan
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang, China
| | - Jian Xiao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhenghai Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Na Wang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zengyan Yu
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Chengchong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
5
|
Perera MPN, Gotsis ES, Bailey NW, Fitzgibbon BM, Fitzgerald PB. Exploring functional connectivity in large-scale brain networks in obsessive-compulsive disorder: a systematic review of EEG and fMRI studies. Cereb Cortex 2024; 34:bhae327. [PMID: 39152672 PMCID: PMC11329673 DOI: 10.1093/cercor/bhae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating psychiatric condition that is difficult to treat due to our limited understanding of its pathophysiology. Functional connectivity in brain networks, as evaluated through neuroimaging studies, plays a pivotal role in understanding OCD. While both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been extensively employed in OCD research, few have fully synthesized their findings. To bridge this gap, we reviewed 166 studies (10 EEG, 156 fMRI) published up to December 2023. In EEG studies, OCD exhibited lower connectivity in delta and alpha bands, with inconsistent findings in other frequency bands. Resting-state fMRI studies reported conflicting connectivity patterns within the default mode network (DMN) and sensorimotor cortico-striato-thalamo-cortical (CSTC) circuitry. Many studies observed decreased resting-state connectivity between the DMN and salience network (SN), implicating the 'triple network model' in OCD. Task-related hyperconnectivity within the DMN-SN and hypoconnectivity between the SN and frontoparietal network suggest OCD-related cognitive inflexibility, potentially due to triple network dysfunction. In conclusion, our review highlights diverse connectivity differences in OCD, revealing complex brain network interplay that contributes to symptom manifestation. However, the presence of conflicting findings underscores the necessity for targeted research to achieve a comprehensive understanding of the pathophysiology of OCD.
Collapse
Affiliation(s)
- M Prabhavi N Perera
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Efstathia S Gotsis
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Neil W Bailey
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Bernadette M Fitzgibbon
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Paul B Fitzgerald
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| |
Collapse
|
6
|
Yu J, Xu Q, Ma L, Huang Y, Zhu W, Liang Y, Wang Y, Tang W, Zhu C, Jiang X. Convergent functional change of frontoparietal network in obsessive-compulsive disorder: a voxel-based meta-analysis. Front Psychiatry 2024; 15:1401623. [PMID: 39041046 PMCID: PMC11260709 DOI: 10.3389/fpsyt.2024.1401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
Background Obsessive-compulsive disorder (OCD) is a chronic psychiatric illness with complex clinical manifestations. Cognitive dysfunction may underlie OC symptoms. The frontoparietal network (FPN) is a key region involved in cognitive control. However, the findings of impaired FPN regions have been inconsistent. We employed meta-analysis to identify the fMRI-specific abnormalities of the FPN in OCD. Methods PubMed, Web of Science, Scopus, and EBSCOhost were searched to screen resting-state functional magnetic resonance imaging (rs-fMRI) studies exploring dysfunction in the FPN of OCD patients using three indicators: the amplitude of low-frequency fluctuation/fractional amplitude of low-frequency fluctuation (ALFF/fALFF), regional homogeneity (ReHo) and functional connectivity (FC). We compared all patients with OCD and control group in a primary analysis, and divided the studies by medication in secondary meta-analyses with the activation likelihood estimation (ALE) algorithm. Results A total of 31 eligible studies with 1359 OCD patients (756 men) and 1360 healthy controls (733 men) were included in the primary meta-analysis. We concluded specific changes in brain regions of FPN, mainly in the left dorsolateral prefrontal cortex (DLPFC, BA9), left inferior frontal gyrus (IFG, BA47), left superior temporal gyrus (STG, BA38), right posterior cingulate cortex (PCC, BA29), right inferior parietal lobule (IPL, BA40) and bilateral caudate. Additionally, altered connectivity within- and between-FPN were observed in the bilateral DLPFC, right cingulate gyrus and right thalamus. The secondary analyses showed improved convergence relative to the primary analysis. Conclusion OCD patients showed dysfunction FPN, including impaired local important nodal brain regions and hypoconnectivity within the FPN (mainly in the bilateral DLPFC), during the resting state. Moreover, FPN appears to interact with the salience network (SN) and default mode network (DMN) through pivotal brain regions. Consistent with the hypothesis of fronto-striatal circuit dysfunction, especially in the dorsal cognitive circuit, these findings provide strong evidence for integrating two pathophysiological models of OCD.
Collapse
Affiliation(s)
- Jianping Yu
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qianwen Xu
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Lisha Ma
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yueqi Huang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjing Zhu
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Liang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunzhan Wang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenxin Tang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhu
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoying Jiang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Yan H, Zhang Y, Shan X, Li H, Liu F, Xie G, Li P, Guo W. Altered interhemispheric functional connectivity in patients with obsessive-compulsive disorder and its potential in therapeutic response prediction. J Neurosci Res 2024; 102. [PMID: 38284840 DOI: 10.1002/jnr.25272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 01/30/2024]
Abstract
The trajectory of voxel-mirrored homotopic connectivity (VMHC) after medical treatment in obsessive-compulsive disorder (OCD) and its value in prediction of treatment response remains unclear. This study aimed to investigate the pathophysiological mechanism of OCD, as well as biomarkers for prediction of pharmacological efficacy. Medication-free patients with OCD and healthy controls (HCs) underwent magnetic resonance imaging. The patients were scanned again after a 4-week treatment with paroxetine. The acquired data were subjected to VMHC, support vector regression (SVR), and correlation analyses. Compared with HCs (36 subjects), patients with OCD (34 subjects after excluding two subjects with excessive head movement) exhibited significantly lower VMHC in the bilateral superior parietal lobule (SPL), postcentral gyrus, and calcarine cortex, and VMHC in the postcentral gyrus was positively correlated with cognitive function. After treatment, the patients showed increased VMHC in the bilateral posterior cingulate cortex/precuneus (PCC/PCu) with the improvement of symptoms. SVR results showed that VMHC in the postcentral gyrus at baseline could aid to predict a change in the scores of OCD scales. This study revealed that SPL, postcentral gyrus, and calcarine cortex participate in the pathophysiological mechanism of OCD while PCC/PCu participate in the pharmacological mechanism. VMHC in the postcentral gyrus is a potential predictive biomarker of the treatment effects in OCD.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yingying Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Luo L, Li Q, Wang Y, He N, Wang Y, You W, Zhang Q, Long F, Chen L, Zhao Y, Yao L, Sweeney JA, Gong Q, Li F. Shared and Disorder-Specific Alterations of Brain Temporal Dynamics in Obsessive-Compulsive Disorder and Schizophrenia. Schizophr Bull 2023; 49:1387-1398. [PMID: 37030006 PMCID: PMC10483459 DOI: 10.1093/schbul/sbad042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) and schizophrenia have distinct but also overlapping symptoms. Few studies have examined the shared and disorder-specific disturbances in dynamic brain function in the 2 disorders. STUDY DESIGN Resting-state functional magnetic resonance imaging data of 31 patients with OCD and 49 patients with schizophrenia, all untreated, and 45 healthy controls (HCs) were analyzed using spatial group independent component (IC) analysis. Time-varying degree centrality patterns across the whole brain were clustered into 3 reoccurring states, and state transition metrics were obtained. We further explored regional temporal variability of degree centrality for each IC across all time windows. STUDY RESULTS Patients with OCD and patients with schizophrenia both showed decreased occurrence of a state having the highest centrality in the sensorimotor and auditory networks. Additionally, patients with OCD and patients with schizophrenia both exhibited reduced dynamics of degree centrality in the superior frontal gyrus than controls, while dynamic degree centrality of the cerebellum was lower in patients with schizophrenia than with OCD and HCs. Altered dynamics of degree centrality nominally correlated with symptom severity in both patient groups. CONCLUSIONS Our study provides evidence of transdiagnostic and clinically relevant functional brain abnormalities across OCD and schizophrenia in neocortex, as well as functional dynamic alterations in the cerebellum specific to schizophrenia. These findings add to the recognition of overlap in neocortical alterations in the 2 disorders, and indicate that cerebellar alterations in schizophrenia may be specifically important in schizophrenia pathophysiology via impact on cerebellar thalamocortical circuitry.
Collapse
Affiliation(s)
- Lekai Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Radiology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yaxuan Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ning He
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yuxia Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wanfang You
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qian Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Fenghua Long
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Lizhou Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Li Yao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
9
|
Ding Z, Ding Z, Chen Y, Lv D, Li T, Shang T, Ma J, Zhan C, Yang X, Xiao J, Sun Z, Wang N, Guo W, Li C, Yu Z, Li P. Decreased gray matter volume and dynamic functional alterations in medicine-free obsessive-compulsive disorder. BMC Psychiatry 2023; 23:289. [PMID: 37098479 PMCID: PMC10131325 DOI: 10.1186/s12888-023-04740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/31/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Previous studies discovered the presence of abnormal structures and functions in the brain regions of patients with obsessive-compulsive disorder (OCD). Nevertheless, whether structural changes in brain regions are coupled with alterations in dynamic functional connectivity (dFC) at rest in medicine-free patients with OCD remains vague. METHODS Three-dimensional T1-weighed magnetic resonance imaging (MRI) and resting-state functional MRI were performed on 50 medicine-free OCD and 50 healthy controls (HCs). Firstly, the differences in gray matter volume (GMV) between OCD and HCs were compared. Then, brain regions with aberrant GMV were used as seeds for dFC analysis. The relationship of altered GMV and dFC with clinical parameters in OCD was explored using partial correlation analysis. Finally, support vector machine was applied to examine whether altered multimodal imaging data might be adopted to distinguish OCD from HCs. RESULTS Our findings indicated that GMV in the left superior temporal gyrus (STG) and right supplementary motor area (SMA) was reduced in OCD, and the dFC between the left STG and the left cerebellum Crus I and left thalamus, and between the right SMA and right dorsolateral prefrontal cortex (DLPFC) and left precuneus was decreased at rest in OCD. The brain regions both with altered GMV and dFC values could discriminate OCD from HCs with the accuracy of 0.85, sensitivity of 0.90 and specificity of 0.80. CONCLUSION The decreased gray matter structure coupling with dynamic function in the left STG and right SMA at rest may be crucial in the pathophysiology of OCD. TRIAL REGISTRATION Study on the mechanism of brain network in obsessive-compulsive disorder with multi-model magnetic resonance imaging (registration date: 08/11/2017; registration number: ChiCTR-COC-17,013,301).
Collapse
Affiliation(s)
- Zhenning Ding
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Zhipeng Ding
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Yunhui Chen
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Dan Lv
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Tong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Tinghuizi Shang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Jidong Ma
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang, 150050, China
| | - Chuang Zhan
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang, 150050, China
| | - Xu Yang
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Jian Xiao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Zhenghai Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Na Wang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chengchong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China.
| | - Zengyan Yu
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China.
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China.
| |
Collapse
|
10
|
Xu Y, Zheng R, Guo H, Wei Y, Wen B, Dai S, Han S, Cheng J, Zhang Y. Structural and functional deficits and couplings in severe and moderate OCD. J Psychiatr Res 2023; 160:240-247. [PMID: 36870233 DOI: 10.1016/j.jpsychires.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Changes in gray matter volume and functional connections have been frequently observed in patients with obsessive compulsive disorder. However, different grouping may cause diverse volume alterations and could draw more adverse conclusions about the pathophysiology of obsessive compulsive disorder(OCD). Most of them preferred to divide subjects into patients and healthy controls, rather than a detailed subgroup. Moreover, multimodal neuroimaging studies about structural-functional defects and couplings are rather rare. Our aim was to explore gray matter volume(GMV) and functional networks abnormalities induced by structural deficits based on severity of Yale-Brown Obsessive Compulsive Scale(Y-BOCS) symptom including OCD patients with severe(S-OCD, n = 31) and moderate symptoms(M-OCD, n = 42) and healthy controls (HCs, n = 54); Voxel-based morphometry(VBM) method was used to detect GMV differences among three groups, then used as masks according to one-way analysis of variance(ANOVA) results for the subsequent resting-state functional connectivity(rs-FC) analysis. Besides, correlation and subgroup analysis were performed to detect the potential roles of structural deficits between every two groups. ANOVA analysis showed that both S-OCD and M-OCD had increased volume in anterior cingulate cortex(ACC), left precuneus(L-Pre) and paracentral lobule(PCL), postcentral gyrus, left inferior occipital gyrus(L-IOG) and right superior occipital gyrus(R-SOG) and bilateral cuneus, middle occipital gyrus(MOG), and calcarine. Additionally, increased connections between Pre and angular gyrus(AG) and inferior parietal lobule(IPL) have been found. Moreover, connections between the left cuneus and lingual gyrus, between IOG and left lingual gyrus, fusiform and between L-MOG and cerebellum were also included. Subgroup analysis showed that decreased GMV in left caudate was negatively correlated with compulsion and total score in patients with moderate symptom compared to HCs. Our findings indicated that altered GMV in occipital-related regions, Pre, ACC and PCL and the disrupted FC networks including MOG-cerebellum and Pre-AG and IPL. Moreover, subgroup GMV analysis furtherly revealed negative associations between GMV changes and Y-BOCS symptom, offering preparatory proof for the involvement of structural and functional deficits in cortical-subcortical circuitry. Thus, they could provide insights into the neurobiological basis.
Collapse
Affiliation(s)
- Yinhuan Xu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huirong Guo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shufan Dai
- Software School of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Lv D, Ou Y, Chen Y, Ding Z, Ma J, Zhan C, Yang R, Shang T, Zhang G, Bai X, Sun Z, Xiao J, Wang X, Guo W, Li P. Anatomical distance affects functional connectivity at rest in medicine-free obsessive-compulsive disorder. BMC Psychiatry 2022; 22:462. [PMID: 36221076 PMCID: PMC9555180 DOI: 10.1186/s12888-022-04103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/27/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Brain functional abnormalities at rest have been observed in obsessive-compulsive disorder (OCD). However, whether and how anatomical distance influences functional connectivity (FC) at rest is ambiguous in OCD. METHODS Using resting-state functional magnetic resonance imaging data, we calculated the FC of each voxel in the whole-brain and divided FC into short- and long-range FCs in 40 medicine-free patients with OCD and 40 healthy controls (HCs). A support vector machine (SVM) was used to determine whether the altered short- and long-range FCs could be utilized to distinguish OCD from HCs. RESULTS Patients had lower short-range positive FC (spFC) and long-range positive FC (lpFC) in the left precentral/postcentral gyrus (t = -5.57 and -5.43; P < 0.05, GRF corrected) and higher lpFC in the right thalamus/caudate, left thalamus, left inferior parietal lobule (IPL) and left cerebellum CrusI/VI (t = 4.59, 4.61, 4.41, and 5.93; P < 0.05, GRF corrected). Furthermore, lower spFC in the left precentral/postcentral gyrus might be used to distinguish OCD from HCs with an accuracy of 80.77%, a specificity of 81.58%, and a sensitivity of 80.00%. CONCLUSION These findings highlight that anatomical distance has an effect on the whole-brain FC patterns at rest in OCD. Meanwhile, lower spFC in the left precentral/postcentral gyrus might be applied in distinguishing OCD from HCs.
Collapse
Affiliation(s)
- Dan Lv
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Yangpan Ou
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunhui Chen
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Zhenning Ding
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Jidong Ma
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, China
| | - Chuang Zhan
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, China
| | - Ru Yang
- grid.452708.c0000 0004 1803 0208Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tinghuizi Shang
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Guangfeng Zhang
- grid.412613.30000 0004 1808 3289Department of Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xiaoyu Bai
- grid.454868.30000 0004 1797 8574CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhenghai Sun
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Jian Xiao
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Xiaoping Wang
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|