1
|
Kang M, Jeong E, Kim JY, Yun SA, Jang MA, Jang JH, Kim TY, Huh HJ, Lee NY. Optimization of extraction-free protocols for SARS-CoV-2 detection using a commercial rRT-PCR assay. Sci Rep 2023; 13:20364. [PMID: 37990045 PMCID: PMC10663557 DOI: 10.1038/s41598-023-47645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
In the ongoing global fight against coronavirus disease 2019 (COVID-19), the sample preparation process for real-time reverse transcription polymerase chain reaction (rRT-PCR) faces challenges due to time-consuming steps, labor-intensive procedures, contamination risks, resource demands, and environmental implications. However, optimized strategies for sample preparation have been poorly investigated, and the combination of RNase inhibitors and Proteinase K has been rarely considered. Hence, we investigated combinations of several extraction-free protocols incorporating heat treatment, sample dilution, and Proteinase K and RNase inhibitors, and validated the effectiveness using 120 SARS-CoV-2 positive and 62 negative clinical samples. Combining sample dilution and heat treatment with Proteinase K and RNase inhibitors addition exhibited the highest sensitivity (84.26%) with a mean increase in cycle threshold (Ct) value of + 3.8. Meanwhile, combined sample dilution and heat treatment exhibited a sensitivity of 79.63%, accounting for a 38% increase compared to heat treatment alone. Our findings highlight that the incorporation of Proteinase K and RNase inhibitors with sample dilution and heat treatment contributed only marginally to the improvement without yielding statistically significant differences. Sample dilution significantly impacts SARS-CoV-2 detection, and sample conditions play a crucial role in the efficiency of extraction-free methods. Our findings may provide insights for streamlining diagnostic testing, enhancing its accessibility, cost-effectiveness, and sustainability.
Collapse
Affiliation(s)
- Minhee Kang
- Smart Healthcare Research Institute, Biomedical Engineering Research Center, Samsung Medical Center, Seoul, South Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea
| | - Eunjung Jeong
- Smart Healthcare Research Institute, Biomedical Engineering Research Center, Samsung Medical Center, Seoul, South Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji-Yeon Kim
- Samsung Biomedical Research Institute, Center for Clinical Medicine, Samsung Medical Center, Seoul, South Korea
| | - Sun Ae Yun
- Samsung Biomedical Research Institute, Center for Clinical Medicine, Samsung Medical Center, Seoul, South Korea
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Hee Jae Huh
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea.
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Jain RK, Perumal N, Chaurasia D, Shrivastava R, Ahirwar KK, Sharma A, Kapoor G, Lalwani J. Performance Evaluation of Different RT-PCR Kits for the Direct Detection of SARS-CoV-2 in Preheated Specimens. J Lab Physicians 2023; 15:383-391. [PMID: 37564223 PMCID: PMC10411152 DOI: 10.1055/s-0043-1760752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created high demand for molecular kits and consumables for mass screening of suspected individuals. Direct real-time polymerase chain reaction (RT-PCR) assay without nucleic acid extraction has several advantages in saving testing time and cost and helps in the rapid reporting of SARS-CoV-2. The present study evaluated the analytical performance of four SARS-CoV-2 RT-PCR for direct RT-PCR testing using preheated specimens. Methods A total of 100 clinical specimens were selected and divided into three different groups: (1) group I: 20 SARS-CoV-2 positive specimens with high viral load, viz., low Ct values (< 30 Ct), (2) group II: 50 SARS-CoV-2 positive specimens with low viral load, viz., high Ct values (> 30 Ct), and (3) group III: 30 SARS-CoV-2 negative specimens. Specimens were heat-inactivated at 70°C for 10 minutes and cooled down at 4°C and were evaluated for standard and direct RT-PCR method by using ViralDtect-II Multiplex Real-Time PCR kit, TaqPath COVID-19 Combo kit, COVIDsure Pro Multiplex RT-PCR kit, and Hi-PCR Coronavirus (COVID-19) Multiplex Probe PCR kit. Results Results showed that except ViralDtect-II kit, the other three TaqPath COVID-19 Combo kit, COVIDsure Pro kit, and Hi-PCR Coronavirus (COVID-19) RT-PCR kit were able to amplify all the SARS-CoV-2 genes in the direct RT-PCR method using preheated specimens. In group I specimens, 100% sensitivity was observed in all three RT-PCR kits. In group II specimens, COVIDsure Pro kit was found to be superior among other kits. Conclusion Direct RT-PCR method during pandemic situation is valuable and cost effective for the detection of SARS-CoV-2. All three TaqPath COVID-19 Combo kit, COVIDsure Pro kit, and Hi-PCR Coronavirus (COVID-19) RT-PCR kit can be used for direct RT-PCR method and COVIDsure Pro kit performance was found to be superior among all.
Collapse
Affiliation(s)
- Rajeev Kumar Jain
- State Virology Laboratory, Gandhi Medical College, Bhopal, Madhya Pradesh, India
| | - Nagaraj Perumal
- State Virology Laboratory, Gandhi Medical College, Bhopal, Madhya Pradesh, India
| | - Deepti Chaurasia
- Department of Microbiology, Gandhi Medical College, Bhopal, Madhya Pradesh, India
| | - Rakesh Shrivastava
- Department of Microbiology, Gandhi Medical College, Bhopal, Madhya Pradesh, India
| | | | - Archa Sharma
- Department of Microbiology, Gandhi Medical College, Bhopal, Madhya Pradesh, India
| | - Garima Kapoor
- Department of Microbiology, Gandhi Medical College, Bhopal, Madhya Pradesh, India
| | - Jaya Lalwani
- Department of Microbiology, Gandhi Medical College, Bhopal, Madhya Pradesh, India
| |
Collapse
|
3
|
Allicock OM, Yolda-Carr D, Earnest R, Breban MI, Vega N, Ott IM, Kalinich C, Alpert T, Petrone ME, Wyllie AL. Method versatility in RNA extraction-free PCR detection of SARS-CoV-2 in saliva samples. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 182:103-108. [PMID: 37369293 PMCID: PMC10290768 DOI: 10.1016/j.pbiomolbio.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Early in the pandemic, a simple, open-source, RNA extraction-free RT-qPCR protocol for SARS-CoV-2 detection in saliva was developed and made widely available. This simplified approach (SalivaDirect) requires only sample treatment with proteinase K prior to PCR testing. However, feedback from clinical laboratories highlighted a need for a flexible workflow that can be seamlessly integrated into their current health and safety requirements for the receiving and handling of potentially infectious samples. To address these varying needs, we explored additional pre-PCR workflows. We built upon the original SalivaDirect workflow to include an initial incubation step (95 °C for 30 min, 95 °C for 5 min or 65 °C for 15 min) with or without addition of proteinase K. The limit of detection for the workflows tested did not significantly differ from that of the original SalivaDirect workflow. When tested on de-identified saliva samples from confirmed COVID-19 individuals, these workflows also produced comparable virus detection and assay sensitivities, as determined by RT-qPCR analysis. Exclusion of proteinase K did not negatively affect the sensitivity of the assay. The addition of multiple heat pretreatment options to the SalivaDirect protocol increases the accessibility of this cost-effective SARS-CoV-2 test as it gives diagnostic laboratories the flexibility to implement the workflow which best suits their safety protocols.
Collapse
Affiliation(s)
- Orchid M Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
| | - Devyn Yolda-Carr
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Noel Vega
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Isabel M Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Chaney Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Tara Alpert
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Mary E Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| |
Collapse
|
4
|
Rivas-Macho A, Sorarrain A, Marimón JM, Goñi-de-Cerio F, Olabarria G. Extraction-Free Colorimetric RT-LAMP Detection of SARS-CoV-2 in Saliva. Diagnostics (Basel) 2023; 13:2344. [PMID: 37510088 PMCID: PMC10377860 DOI: 10.3390/diagnostics13142344] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The pandemic situation caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need of fast, simple, and cost-effective tests for the diagnosis of emerging pathogens. RT-qPCR has been established as the reference technique for the diagnosis of SARS-CoV-2 infections. This method requires a time-consuming protocol for the extraction of the nucleic acids present in the sample. A colorimetric reverse transcription loop-mediated isothermal amplification using the calcein molecule combined with a simple extraction-free method for saliva samples (calcein RT-LAMP) has been developed. Samples are heated 95 °C for 10 min before amplification at 63 °C for 40 min. The results can be observed by fluorescence or by the naked eye with a color change from orange to green. The method was compared with commercialized available colorimetric and fluorescent RT-LAMP kits. The developed method shows better sensitivity and specificity than the colorimetric commercial RT-LAMP and the same as the fluorescent RT-LAMP, without the need of a fluorescent reader. Moreover, the calcein RT-LAMP has, compared to RT-qPCR, a sensitivity of 90% and a specificity of 100% for saliva samples with a Ct ≤ 34, without the need for expensive RT-qPCR instruments, demonstrating the potential of this method for population screening.
Collapse
Affiliation(s)
- Ane Rivas-Macho
- Gaiker, GAIKER Technology Centre, Basque Research and Technology Alliance, Parque Tecnológico, Ed. 202, 48170 Zamudio, Spain
- Molecular Biology and Biomedicine PhD Program, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Ane Sorarrain
- Biodonostia Health Research Institute, Infectious Diseases Area, Microbiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, 20014 San Sebastián, Spain
| | - José M Marimón
- Biodonostia Health Research Institute, Infectious Diseases Area, Microbiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, 20014 San Sebastián, Spain
| | - Felipe Goñi-de-Cerio
- Gaiker, GAIKER Technology Centre, Basque Research and Technology Alliance, Parque Tecnológico, Ed. 202, 48170 Zamudio, Spain
| | - Garbiñe Olabarria
- Gaiker, GAIKER Technology Centre, Basque Research and Technology Alliance, Parque Tecnológico, Ed. 202, 48170 Zamudio, Spain
| |
Collapse
|
5
|
Chavda VP, Valu DD, Parikh PK, Tiwari N, Chhipa AS, Shukla S, Patel SS, Balar PC, Paiva-Santos AC, Patravale V. Conventional and Novel Diagnostic Tools for the Diagnosis of Emerging SARS-CoV-2 Variants. Vaccines (Basel) 2023; 11:374. [PMID: 36851252 PMCID: PMC9960989 DOI: 10.3390/vaccines11020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Accurate identification at an early stage of infection is critical for effective care of any infectious disease. The "coronavirus disease 2019 (COVID-19)" outbreak, caused by the virus "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)", corresponds to the current and global pandemic, characterized by several developing variants, many of which are classified as variants of concern (VOCs) by the "World Health Organization (WHO, Geneva, Switzerland)". The primary diagnosis of infection is made using either the molecular technique of RT-PCR, which detects parts of the viral genome's RNA, or immunodiagnostic procedures, which identify viral proteins or antibodies generated by the host. As the demand for the RT-PCR test grew fast, several inexperienced producers joined the market with innovative kits, and an increasing number of laboratories joined the diagnostic field, rendering the test results increasingly prone to mistakes. It is difficult to determine how the outcomes of one unnoticed result could influence decisions about patient quarantine and social isolation, particularly when the patients themselves are health care providers. The development of point-of-care testing helps in the rapid in-field diagnosis of the disease, and such testing can also be used as a bedside monitor for mapping the progression of the disease in critical patients. In this review, we have provided the readers with available molecular diagnostic techniques and their pitfalls in detecting emerging VOCs of SARS-CoV-2, and lastly, we have discussed AI-ML- and nanotechnology-based smart diagnostic techniques for SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Disha D. Valu
- Formulation and Drug Product Development, Biopharma Division, Intas Pharmaceutical Ltd., 3000-548 Moraiya, Ahmedabad 380054, Gujarat, India
| | - Palak K. Parikh
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Nikita Tiwari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| | - Abu Sufiyan Chhipa
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Somanshi Shukla
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Pankti C. Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| |
Collapse
|
6
|
Shwetha J, Chunchanur SK, Harsha T, Mohandas S, Shah PA, Ambica R, KS H, Sumanth M. Simple and low-cost nucleic acid extraction methods for detection of SARS-CoV2 in self-collected saliva and dry oral swabs. IJID REGIONS 2022; 5:86-92. [PMID: 36158784 PMCID: PMC9482798 DOI: 10.1016/j.ijregi.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Background Ongoing need of alternative strategies for SARS-CoV-2 detection is undeniable. Self-collected samples without viral transport media (VTM), coupled with simple nucleic acid extraction methods for SARS-CoV-2 PCR are beneficial. Objectives To evaluate results of SARS-CoV-2 PCR using simple nucleic acid extraction methods from self -collected saliva and oral swabs without VTM. Methods A cross-sectional single-centre study was conducted on 125 participants (101 SARS-CoV-2 positive cases and 24 controls). PCR was performed following five simple nucleic acid extraction methods on self -collect saliva and oral swabs without VTM and results were compared with gold standard PCR. For saliva, kit-based extraction (SKE), Proteinase K and Heat extraction (SPHE), only Heat extraction (SHE) methods and for dry oral swabs, Proteinase K and Heat extraction (DPHE) and only Heat extraction (DHE) was performed. Results SARS-CoV-2 was detected in self-collected saliva and oral swabs. 93.07% were correctly classified as positive by SKE, 69.31% by SHE, 67.33% by SPHE, 67.33% by DPHE and 55.45% by DHE. Discriminant power of SKE was significantly higher than other methods (p-value < 0.001) with good- fair agreement of alternate extraction methods against gold standard. Conclusion Combination of self-collected saliva/ oral-swab without VTM and alternative RNA extraction methods offer a simplified, economical substitute strategy for SARS-CoV-2 detection.
Collapse
Affiliation(s)
- J.V. Shwetha
- Assistant Professor, Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India, 560002
| | - Sneha K Chunchanur
- Assistant Professor, Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India, 560002
| | - T.R. Harsha
- Assistant Professor, Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India, 560002
| | - Silpa Mohandas
- Research Assistant, Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India, 560002
| | - Pritik A Shah
- MBBS student, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India, 560002
| | - R Ambica
- Professor and Head, Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India, 560002
| | - Himabindhu KS
- Laboratory Technician, Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India, 560002
| | - M Sumanth
- Laboratory Technician, Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India, 560002
| |
Collapse
|
7
|
Wang Y, Upadhyay A, Pillai S, Khayambashi P, Tran SD. Saliva as a diagnostic specimen for SARS-CoV-2 detection: A scoping review. Oral Dis 2022; 28 Suppl 2:2362-2390. [PMID: 35445491 PMCID: PMC9115496 DOI: 10.1111/odi.14216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVES This scoping review aims to summarize the diagnostic value of saliva assessed from current studies that (1) compare its performance in reverse transcriptase-polymerase chain reaction testing to nasopharyngeal swabs, (2) evaluate its performance in rapid and point-of-care COVID-19 diagnostic tests, and (3) explore its use as a specimen for detecting anti-SARS-CoV-2 antibodies. MATERIALS AND METHODS A systematic search was performed on the following databases: Medline and Embase (Ovid), World Health Organization, Centers for Disease Control and Prevention, and Global Health (Ovid) from January 2019 to September 2021. Of the 657 publications identified from the searches, n = 146 articles were included in the final scoping review. RESULTS Our findings showcase that salivary samples exceed nasopharyngeal swabs in detecting SARS-CoV-2 using reverse transcriptase-polymerase chain reaction testing in several studies. A select number of rapid antigen and point-of-care tests from the literature were also identified capable of high detection rates using saliva. Moreover, anti-SARS-CoV-2 antibodies have been shown to be detectable in saliva through biochemical assays. CONCLUSION We highlight the potential of saliva as an all-rounded specimen in detecting SARS-CoV-2. However, future large-scale clinical studies will be needed to support its widespread use as a non-invasive clinical specimen for COVID-19 testing.
Collapse
|
8
|
De Santi C, Jacob B, Kroich P, Doyle S, Ward R, Li B, Donnelly O, Dykes A, Neelakant T, Neary D, McGuinness R, Cafferkey J, Ryan K, Quadu V, McGrogan K, Garcia Leon A, Mallon P, Fitzpatrick F, Humphreys H, De Barra E, Kerrigan SW, Cavalleri GL. Concordance between PCR-based extraction-free saliva and nasopharyngeal swabs for SARS-CoV-2 testing. HRB Open Res 2021; 4:85. [PMID: 34522839 PMCID: PMC8408542 DOI: 10.12688/hrbopenres.13353.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/29/2022] Open
Abstract
Introduction: Saliva represents a less invasive alternative to nasopharyngeal swab (NPS) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. SalivaDirect is a nucleic acid extraction-free method for detecting SARS-CoV2 in saliva specimens. Studies evaluating the concordance of gold standard NPS and newly developed SalivaDirect protocols are limited. The aim of our study was to assess SalivaDirect as an alternative method for COVID-19 testing. Methods: Matching NPS and saliva samples were analysed from a cohort of symptomatic (n=127) and asymptomatic (n=181) participants recruited from hospital and university settings, respectively. RNA was extracted from NPS while saliva samples were subjected to the SalivaDirect protocol before RT-qPCR analysis. The presence of SARS-Cov-2 was assessed using RdRp and N1 gene targets in NPS and saliva, respectively. Results: Overall we observed 94.3% sensitivity (95% CI 87.2-97.5%), and 95.9% specificity (95% CI 92.4-97.8%) in saliva when compared to matching NPS samples. Analysis of concordance demonstrated 95.5% accuracy overall for the saliva test relative to NPS, and a very high level of agreement (κ coefficient = 0.889, 95% CI 0.833-0.946) between the two sets of specimens. Fourteen of 308 samples were discordant, all from symptomatic patients. Ct values were >30 in 13/14 and >35 in 6/14 samples. No significant difference was found in the Ct values of matching NPS and saliva sample ( p=0.860). A highly significant correlation (r = 0.475, p<0.0001) was also found between the Ct values of the concordant positive saliva and NPS specimens. Conclusions: Use of saliva processed according to the SalivaDirect protocol represents a valid method to detect SARS-CoV-2. Accurate and less invasive saliva screening is an attractive alternative to current testing methods based on NPS and would afford greater capacity to test asymptomatic populations especially in the context of frequent testing.
Collapse
Affiliation(s)
- Chiara De Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Benson Jacob
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Patricia Kroich
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sean Doyle
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rebecca Ward
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brian Li
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Owain Donnelly
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Amy Dykes
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Trisha Neelakant
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Neary
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ross McGuinness
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Kieran Ryan
- Department of Surgical Affairs, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Veronica Quadu
- Mercer's Medical Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Killian McGrogan
- Mercer's Medical Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alejandro Garcia Leon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Patrick Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Fidelma Fitzpatrick
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hilary Humphreys
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eoghan De Barra
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Infectious Diseases, Beaumont Hospital, Dublin, Ireland
| | - Steve W. Kerrigan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L. Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
9
|
De Santi C, Jacob B, Kroich P, Doyle S, Ward R, Li B, Donnelly O, Dykes A, Neelakant T, Neary D, McGuinness R, Cafferkey J, Ryan K, Quadu V, McGrogan K, Garcia Leon A, Mallon P, Fitzpatrick F, Humphreys H, De Barra E, Kerrigan SW, Cavalleri GL. Concordance between PCR-based extraction-free saliva and nasopharyngeal swabs for SARS-CoV-2 testing. HRB Open Res 2021; 4:85. [PMID: 34522839 PMCID: PMC8408542 DOI: 10.12688/hrbopenres.13353.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 11/04/2023] Open
Abstract
Introduction: Saliva represents a less invasive alternative to nasopharyngeal swab (NPS) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. SalivaDirect is a nucleic acid extraction-free method for detecting SARS-CoV2 in saliva specimens. Studies evaluating the concordance of gold standard NPS and newly developed SalivaDirect protocols are limited. The aim of our study was to to assess SalivaDirect as an alternative method for COVID-19 testing. Methods: Matching NPS and saliva samples were analysed from a cohort of symptomatic (n=127) and asymptomatic (n=181) participants recruited from hospital and university settings, respectively. RNA was extracted from NPS while saliva samples were subjected to the SalivaDirect protocol before RT-qPCR analysis. The presence of SARS-Cov-2 was assessed using RdRP and N1 gene targets in NPS and saliva, respectively. Results: Overall we observed 94.3% sensitivity (95% CI 87.2-97.5%), and 95.9% specificity (95% CI 92.4-97.8%) in saliva when compared to matching NPS samples. Analysis of concordance demonstrated 95.5% accuracy overall for the saliva test relative to NPS, and a very high level of agreement (κ coefficient = 0.889, 95% CI 0.833-0.946) between the two sets of specimens. Fourteen of 308 samples were discordant, all from symptomatic patients. Ct values were >30 in 13/14 and >35 in 6/14 samples. No significant difference was found in the Ct values of matching NPS and saliva sample ( p=0.860). A highly significant correlation (r = 0.475, p<0.0001) was also found between the Ct values of the concordant positive saliva and NPS specimens. Conclusions: Use of saliva processed according to the SalivaDirect protocol represents a valid method to detect SARS-CoV-2. Accurate and less invasive saliva screening is an attractive alternative to current testing methods based on NPS and would afford greater capacity to test asymptomatic populations especially in the context of frequent testing.
Collapse
Affiliation(s)
- Chiara De Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Benson Jacob
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Patricia Kroich
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sean Doyle
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rebecca Ward
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brian Li
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Owain Donnelly
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Amy Dykes
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Trisha Neelakant
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Neary
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ross McGuinness
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Kieran Ryan
- Department of Surgical Affairs, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Veronica Quadu
- Mercer's Medical Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Killian McGrogan
- Mercer's Medical Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alejandro Garcia Leon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Patrick Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Fidelma Fitzpatrick
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hilary Humphreys
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eoghan De Barra
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Infectious Diseases, Beaumont Hospital, Dublin, Ireland
| | - Steve W. Kerrigan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L. Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|