1
|
Wang Y, Shen F, Zhang P, Xu M, Qiu D, Wang H, Li L. Cross-sectional and prospective associations between children's eating behavior and visceral fat area and trunk fat mass. Front Pediatr 2024; 12:1514535. [PMID: 39726532 PMCID: PMC11669656 DOI: 10.3389/fped.2024.1514535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Background Understanding children's eating behaviors is crucial for elucidating the etiology of childhood obesity. However, the relationship between these behaviors and abdominal fat accumulation remains poorly understood. This study aims to investigate this association in primary school children. Methods This study included 1,475 children aged 8-10 years in Ningbo, China. Body composition was measured both at baseline (September 2022) and after 9 months of follow-up (June 2023). Primary caregivers completed the Children's Eating Behavior Questionnaire (CEBQ). A mixed-effects linear model was applied to analyze the relationships between children's eating behaviors and body composition. Results Greater visceral fat area (VFA) was associated with greater slowness in eating [β = 0.25 (0.02, 0.49)], greater food responsiveness [β = 0.29 (0.14, 0.43)], increased emotional undereating [β = 0.35 (0.17, 0.54)], and more emotional overeating [β = 0.21 (0.02, 0.39)]. Children with greater trunk fat mass (TrFM) tended to have greater food responsiveness [β = 0.02 (0.01, 0.03)] and greater enjoyment of food [β = 0.01 (0.00, 0.03)], increased emotional undereating [β = 0.02 (0.01, 0.03)] and emotional overeating [β = 0.02 (0.00, 0.03)]. Prospectively, positive correlations were observed between VFA and food responsiveness [β = 0.18 (0.02, 0.35)], as were emotional undereating [β = 0.31 (0.10, 0.52)] and emotional overeating [β = 0.24 (0.03, 0.46)]. Similarly, TrFM was positively correlated with food responsiveness [β = 0.02 (0.00, 0.03)], enjoyment of food [β = 0.02 (0.00, 0.04)], emotional undereating [β = 0.02 (0.01, 0.04)] and emotional overeating [β = 0.02 (0.01, 0.04)]. Conclusions Our findings suggest that eating behaviors are significantly associated with abdominal fat accumulation in primary school children. Addressing specific eating behaviors may be crucial in mitigating abdominal fat and its related health risks.
Collapse
Affiliation(s)
- Youxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Fangjing Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Pingping Zhang
- Ningbo Center for Healthy Lifestyle Research, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Danqi Qiu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hui Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Li Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Li J, Liang J, Liu Y, Sun W, Sun W. Basal metabolic rate mediates the causal relationship between gut microbiota and osteoarthritis: a two-step bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1371679. [PMID: 39411433 PMCID: PMC11473340 DOI: 10.3389/fmicb.2024.1371679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Background The relationship between gut microbiota and osteoarthritis (OA) occurrence remains unclear. Existing research needs to clearly understand how basal metabolic rate (BMR) regulates this relationship. Therefore, using a two-step bidirectional Mendelian Randomization approach, our study aims to investigate whether BMR levels mediate the causal relationship between gut microbiota and OA. Methods In this study, we examined publicly available summary statistics from Genome-Wide Association Studies (GWAS) to determine the correlation between gut microbiota and OA. The analysis included one primary dataset and two secondary datasets. Initially, a two-step, two-sample, and reverse MR analysis was performed to identify the causal relationship between gut microbiota and OA. Subsequently, a two-step MR analysis revealed that the relationship between microbiota and OA is mediated by BMR. Sensitivity analyses confirmed the robustness of the study results. Results In our analysis of the primary dataset, we discovered a positive correlation between three taxa and the outcome of OA, and eight taxa exhibited a negative correlation with the OA outcome. Through comparisons with the secondary dataset and multiple testing corrections, we found a negative association between the class Actinobacteria (OR=0.992886277, p-value = 0.003) and the likelihood of OA occurrence. Notably, knee osteoarthritis (KOA) and hip osteoarthritis (HOA) had a strong negative correlation (OR = 0.927237553/0.892581219). Our analysis suggests that BMR significantly mediates the causal pathway from Actinobacteria to OA, with a mediated effect of 2.59%. Additionally, BMR mediates 3.98% of the impact in the path from the order Bifidobacteriales and the family Bifidobacteriaceae to OA. Besides these findings, our reverse analysis did not indicate any significant effect of OA on gut microbiota or BMR. Conclusion Our research results indicate that an increase in the abundance of specific gut microbial taxa is associated with a reduced incidence of OA, and BMR levels mediate this causal relationship. Further large-scale randomized controlled trials are necessary to validate the causal impact of gut microbiota on the risk of OA. This study provides new insights into the potential prevention of OA by modulating the gut microbiota.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, China
| | - Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Visuthranukul C, Leelahavanichkul A, Tepaamorndech S, Chamni S, Mekangkul E, Chomtho S. Inulin supplementation exhibits increased muscle mass via gut-muscle axis in children with obesity: double evidence from clinical and in vitro studies. Sci Rep 2024; 14:11181. [PMID: 38755201 PMCID: PMC11099025 DOI: 10.1038/s41598-024-61781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Gut microbiota manipulation may reverse metabolic abnormalities in obesity. Our previous studies demonstrated that inulin supplementation significantly promoted Bifidobacterium and fat-free mass in obese children. We aimed to study gut-muscle axis from inulin supplementation in these children. In clinical phase, the plasma samples from 46 participants aged 7-15 years, were analyzed for muscle biomarkers before and after 6-month inulin supplementation. In parallel, the plausible mechanism of muscle production via gut-muscle axis was examined using macrophage cell line. Bifidobacterium was cultured in semi-refined medium with inulin used in the clinical phase. Cell-free supernatant was collected and used in lipopolysaccharide (LPS)-induced macrophage cell line to determine inflammatory and anti-inflammatory gene expression. In clinical phase, IL-15 and creatinine/cystatin C ratio significantly increased from baseline to the 6th month. In vitro study showed that metabolites derived from Bifidobacterium capable of utilizing inulin contained the abundance of SCFAs. In the presence of LPS, treatment from Bifidobacterium + inulin downregulated TNF-α, IL-6, IL-1β, and iNOS, but upregulated FIZZ-1 and TGF-β expression. Inulin supplementation promoted the muscle biomarkers in agreement with fat-free mass gain, elucidating by Bifidobacterium metabolites derived from inulin digestion showed in vitro anti-inflammatory activity and decreased systemic pro-inflammation, thus promoting muscle production via gut-muscle axis response.Clinical Trial Registry number: NCT03968003.
Collapse
Affiliation(s)
- Chonnikant Visuthranukul
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Inflammation and Immunology Research Unit (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Surapun Tepaamorndech
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supakarn Chamni
- Natural Products and Nanoparticles Research Unit (NP2), Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Eakkarin Mekangkul
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sirinuch Chomtho
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
4
|
Li HY, Zhou DD, Gan RY, Huang SY, Zhao CN, Shang A, Xu XY, Li HB. Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients 2021; 13:nu13093211. [PMID: 34579087 PMCID: PMC8470858 DOI: 10.3390/nu13093211] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic diseases are serious threats to public health and related to gut microbiota. Probiotics, prebiotics, synbiotics, and postbiotics (PPSP) are powerful regulators of gut microbiota, thus possessing prospects for preventing metabolic diseases. Therefore, the effects and mechanisms of PPSP on metabolic diseases targeting gut microbiota are worth discussing and clarifying. Generally, PPSP benefit metabolic diseases management, especially obesity and type 2 diabetes mellitus. The underlying gut microbial-related mechanisms are mainly the modulation of gut microbiota composition, regulation of gut microbial metabolites, and improvement of intestinal barrier function. Moreover, clinical trials showed the benefits of PPSP on patients with metabolic diseases, while the clinical strategies for gestational diabetes mellitus, optimal formula of synbiotics and health benefits of postbiotics need further study. This review fully summarizes the relationship between probiotics, prebiotics, synbiotics, postbiotics, and metabolic diseases, presents promising results and the one in dispute, and especially attention is paid to illustrates potential mechanisms and clinical effects, which could contribute to the next research and development of PPSP.
Collapse
Affiliation(s)
- Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- Correspondence: ; Tel.: +86-20-8733-2391
| |
Collapse
|