1
|
Padhee S, Mohanty D, Sahoo A, Jena S, Chandra Panda P, Ray A, Nayak S. Exploring the mechanism of action of Vanda tessellata extract for the treatment of osteoarthritis through network pharmacology, molecular modelling and experimental assays. Heliyon 2024; 10:e35971. [PMID: 39224251 PMCID: PMC11367146 DOI: 10.1016/j.heliyon.2024.e35971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
The present study employed a comprehensive approach of network pharmacology, molecular dynamic simulation and in-vitro assays to investigate the underlying mechanism of the anti-osteoarthritic potential of Vanda tessellata extract (VTE). Thirteen active compounds of VTE were retrieved from the literature and the IMPPAT database. All of these passed the drug likeness and oral bioavailability parameters. A total of 535 VTE targets and 2577 osteoarthritis related targets were obtained. The compound-target-disease network analysis revealed vanillin, daucosterol, gigantol and syringaldehyde as the core key components. Protein-protein interaction analysis revealed BCL2, FGF2, ICAM 1, MAPK1, MMP1, MMP2, MMP9, COX2, STAT3 and ESR1 as the hub genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed AGE-RAGE signalling pathway, HIF-1 signalling pathway and ESR signalling pathway as the major signalling pathway of VTE involved in treating osteoarthritis. Molecular docking analysis showed daucosterol and gigantol to have good binding affinity with BCL2, ESR1 and MMP9, and the results were further confirmed through molecular dynamics simulation analysis. The mechanism predicted by network pharmacology was validated in vitro on IL-1β-induced SW982 synovial cells. VTE did not show any cytotoxicity and inhibited the migration of SW982 cells. VTE inhibited the expression level of IL-6, IL-8, TNF-α, PGE-2, MMP-2 and MMP-9 in a dose-dependent manner. VTE inhibited nuclear translocation of NF- κβ and suppressed phosphorylation of p38, extracellular signal-regulated kinase (ERK), and c-Jun NH2-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) signalling pathway. The results showed that VTE exerted an anti-osteoarthritic effect by a multi-target, multi-component and multi-signalling pathway approach.
Collapse
Affiliation(s)
- Sucheesmita Padhee
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, India
| | - Debajani Mohanty
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, India
| | - Asit Ray
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, India
| |
Collapse
|
2
|
Alrouji M, Yasmin S, Alhumaydhi FA, Sharaf SE, Shahwan M, Furkan M, Khan RH, Shamsi A. Comprehensive spectroscopic and computational insight into the binding of vanillin with human transferrin: targeting neuroinflammation in Alzheimer's disease therapeutics. Front Pharmacol 2024; 15:1397332. [PMID: 38799161 PMCID: PMC11116798 DOI: 10.3389/fphar.2024.1397332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
In present times, vanillin stands out as a promising therapeutic molecule that can be implicated in the treatment of neurodegenerative disorders (NDs), notably Alzheimer's disease (AD). This can be attributed to the highly potent scavenging activity of vanillin against reactive oxygen species (ROS). Oxidative stress leads to generation of ROS that serves a critical role in AD's pathological progression. It is apparent from various studies that diets rich in polyphenols prevent oxidative stress associated with AD development, implying the crucial role of vanillin in AD therapeutics. It is crucial to maintain iron balance to manage AD associated oxidative stress, unveiling the significance of human transferrin (hTf) that maintains iron homeostasis. Here, we have performed an integrated study of spectroscopic and computational approaches to get insight into the binding mechanism of vanillin with hTf. In the preliminary study, molecular docking deciphered that vanillin primarily occupies the hTf binding pocket, forming multiple interactions with its key residues. Moreover, the binding mechanism was evaluated at an atomistic level employing comprehensive molecular dynamic (MD) simulation. MD analysis demonstrated that binding of vanillin to hTf stabilizes its structure, without inducing any significant alterations in its native conformation. The docked complex was maintained throughout the simulations without changing its original conformation. Essential dynamics analysis further confirms that hTf achieved a stable conformation with vanillin. The outcomes were further supplemented by fluorescence spectroscopy which confirms the formation of stable hTf-vanillin complex. Taken together, the current study unveils the interaction mechanism of vanillin with hTf and providing a platform to use vanillin in AD therapeutics in the context of iron homeostasis.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Mohammad Furkan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
3
|
Chiavaroli A, Libero ML, Di Simone SC, Acquaviva A, Nilofar, Recinella L, Leone S, Brunetti L, Cicia D, Izzo AA, Orlando G, Zengin G, Uba AI, Cakilcioğlu U, Mukemre M, Elkiran O, Menghini L, Ferrante C. Adding New Scientific Evidences on the Pharmaceutical Properties of Pelargonium quercetorum Agnew Extracts by Using In Vitro and In Silico Approaches. PLANTS (BASEL, SWITZERLAND) 2023; 12:1132. [PMID: 36903991 PMCID: PMC10005478 DOI: 10.3390/plants12051132] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 08/13/2023]
Abstract
Pelargonium quercetorum is a medicinal plant traditionally used for treating intestinal worms. In the present study, the chemical composition and bio-pharmacological properties of P. quercetorum extracts were investigated. Enzyme inhibition and scavenging/reducing properties of water, methanol, and ethyl acetate extracts were assayed. The extracts were also studied in an ex vivo experimental model of colon inflammation, and in this context the gene expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor α (TNFα) were assayed. Additionally, in colon cancer HCT116 cells, the gene expression of transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8), possibly involved in colon carcinogenesis, was conducted as well. The extracts showed a different qualitative and quantitative content of phytochemicals, with water and methanol extracts being richer in total phenols and flavonoids, among which are flavonol glycosides and hydroxycinnamic acids. This could explain, at least in part, the higher antioxidant effects shown by methanol and water extracts, compared with ethyl acetate extract. By contrast, the ethyl acetate was more effective as cytotoxic agent against colon cancer cells, and this could be related, albeit partially, to the content of thymol and to its putative ability to downregulate TRPM8 gene expression. Additionally, the ethyl acetate extract was effective in inhibiting the gene expression of COX-2 and TNFα in isolated colon tissue exposed to LPS. Overall, the present results support future studies for investigating protective effects against gut inflammatory diseases.
Collapse
Affiliation(s)
- Annalisa Chiavaroli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Alessandra Acquaviva
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Nilofar
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Donatella Cicia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Angelo Antonio Izzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Giustino Orlando
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, 34537 Istanbul, Turkey
| | - Ugur Cakilcioğlu
- Pertek Sakine Genç Vocational School, Munzur University, 62500 Pertek, Turkey
| | - Muzaffer Mukemre
- Department of Plant and Animal Production, Yuksekova Vocational School, Hakkari University, 30100 Hakkari, Turkey
| | - Omer Elkiran
- Department of Environmental Health, Vocational School of Health Services, Sinop University, 57000 Sinop, Turkey
| | - Luigi Menghini
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
4
|
Salam MA, Al-Amin MY, Pawar JS, Akhter N, Lucy IB. Conventional methods and future trends in antimicrobial susceptibility testing. Saudi J Biol Sci 2023; 30:103582. [PMID: 36852413 PMCID: PMC9958398 DOI: 10.1016/j.sjbs.2023.103582] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/07/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023] Open
Abstract
Antimicrobial susceptibility testing is an essential task for selecting appropriate antimicrobial agents to treat infectious diseases. Constant evolution has been observed in methods used in the diagnostic microbiology laboratories. Disc diffusion or broth microdilution are classical and conventional phenotypic methods with long turnaround time and labour-intensive but still widely practiced as gold-standard. Scientists are striving to develop innovative, novel and faster methods of antimicrobial susceptibility testing to be applicable for routine microbiological laboratory practice and research. To meet the requirements, there is an increasing trend towards automation, genotypic and micro/nano technology-based innovations. Automation in detection systems and integration of computers for online data analysis and data sharing are giant leaps towards versatile nature of automated methods currently in use. Genotypic methods detect a specific genetic marker associated with resistant phenotypes using molecular amplification techniques and genome sequencing. Microfluidics and microdroplets are recent addition in the continuous advancement of methods that show great promises with regards to safety and speed and have the prospect to identify and monitor resistance mechanisms. Although genotypic and microfluidics methods have many exciting features, however, their applications into routine clinical laboratory practice warrant extensive validation. The main impetus behind the evolution of methods in antimicrobial susceptibility testing is to shorten the overall turnaround time in obtaining the results and to enhance the ease of sample processing. This comprehensive narrative review summarises major conventional phenotypic methods and automated systems currently in use, and highlights principles of some of the emerging genotypic and micro/nanotechnology-based methods in antimicrobial susceptibility testing.
Collapse
Key Words
- ADR, Adverse drug reaction
- AMR, Antimicrobial resistance
- AST, Antimicrobial susceptibility testing
- ATCC, American Type Culture Collection
- Advantages and disadvantages
- Antimicrobial susceptibility testing
- Automations
- CFU, Colony forming units
- CLSI, Clinical & Laboratory Standards Institute
- Conventional methods
- DOT-MGA, Direct-On-Target Microdroplet Growth Assay
- EUCAST, European Committee on Antimicrobial Susceptibility Testing
- Etest, Epsilometer testing
- Genotypic methods
- ID, Identification
- MALDI-TOF MS, Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry
- MBC, Minimum bactericidal concentration
- MDR, Multi drug resistant
- MHA, Muller Hinton Agar
- MIC, Minimum inhibitory concentration
- Micro/nanotechnology-based techniques
- NAAT, Nucleic Acid Amplification Test
- PCR, Polymerase chain reaction
- PMF, Peptide mass fingerprint
- POC, Point of care
- WGS, Whole Genome Sequencing
- ZOI, Zone of inhibition
Collapse
Affiliation(s)
- Md. Abdus Salam
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Malaysia
| | - Md. Yusuf Al-Amin
- Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN, USA,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Naseem Akhter
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Irine Banu Lucy
- Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh,Corresponding author at: Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
5
|
Costantini E, Jarlapoodi S, Serra F, Aielli L, Khan H, Belwal T, Falasca K, Reale M. Neuroprotective Potential of Bacopa monnieri: Modulation of Inflammatory Signals. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:441-451. [PMID: 35021981 DOI: 10.2174/1871527321666220111124047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND To date, much evidence has shown the increased interest in natural molecules and traditional herbal medicine as alternative bioactive compounds to fight many inflammatory conditions, both in relation to immunomodulation and in terms of their wound healing potential. Bacopa monnieri is a herb that is used in the Ayurvedic medicine tradition for its anti-inflammatory activity. OBJECTIVE In this study, we evaluate the anti-inflammatory and regenerative properties of the Bacopa monnieri extract (BME) in vitro model of neuroinflammation. METHODS Neuronal SH-SY5Y cells were stimulated with TNFα and IFNγ and used to evaluate the effect of BME on cell viability, cytotoxicity, cytokine gene expression, and healing rate. RESULTS Our results showed that BME protects against the Okadaic acid-induced cytotoxicity in SH-SY5Y cells. Moreover, in TNFα and IFNγ primed cells, BME reduces IL-1β, IL-6, COX-2, and iNOS, mitigates the mechanical trauma injury-induced damage, and accelerates the healing of wounds. CONCLUSION This study indicates that BME might become a promising candidate for the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Science of Aging, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Srinivas Jarlapoodi
- Department of Innovative Technologies in Medicine and Dentistry, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Federica Serra
- Department of Pharmacy, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine and Dentistry, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Katia Falasca
- Department of Medicine and Science of Aging, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| |
Collapse
|
6
|
Asen ND, Aluko RE. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of antioxidant peptides obtained from enzymatic pea protein hydrolysates and their ultrafiltration peptide fractions. J Food Biochem 2022; 46:e14289. [PMID: 35758753 DOI: 10.1111/jfbc.14289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/18/2022] [Indexed: 12/29/2022]
Abstract
This study optimized the enzymatic hydrolysis of yellow field pea proteins using alcalase (ACH), chymotrypsin (CHH), flavourzyme (FZH), pancreatin (PCH), pepsin (PEH), and trypsin (TPH) to obtain hydrolysates and ultrafiltered fractions (<1, 1-3, 3-5 and 5-10 kDa) that possess antioxidant plus acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities. The hydrolysates exhibited varying degrees of radical scavenging and inhibition of linoleic acid peroxidation, as well as cholinesterase inhibition activities but the potency generally improved by >10% after UF separation into peptide fractions. ACH, FZH, and PEH exhibited significantly (p < .05) higher (20%-30% increases) radical scavenging activities than the other hydrolysates. The 1 and 3 kDa UF fractions of ACH, FZH, and PEH inhibited ~20%-30% AChE activity, while ACH, PCH, TPH, and PEH inhibited ~20%-40% BuChE activity. We conclude that the pea protein hydrolysates and their peptide fractions possess multifunctional properties with potential use against neurodegenerative disorders. PRACTICAL APPLICATIONS: Alzheimer's disease (AD) has multiple pathological pathways in addition to the loss of acetylcholine (ACh) catalyzed by acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The presence of severe oxidative stress triggered by lipid peroxidation and formation of free radicals is a common trait in AD patients. The concept of AChE and BuChE inhibition as an approach toward AD amelioration involves the use of compounds with a similar structure to ACh, the natural substrate. Peptides derived from food proteins consist of ester bonds with structural similarity to ACh and theoretically possess the ability to interact with AChE and BuChE. Results from the present study imply that pea protein-derived peptides are potential candidates for use as inhibitors of AChE and BuChE activities, with application in the prevention and management of AD.
Collapse
Affiliation(s)
- Nancy D Asen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|