1
|
Yang Y, Qian Z, Wu C, Cheng Y, Yang B, Shao J, Zhao J, Zhu X, Jia X, Feng L. Differential absorption and metabolic characteristics of organic acid components in pudilan xiaoyan oral liquid between young rats and adult rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118528. [PMID: 38972526 DOI: 10.1016/j.jep.2024.118528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pudilan Xiaoyan Oral Liquid (PDL) is a proprietary Chinese medicinal preparation approved by the State for treating acute pharyngitis in both adults and children (Approval No. Z20030095). It is worth noting that children exhibit unique physiopathological characteristics compared to adults. However, the in vivo regulatory characteristics of PDL in treating acute pharyngitis in children remain incompletely understood. AIM OF THE STUDY The differential absorption and metabolism characteristics of the main pharmacological components in PDL in young and adult rats were investigated with a view to providing a reference for preclinical data of PDL in medication for children. MATERIALS AND METHODS This study utilized UPLC-Q-TOF-MS to investigate the pharmacodynamic material basis of PDL. The focus was on the gastrointestinal digestion and absorption characteristics of organic acid components in PDL (PDL-OAC), known as the primary pharmacodynamic components in this formulation. The research combined in vitro dynamic simulation and a Quadruple single-pass intestinal perfusion model to examine these characteristics. The permeability properties of PDL-OAC were evaluated using an artificial parallel membrane model. Additionally, an acute pharyngitis model was established to evaluate the histopathological condition of the pharynx in young rats using H&E staining. The levels of IL-1β, TNF-α, IL-6, and IL-10 in blood and pharyngeal tissue homogenates of young rats were quantified using ELISA kits. RESULTS A total of 91 components were identified in PDL, including 33 organic acids, 24 flavonoids, 14 alkaloids, 5 terpenoids and coumarins, 3 sugars, and 12 amino acids. The PDL-OAC exhibited a significant reduction in IL-1β, TNF-α, IL-6, and IL-10 levels in the pharyngeal tissues of young rats with acute pharyngitis. Results from dynamic simulation studies of gastrointestinal fluids revealed that the PDL-OAC (Specifically chlorogenic acid (CGA), gallic acid (GA), chicoric acid (CRA), and caffeic acid (CA)) were effectively stabilized in the gastrointestinal fluids of both children and adults in vitro. Young rats, characterized by thinner intestinal walls and higher permeability, efficiently absorbed the four organic acids across the entire intestinal segment. The absorption of CGA, GA, and CRA followed a concentration-dependent pattern, with CGA and GA absorption being influenced by exocytosis. CONCLUSION The efficacy of the PDL-OAC in treating acute pharyngitis was demonstrated in young rats. The absorption rate of these components was observed to be faster in young rats compared to adult rats, underscoring the need for dedicated studies on the drug's usage in children. This research provides valuable insights for the appropriate clinical use of PDL in pediatric patients.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Zhouyang Qian
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Chenhui Wu
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yue Cheng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Bing Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Jianguo Shao
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing, 225400, PR China.
| | - Jing Zhao
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing, 225400, PR China.
| | - Xiangjun Zhu
- Jiangsu Health Development Research Center, National Health and Family Planning Commission Contraceptives Adverse Reaction Surveillance Center, Nanjing, 210036, PR China.
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
2
|
Su FZ, Zhu EL, Bai CX, Zhang WS, Liu M, Li B, Jia CC, Zhang P, Zhang BW, Zou R, Li QX, Yang BY, Kuang HX, Wang QH. A comparative study on the antipyretic effect and underlying mechanisms of different bile-fermented Arisaemas. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118951. [PMID: 39423945 DOI: 10.1016/j.jep.2024.118951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cattle bile Arisaema (CBA) and Pig bile Arisaema (PBA) are both processed products fermented from Arisaema erubescens (Wall.) Schott and animal bile, which are recorded in China Pharmacopoeia. Traditionally, bile Arisaema was often used for clearing heat and eliminating phlegm, calming wind and calming panic. Modern pharmacological researches suggest that both two drugs exert an antipyretic effect, while there is lack of the systematical and comparative evidence on underlying mechanism. AIM OF THE STUDY To comprehensively clarify the differences and underlying mechanisms of antipyretic effect of the two drugs. METHODS In this study, an accurate and reliable detection method based on ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-TQ MS) for comparing the content difference of bile acids from the two drugs was successfully established and applied. Besides, a dry yeast-induced fever rat model was established, and rectal temperature and content of pyrogenic cytokines were conducted to evaluate the antipyretic effect of CBA and PBA. Serum and hypothalamus untargeted metabolomics analysis based on ultra-performance liquid chromatography coupled with quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS/MS) technology were performed for elucidating the changes of metabolic profile. RESULTS The results indicated that CBA and PBA both exerted a significantly antipyretic effect, but CBA showed the characteristic of quicker onset and longer duration than that of PBA. The ELISA and western blotting analysis exhibited that the underlying antipyretic mechanism of the two drugs was closely associated with inhibiting inflammation through regulating TLR4/NF-κB signaling pathway. Moreover, the metabolism pathway analysis revealed that lipid metabolism and amino acid metabolism were greatly disturbed, which showed a certain correlation with antipyretic effect of two drugs. CONCLUSION Collectively, our results delineate a potential mechanism of two different bile Arisaemas against febrile via regulating metabolic disorders and targeting inhibition of inflammation for the improvement of fever symptom of the body. Notably, our current study suggested that CBA might be a better choice for suppressing fever clinically.
Collapse
Affiliation(s)
- Fa-Zhi Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China.
| | - En-Lin Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chen-Xi Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Wen-Sen Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Meng Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Biao Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Chen-Chen Jia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Peng Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Bao-Wu Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Run Zou
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Qing-Xia Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China.
| | - Qiu-Hong Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Fang X, Jiang XF, Zhang YP, Zhou CL, Dong YJ, Li B, Lv GY, Chen SH. Exploring the Action Mechanism and Validation of the Key Pathways of Dendrobium officinale Throat-clearing Formula for the Treatment of Chronic Pharyngitis Based on Network Pharmacology. Comb Chem High Throughput Screen 2024; 27:479-496. [PMID: 37877149 PMCID: PMC10964081 DOI: 10.2174/0113862073261351231005111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 10/26/2023]
Abstract
AIM This study investigated the molecular action mechanism of a compound herb, also known as the Dendrobium officinale throat-clearing formula (QYF), by using network pharmacology and animal experimental validation methods to treat chronic pharyngitis (CP). METHODS The active ingredients and disease targets of QYF were determined by searching the Batman-TCM and GeneCards databases. Subsequently, the drug-active ingredient-target and protein-protein interaction networks were constructed, and the core targets were obtained through network topology. The Metascape database was screened, and the core targets were enriched with Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. RESULTS In total, 1403 and 241 potential targets for drugs and diseases, respectively, and 81 intersecting targets were yielded. The core targets included TNF, IL-6, and IL-1β, and the core pathways included PI3K-Akt. The QYF treatment group exhibited effectively improved general signs, enhanced anti-inflammatory ability in vitro, reduced serum and tissue expressions of TNF- α, IL-6, and IL-1β inflammatory factors, and decreased blood LPS levels and Myd88, TLR4, PI3K, Akt, and NF-κB p65 protein expression in the tissues. CONCLUSION QYF could inhibit LPS production, which regulated the expression of the TLR4/PI3K/Akt/NF-κB signaling pathway to suppress the expression of the related inflammatory factors (i.e., TNF-α, IL-6, and IL-1β), thereby alleviating the CP process.
Collapse
Affiliation(s)
- Xi Fang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gangshu District, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, No. 999 Changhong East Street, Huzhou City, Zhejiang, 310023, China
| | - Xiao-Feng Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gangshu District, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, No. 999 Changhong East Street, Huzhou City, Zhejiang, 310023, China
| | - Yi-Piao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gangshu District, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, No. 999 Changhong East Street, Huzhou City, Zhejiang, 310023, China
| | - Cheng-Liang Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gangshu District, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, No. 999 Changhong East Street, Huzhou City, Zhejiang, 310023, China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gangshu District, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, No. 999 Changhong East Street, Huzhou City, Zhejiang, 310023, China
| | - Bo- Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gangshu District, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, No. 999 Changhong East Street, Huzhou City, Zhejiang, 310023, China
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gangshu District, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, No. 999 Changhong East Street, Huzhou City, Zhejiang, 310023, China
| |
Collapse
|
4
|
Jayasinghe AMK, Kirindage KGIS, Fernando IPS, Kim KN, Oh JY, Ahn G. The Anti-Inflammatory Effect of Low Molecular Weight Fucoidan from Sargassum siliquastrum in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via Inhibiting NF-κB/MAPK Signaling Pathways. Mar Drugs 2023; 21:347. [PMID: 37367672 PMCID: PMC10303138 DOI: 10.3390/md21060347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023] Open
Abstract
Brown seaweed is a rich source of fucoidan, which exhibits a variety of biological activities. The present study discloses the protective effect of low molecular weight fucoidan (FSSQ) isolated from an edible brown alga, Sargassum siliquastrum, on lipopolysaccharide (LPS)-stimulated inflammatory responses in RAW 264.7 macrophages. The findings of the study revealed that FSSQ increases cell viability while decreasing intracellular reactive oxygen species production in LPS-stimulated RAW 264.7 macrophages dose-dependently. FSSQ reduced the iNOS and COX-2 expression, inhibiting the NO and prostaglandin E2 production. Furthermore, mRNA expression of IL-1β, IL-6, and TNF-α was downregulated by FSSQ via modulating MAPK and NF-κB signaling. The NLRP3 inflammasome protein complex, including NLRP3, ASC, and caspase-1, as well as the subsequent release of pro-inflammatory cytokines, such as IL-1β and IL-18, release in LPS-stimulated RAW 264.7 macrophages was inhibited by FSSQ. The cytoprotective effect of FSSQ is indicated via Nrf2/HO-1 signaling activation, which is considerably reduced upon suppression of HO-1 activity by ZnPP. Collectively, the study revealed the therapeutic potential of FSSQ against inflammatory responses in LPS-stimulated RAW 264.7 macrophages. Moreover, the study suggests further investigations on commercially viable methods for fucoidan isolation.
Collapse
Affiliation(s)
| | | | | | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea;
| | - Jae-Young Oh
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea;
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea; (A.M.K.J.); (K.G.I.S.K.)
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
5
|
Xu J, Tai B, Jiao S, Wuken S, Chen H, Chen P, Zhang Z, Gao X, Chai X. The Ethanol Extract of Syringa oblata Heartwood, a Mongolian Folk Medicine Containing Major Lignans, Exerts Analgesic and Sedative Effects on Mice. Chem Biodivers 2023; 20:e202200984. [PMID: 36437232 DOI: 10.1002/cbdv.202200984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
The heartwood of Syringa oblata Lindl. (SO) is one of Mongolian folk medicines to treat insomnia and pain, while its pharmacological evaluation and underlying mechanism remain unclear. In this study, the sedative effect of ethanol extract of SO (ESO) was evaluated with the locomotor activity test and the threshold dose of pentobarbital sodium-induced sleep test in mice, and the hot plate test, acetic acid-induced writhing test, and formalin test in mice were used to evaluate its analgesic effect. The underlying mechanism of ESO analgesia was explored by RT-PCR and western blot analysis, which is associated with the regulation of the NF-κB signaling pathway. Besides, the main constituents of ESO were characterized by LC/MS data analysis and comparison with isolated pure compounds. The current findings brought evidence for clinical application and further pharmacological and phytochemical studies on SO.
Collapse
Affiliation(s)
- Jixuan Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Badalahu Tai
- School of Mongolian Materia Medica, Inner Mongolia University for Nationalities, Tongliao, 028000, P. R. China
| | - Shungang Jiao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Shana Wuken
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Hongying Chen
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Panlong Chen
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Zefeng Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Xiaoli Gao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Xingyun Chai
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| |
Collapse
|
6
|
Zhang H, Tong Y, Jin Y, Cai G, Li Z, Pan X. Elucidation of the mechanism of action of Runyan Mixture in the treatment of pharyngitis using a network pharmacological approach. Medicine (Baltimore) 2022; 101:e32437. [PMID: 36595833 PMCID: PMC9794313 DOI: 10.1097/md.0000000000032437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This study aimed to elucidate the mechanism of action of Runyan Mixture in treating pharyngitis using a network pharmacological approach. The active components of the Runyan Mixture were obtained from the traditional chinese medicine systems pharmacology database and evaluated using Lipinski's rules. The SwissTargetPrediction database was used to predict the action targets of the Runyan Mixture, and a protein-protein interaction network was constructed using the STRING database. Moreover, the anti-inflammatory effect of Runyan Mixture was validated in vitro using the lipopolysaccharide induced inflammation in macrophages. The Runyan Mixture was the liquid preparation from 8 traditional Chinese medicine. A total of 89 types of active components, 53 core targets, and 98 signaling pathways (P < .001) were identified for the Runyan Mixture. The main action targets were EGFR, MAPK1, AKT1, PIK3CA, NFKB1, SRC, TNF, MAPK8, MET, and PTGS2. Among the identified signaling pathways, 20 were associated with microbial infection and 24 were related to the immune-inflammatory response. Experimental results in vitro showed that Runyan Mixture could significantly inhibit the expression of interleukin-1, interleukin-6, and tumor necrosis factor-α (P < .05) in macrophages by lipopolysaccharide stimulation. Based on the results of the protein-protein interaction network analysis and the anti-inflammatory effect in vitro, the efficiency of the Runyan Mixture in pharyngitis treatment could be attributed to the inhibition of the inflammatory response.
Collapse
Affiliation(s)
- Huihui Zhang
- Traditional Chinese medicine pharmacy, Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua, China
| | - Yingpeng Tong
- College of Pharmaceutical Sciences, Taizhou University, Taizhou, China
| | - Yinzhi Jin
- Traditional Chinese medicine pharmacy, Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua, China
| | - Guoyun Cai
- Traditional Chinese medicine pharmacy, Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua, China
| | - Zhenxin Li
- Traditional Chinese medicine pharmacy, Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua, China
| | - Xinling Pan
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua, China
- * Correspondence: Xinling Pan, Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, No. 60 Wuningxi Road, Dongyang, Zhejiang, China (e-mail: )
| |
Collapse
|
7
|
Tai B, Bai L, Ji R, Yu M, NAla, Huang L, Zheng H. Phytochemical and pharmacological progress on Syringa oblata, a traditional Mongolian medicine. CHINESE HERBAL MEDICINES 2022; 14:392-402. [PMID: 36118008 PMCID: PMC9476808 DOI: 10.1016/j.chmed.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Syringa oblata is a traditional Mongolian medicine mainly distributed in the Helan Mountains (the boundaries of Inner Mongolia and Ningxia, China) and the north of Yan Mountains (Aohan Qi, Inner Mongolia, China). It is clinically used to treat diseases caused by Heyi, such as heartache and heat pathogen in the heart. Phytochemical studies on S. oblata revealed the presence of iridoids, lignans, triterpenes, phenylpropanoids, phenylethanoids, and volatile components. Pharmacological investigations revealed a broad spectrum of bioactivities, such as antimicrobial, antioxidant, antiproliferative, and hepatoprotective effects. This article summarized the chemical components and pharmacological activities of S. oblata, providing a scientific rationale for its bioactive constituents, quality control, and utilization as an important medicine.
Collapse
|