Vo Van P, Beck J, Meunier H, Venot P, Mac Caby G, Bednarek N, Loron G. Assessment of brain two-dimensional metrics in infants born preterm at term equivalent age: Correlation of ultrasound scans with magnetic resonance imaging.
Front Pediatr 2022;
10:961556. [PMID:
36204665 PMCID:
PMC9531030 DOI:
10.3389/fped.2022.961556]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
CONTEXT
Developing brain imaging is a critical subject for infants born preterm. Impaired brain growth is correlated with poor neurological outcomes, regardless of overt brain lesions, such as hemorrhage or leukomalacia. As magnetic resonance imaging (MRI) remains a research tool for assessing regional brain volumes, two-dimensional metrics (2D metrics) provide a reliable estimation of brain structures. In neonatal intensive care, cerebral ultrasound (cUS) is routinely performed to assess brain integrity. This prospective work has compared US and MRI accuracy for the measurement of 2D brain metrics and identification of overt injuries.
METHODS
MRI and cUS were performed at term equivalent age (TEA) in infants born before 32 weeks of gestation (GW). Demographical data and results of serial cUS (Neonatal Intensive Care Unit [NICU]-US) performed during hospitalization were gathered from medical charts. Blinded, experienced senior doctors reviewed the scans for both standard analysis and standardized, 2D measurements. The correlation of 2D metrics and inter-/intraobserver agreements were evaluated using Pearson's coefficient, Bland-Altman plots, and intraclass coefficient (ICC), respectively.
RESULTS
In total, 102 infants born preterm were included. The performance of "TEA-cUS and NICU-cUS" when compared to "TEA-MRI and NICU-cUS" was identical for the detection of high-grade hemorrhages and close for low-grade ones. However, TEA-MRI only detected nodular lesions of the white matter (WM). No infant presented a cerebellar infarct on imaging. Intra- and inter-observer agreements were excellent for all 2D metrics except for the corpus callosum width (CCW) and anteroposterior vermis diameter. MRI and cUS showed good to excellent correlation for brain and bones biparietal diameters, corpus callosum length (CCL), transcerebellar diameters (TCDs), and lateral ventricle diameters. Measures of CCW and vermis dimensions were poorly correlated.
CONCLUSION AND PERSPECTIVE
The cUS is a reliable tool to assess selected 2D measurements in the developing brain. Repetition of these metrics by serial cUS during NICU stay would allow the completion of growth charts for several brain structures. Further studies will assess whether these charts are relevant markers of neurological outcome.
Collapse