1
|
Kervarrec T, Appenzeller S, Gramlich S, Coyaud E, Bachiri K, Appay R, Macagno N, Tallet A, Bonenfant C, Lecorre Y, Kapfer J, Kettani S, Srinivas N, Lei KC, Lange A, Becker JC, Sarosi EM, Sartelet H, von Deimling A, Touzé A, Guyétant S, Samimi M, Schrama D, Houben R. Analyses of combined Merkel cell carcinomas with neuroblastic components suggests that loss of T antigen expression in Merkel cell carcinoma may result in cell cycle arrest and neuroblastic transdifferentiation. J Pathol 2024; 264:112-124. [PMID: 39049595 DOI: 10.1002/path.6304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer frequently caused by genomic integration of the Merkel cell polyomavirus (MCPyV). MCPyV-negative cases often present as combined MCCs, which represent a distinctive subset of tumors characterized by association of an MCC with a second tumor component, mostly squamous cell carcinoma. Up to now, only exceptional cases of combined MCC with neuroblastic differentiation have been reported. Herein we describe two additional combined MCCs with neuroblastic differentiation and provide comprehensive morphologic, immunohistochemical, transcriptomic, genetic and epigenetic characterization of these tumors, which both arose in elderly men and appeared as an isolated inguinal adenopathy. Microscopic examination revealed biphasic tumors combining a poorly differentiated high-grade carcinoma with a poorly differentiated neuroblastic component lacking signs of proliferation. Immunohistochemical investigation revealed keratin 20 and MCPyV T antigen (TA) in the MCC parts, while neuroblastic differentiation was confirmed in the other component in both cases. A clonal relation of the two components can be deduced from 20 and 14 shared acquired point mutations detected by whole exome analysis in both combined tumors, respectively. Spatial transcriptomics demonstrated a lower expression of stem cell marker genes such as SOX2 and MCM2 in the neuroblastic component. Interestingly, although the neuroblastic part lacked TA expression, the same genomic MCPyV integration and the same large T-truncating mutations were observed in both tumor parts. Given that neuronal transdifferentiation upon TA repression has been reported for MCC cell lines, the most likely scenario for the two combined MCC/neuroblastic tumors is that neuroblastic transdifferentiation resulted from loss of TA expression in a subset of MCC cells. Indeed, DNA methylation profiling suggests an MCC-typical cellular origin for the combined MCC/neuroblastomas. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Humans
- Carcinoma, Merkel Cell/pathology
- Carcinoma, Merkel Cell/virology
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/metabolism
- Male
- Skin Neoplasms/pathology
- Skin Neoplasms/genetics
- Skin Neoplasms/virology
- Skin Neoplasms/metabolism
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/metabolism
- Cell Transdifferentiation
- Merkel cell polyomavirus/genetics
- Cell Cycle Checkpoints/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Aged, 80 and over
- Aged
- Neoplasms, Complex and Mixed/pathology
- Neoplasms, Complex and Mixed/genetics
- Neoplasms, Complex and Mixed/metabolism
- Neuroblastoma/pathology
- Neuroblastoma/genetics
- Neuroblastoma/metabolism
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
- "Biologie des infections à polyomavirus" team, UMR INRAE ISP 1282, Université de Tours, Tours, France
- CARADERM Network
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Susanne Gramlich
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Kamel Bachiri
- PRISM INSERM U1192, Université de Lille, Lille, France
| | - Romain Appay
- Department of Pathology, Université de Marseille, Assistance publique des Hopitaux de Marseille, Marseille, France
| | - Nicolas Macagno
- CARADERM Network
- Department of Pathology, Université de Marseille, Assistance publique des Hopitaux de Marseille, Marseille, France
| | - Anne Tallet
- Platform of Somatic Tumor Molecular Genetics, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Christine Bonenfant
- Platform of Somatic Tumor Molecular Genetics, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Yannick Lecorre
- Dermatology Department, LUNAM Université, CHU Angers, Angers, France
| | | | | | - Nalini Srinivas
- Department of Translational Skin Cancer Research and Dermatology, University Hospital Essen, Essen, Germany
| | - Kuan Cheok Lei
- Department of Translational Skin Cancer Research and Dermatology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Lange
- Bioinformatics & Computational Biophysics, University Duisburg-Essen, Essen, Germany
| | - Jürgen C Becker
- Department of Translational Skin Cancer Research and Dermatology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva Maria Sarosi
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Hervé Sartelet
- Laboratoire de Biopathologie, CHRU de Nancy, Nancy, France
- INSERM U1256, Université de Lorraine, Nancy, France
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Antoine Touzé
- "Biologie des infections à polyomavirus" team, UMR INRAE ISP 1282, Université de Tours, Tours, France
| | - Serge Guyétant
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
- "Biologie des infections à polyomavirus" team, UMR INRAE ISP 1282, Université de Tours, Tours, France
| | - Mahtab Samimi
- "Biologie des infections à polyomavirus" team, UMR INRAE ISP 1282, Université de Tours, Tours, France
- CARADERM Network
- Department of Dermatology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Liu M, Xu C, Cheng G, Chen Z, Pan X, Mei Y. E2F1 Facilitates the Proliferation and Stemness of Gastric Cancer Cells by Activating CDC25B Transcription and Modulating the MAPK Pathway. Biochem Genet 2024:10.1007/s10528-024-10864-9. [PMID: 38981987 DOI: 10.1007/s10528-024-10864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
Gastric cancer (GC) is a health problem that concerns people around the world. CDC25B is an essential cell cycle regulatory factor that is overexpressed in a variety of tumor cells. CDC25B plays a vital part in the progression and proliferation of malignant tumors. However, it is not yet clear that how CDC25B affects the stemness of GC cells. The study used bioinformatics to detect the expression of E2F1 and CDC25B in GC tissues and their correlation, as well as pathways enriched by CDC25B. We detected the expression of E2F1 and CDC25B in GC cell lines using quantitative reverse transcription polymerase chain reaction and tested the combination relationship between E2F1 and CDC25B using chromatin immunoprecipitation (ChIP) and dual-luciferase assays. We measured cell viability using CCK-8 assay, evaluated sphere-forming efficiency using sphere formation assay, and determined cell proliferation ability using colony formation assay. We also analyzed the expression of stemness markers and MAPK pathway-related proteins using western blot. In GC tissues and cells, CDC25B was upregulated. Silencing CDC25B could affect the MAPK pathway, thereby repressing the proliferation and stemness of GC cells. As predicted by bioinformatics, CDC25B had an upstream transcription factor, E2F1, which also had a high expression level in GC. Dual-luciferase and ChIP assays confirmed the combination relationship between the two. Rescue experiments uncovered that overexpression of CDC25B could reverse the impact induced by E2F1 knockdown on proliferation and stemness of cells. In conclusion, E2F1 could activate CDC25B transcription to regulate the MAPK pathway and enhance the proliferation and stemness of GC cells. We revealed a potential regulatory pathway of stemness of GC cells that was mediated by CDC25B, providing new ideas for improving and innovating GC treatment.
Collapse
Affiliation(s)
- Ming Liu
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, 323000, Zhejiang Province, China
| | - Chaobo Xu
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, 323000, Zhejiang Province, China
| | - Guoxiong Cheng
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, 323000, Zhejiang Province, China
| | - Zhengwei Chen
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, 323000, Zhejiang Province, China
| | - Xiaoming Pan
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, 323000, Zhejiang Province, China
| | - Yijun Mei
- Department of Gastrointestinal Surgery, Lishui People's Hospital, No.15 Dazhong Street, Liandu District, Lishui, 323000, Zhejiang Province, China.
| |
Collapse
|
3
|
Li F, Yan J, Leng J, Yu T, Zhou H, Liu C, Huang W, Sun Q, Zhao W. Expression patterns of E2Fs identify tumor microenvironment features in human gastric cancer. PeerJ 2024; 12:e16911. [PMID: 38371373 PMCID: PMC10870925 DOI: 10.7717/peerj.16911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Objective E2F transcription factors are associated with tumor development, but their underlying mechanisms in gastric cancer (GC) remain unclear. This study explored whether E2Fs determine the prognosis or immune and therapy responses of GC patients. Methods E2F regulation patterns from The Cancer Genome Atlas (TCGA) were systematically investigated and E2F patterns were correlated with the characteristics of cellular infiltration in the tumor microenvironment (TME). A principal component analysis was used to construct an E2F scoring model based on prognosis-related differential genes to quantify the E2F regulation of a single tumor. This scoring model was then tested in patient cohorts to predict effects of immunotherapy. Results Based on the expression profiles of E2F transcription factors in GC, two different regulatory patterns of E2F were identified. TME and survival differences emerged between the two clusters. Lower survival rates in the Cluster2 group were attributed to limited immune function due to stromal activation. The E2F scoring model was then constructed based on the E2F-related prognostic genes. Evidence supported the E2F score as an independent and effective prognostic factor and predictor of immunotherapy response. A gene-set analysis correlated E2F score with the characteristics of immune cell infiltration within the TME. The immunotherapy cohort database showed that patients with a higher E2F score demonstrated better survival and immune responses. Conclusions This study found that differences in GC prognosis might be related to the E2F patterns in the TME. The E2F scoring system developed in this study has practical value as a predictor of survival and treatment response in GC patients.
Collapse
Affiliation(s)
- Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jun Yan
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing Leng
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tianyu Yu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huayou Zhou
- Department of General Surgery, Hanzhong Central Hospital, Hanzhong, China
| | - Chang Liu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenbo Huang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
4
|
Ren X, Shen L, Gao S. Transcription Factor E2F1 Enhances Hepatocellular Carcinoma Cell Proliferation and Stemness by Activating GINS1. J Environ Pathol Toxicol Oncol 2024; 43:79-90. [PMID: 37824372 DOI: 10.1615/jenvironpatholtoxicoloncol.2023048594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Present studies report that high expression of GINS complex subunit 1 (GINS1) is notably pertinent to poor survival for hepatocellular carcinoma (HCC), but it remains unclear how GINS1 affects the progression of HCC. This study aims at investigating the mechanism by which GINS1 affects HCC cell proliferation and stemness. We performed bioinformatics analysis for determining GINS1 expression in HCC tissues, as well as the HCC patients' survival rate with different expression levels of GINS1. E2F transcription factor 1 (E2F1) was predicted as the upstream transcription factor of GINS1, and the binding relation between the two was verified by chromatin immunoprecipitation and dual-luciferase reporter assays. Quantitative real-time polymerase chain reaction was adopted to evaluate the expression of GINS1 and E2F1. The protein expression levels of GINS1, E2F1, and cell stemness-related genes (SOX-2, NANOG, OCT4, and CD133) were detected by Western blot. Afterward, the proliferative capacity and stemness of HCC tumor cells were determined through colony formation, cell counting kit-8, and sphere formation assays. Our study found the high expression of GINS1 and E2F1 in HCC, and overexpressed GINS1 markedly enhanced the sphere formation and proliferation of HCC cells, while silencing GINS1 led to the opposite results. Besides, E2F1 promoted the transcription of GINS1 by working as an upstream transcription factor. The results of the rescue experiment suggested that overexpressed E2F1 could offset the suppressive effect of GINS1 silencing on HCC cell stemness and proliferation. We demonstrated that the transcription factor E2F1 accelerated cell proliferation and stemness in HCC by activating GINS1 transcription. The results can provide new insight into the GINS1-related regulatory mechanism in HCC, which suggest that it may be an effective way for HCC treatment by targeting the E2F1/GINS1 axis.
Collapse
Affiliation(s)
- Xuefeng Ren
- Department of General Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311100, China
| | - Lianqiang Shen
- Department of General Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311100, China
| | - Shan Gao
- Department of General Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311100, China
| |
Collapse
|
5
|
In Silico and Experimental Analyses of Long Non-coding RNA TMPO-AS1 Expression in Iranian Patients with Gastric Cancer. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2023. [DOI: 10.5812/ijcm-130586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Background: In recent decades, many long non-coding RNAs (lncRNAs) have been reported to play a prominent role in tumorigenesis and the progression of human cancers, including gastric cancer (GC), a leading cause of cancer death in Iranian men and women. Studies have demonstrated that thymopoietin antisense transcript 1 (TMPO-AS1) was upregulated in different cancers by acting as an oncogenic lncRNA. Objectives: This study aimed to evaluate the expression of lncRNA TMPO-AS1 in Iranian patients with GC. Methods: In order to conduct the present study, 40 gastric tumor samples and 40 marginal noncancerous counterparts were collected. The characteristics of patients’ samples were recorded, and the TMPO-AS1 expression levels were evaluated by qRT-PCR analysis. The Cancer Genome Atlas (TCGA) data for TMPO-AS1 were used and analyzed through GEPIA and TANRIC online tools. Receiver operating characteristic (ROC) curve analysis was used to estimate the diagnostic value. Student t-test, one-way ANOVA, and chi-square test were accomplished via SPSS software. Results: Our data demonstrated that TMPO-AS1 was overexpressed in cancerous tissues compared to adjacent nonmalignant ones (P = 0.0076). None of the demographic and clinicopathological data were associated with TMPO-AS1 expression levels. The TCGA data demonstrated that TMPO-AS1 was upregulated in GC tissues in comparison to adjacent nonmalignant ones (P = 0.001). ROC curve analysis suggested that TMPO-AS1 expression levels could discriminate GC tumor tissues from normal ones (AUC = 0.699, P = 0.001). Conclusions: Altogether, in our study, we demonstrated that lncRNA TMPO-AS1 may be considered a biomarker in Iranian patients with GC. However, further investigations are required to confirm the potential application of this lncRNA in diagnosis, prognosis, and therapeutic applications of GC.
Collapse
|
6
|
Deregulated E2F Activity as a Cancer-Cell Specific Therapeutic Tool. Genes (Basel) 2023; 14:genes14020393. [PMID: 36833320 PMCID: PMC9956157 DOI: 10.3390/genes14020393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The transcription factor E2F, the principal target of the tumor suppressor pRB, plays crucial roles in cell proliferation and tumor suppression. In almost all cancers, pRB function is disabled, and E2F activity is enhanced. To specifically target cancer cells, trials have been undertaken to suppress enhanced E2F activity to restrain cell proliferation or selectively kill cancer cells, utilizing enhanced E2F activity. However, these approaches may also impact normal growing cells, since growth stimulation also inactivates pRB and enhances E2F activity. E2F activated upon the loss of pRB control (deregulated E2F) activates tumor suppressor genes, which are not activated by E2F induced by growth stimulation, inducing cellular senescence or apoptosis to protect cells from tumorigenesis. Deregulated E2F activity is tolerated in cancer cells due to inactivation of the ARF-p53 pathway, thus representing a feature unique to cancer cells. Deregulated E2F activity, which activates tumor suppressor genes, is distinct from enhanced E2F activity, which activates growth-related genes, in that deregulated E2F activity does not depend on the heterodimeric partner DP. Indeed, the ARF promoter, which is specifically activated by deregulated E2F, showed higher cancer-cell specific activity, compared to the E2F1 promoter, which is also activated by E2F induced by growth stimulation. Thus, deregulated E2F activity is an attractive potential therapeutic tool to specifically target cancer cells.
Collapse
|
7
|
Ni YL, Chien PJ, Hsieh HC, Shen HT, Lee HT, Chen SM, Chang WW. Disulfiram/Copper Suppresses Cancer Stem Cell Activity in Differentiated Thyroid Cancer Cells by Inhibiting BMI1 Expression. Int J Mol Sci 2022; 23:13276. [PMID: 36362068 PMCID: PMC9654490 DOI: 10.3390/ijms232113276] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Differentiated thyroid carcinomas (DTCs), which have papillary and follicular types, are common endocrine malignancies worldwide. Cancer stem cells (CSCs) are a particular type of cancer cells within bulk tumors involved in cancer initiation, drug resistance, and metastasis. Cells with high intracellular aldehyde hydrogenase (ALDH) activity are a population of CSCs in DTCs. Disulfiram (DSF), an ALDH inhibitor used for the treatment of alcoholism, reportedly targets CSCs in various cancers when combined with copper. This study reported for the first time that DSF/copper can inhibit the proliferation of papillary and follicular DTC lines. DSF/copper suppressed thyrosphere formation, indicating the inhibition of CSC activity. Molecular mechanisms of DSF/copper involved downregulating the expression of B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and cell cycle-related proteins, including cyclin B2, cyclin-dependent kinase (CDK) 2, and CDK4, in a dose-dependent manner. BMI1 overexpression diminished the inhibitory effect of DSF/copper in the thyrosphere formation of DTC cells. BMI1 knockdown by RNA interference in DTC cells also suppressed the self-renewal capability. DSF/copper could inhibit the nuclear localization and transcriptional activity of c-Myc and the binding of E2F1 to the BMI1 promoter. Overexpression of c-Myc or E2F1 further abolished the inhibitory effect of DSF/copper on BMI1 expression, suggesting that the suppression of c-Myc and E2F1 by DSF/copper was involved in the downregulation of BMI1 expression. In conclusion, DSF/copper targets CSCs in DTCs by inhibiting c-Myc- or E2F1-mediated BMI1 expression. Therefore, DSF is a potential therapeutic agent for future therapy in DTCs.
Collapse
Affiliation(s)
- Yung-Lun Ni
- Department of Pulmonary Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 427213, Taiwan
| | - Peng-Ju Chien
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402306, Taiwan
| | - Hung-Chia Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402306, Taiwan
| | - Huan-Ting Shen
- Department of Pulmonary Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 427213, Taiwan
| | - Hsueh-Te Lee
- Institute of Anatomy & Cell Biology, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan
| | - Shih-Ming Chen
- Bachelor Program in Health Care and Social Work for Indigenous Students, Providence University, Taichung City 433303, Taiwan
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402306, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402306, Taiwan
| |
Collapse
|
8
|
Rao X, Zhang C, Luo H, Zhang J, Zhuang Z, Liang Z, Wu X. Targeting Gastric Cancer Stem Cells to Enhance Treatment Response. Cells 2022; 11:cells11182828. [PMID: 36139403 PMCID: PMC9496718 DOI: 10.3390/cells11182828] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer (GC) was the fourth deadliest cancer in the world in 2020, and about 770,000 people died from GC that year. The death of patients with GC is mainly caused by the metastasis, recurrence, and chemotherapy resistance of GC cells. The cancer stem cell theory defines cancer stem cells (CSCs) as a key factor in the metastasis, recurrence, and chemotherapy resistance of cancer. It considers targeting gastric cancer stem cells (GCSCs) to be an effective method for the treatment of GC. For GCSCs, genes or noncoding RNAs are important regulatory factors. Many experimental studies have found that some drugs can target the stemness of gastric cancer by regulating these genes or noncoding RNAs, which may bring new directions for the clinical treatment of gastric cancer. Therefore, this review mainly discusses related genes or noncoding RNAs in GCSCs and drugs that target its stemness, thereby providing some information for the treatment of GC.
Collapse
|
9
|
Xiao SY, Yan ZG, Zhu XD, Qiu J, Lu YC, Zeng FR. LncRNA DLGAP1-AS2 promotes the radioresistance of rectal cancer stem cells by upregulating CD151 expression via E2F1. Transl Oncol 2022; 18:101304. [PMID: 35144091 PMCID: PMC8844799 DOI: 10.1016/j.tranon.2021.101304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
DLGAP1-AS2 knockdown inhibits radioresistance of rectal cancer stem cells. DLGAP1-AS2 elevates CD151 expression via interactions with E2F1. DLGAP1-AS2 facilitates radioresistance of rectal cancer by interacting with E2F1 to upregulate CD151 expression. DLGAP1-AS2 promotes radioresistance of rectal cancer via modulating E2F1 to elevate CD151 expression through activating AKT/mTOR/cyclinD1 signaling.
Background Radiotherapy resistance is one of the major causes of rectal cancer treatment failure. LncRNA DLGAP1-AS2 participates in the progression of several cancers. We explored the role and potential mechanism of DLGAP1-AS2 in the radioresistance of rectal cancer stem cells. Methods HR8348-R cells, radioresistant cells from HR8348 after irradiation, were isolated into CD133 negative (CD133−) and positive (CD133+) cells. Cell proliferation, apoptosis, migration and tumorsphere formation were determined by CCK-8, flow cytometry, wound healing assay and tumorsphere formation assay, respectively. CD133, tumor stem cell drug resistance gene (MDR1 and BCRP1), DNA repair marker (γ-H2AX) and AKT/mTOR/cyclinD1 signaling were measured by Western blot. The relationship between DLGAP1-AS2 and E2F1 was verified using RIP. The interaction between E2F1 and CD151 promoter was confirmed using dual-luciferase reporter gene assay and ChIP. AKT inhibitor API-2 was employed for validating the effect of AKT/mTOR/cyclinD1 signaling in the radioresistance of rectal cancer cells. Results The DLGAP1-AS2 level was increased in CD133+ cells after irradiation. DLGAP1-AS2 knockdown inhibited the proliferation, migration and tumorsphere formation while stimulating apoptosis in CD133+ cells. DLGAP1-AS2 inhibition downregulated the expression of CD133, MDR1, BCRP1 and γ-H2AX and suppressed AKT/mTOR/cyclinD1 activation. DLGAP1-AS2 upregulated the expression of CD151 by interacting with E2F1. API-2 neutralized the promotive effects of overexpressed CD151 on radioresistance. Conclusion DLGAP1-AS2 accelerates the radioresistance of rectal cancer cells through interactions with E2F1 to upregulate CD151 expression via the activation of the AKT/mTOR/cyclinD1 pathway.
Collapse
|
10
|
Otaegi-Ugartemendia M, Matheu A, Carrasco-Garcia E. Impact of Cancer Stem Cells on Therapy Resistance in Gastric Cancer. Cancers (Basel) 2022; 14:cancers14061457. [PMID: 35326607 PMCID: PMC8946717 DOI: 10.3390/cancers14061457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer death worldwide, with an average 5-year survival rate of 32%, being of 6% for patients presenting distant metastasis. Despite the advances made in the treatment of GC, chemoresistance phenomena arise and promote recurrence, dissemination and dismal prognosis. In this context, gastric cancer stem cells (gCSCs), a small subset of cancer cells that exhibit unique characteristics, are decisive in therapy failure. gCSCs develop different protective mechanisms, such as the maintenance in a quiescent state as well as enhanced detoxification procedures and drug efflux activity, that make them insusceptible to current treatments. This, together with their self-renewal capacity and differentiation ability, represents major obstacles for the eradication of this disease. Different gCSC regulators have been described and used to isolate and characterize these cell populations. However, at the moment, no therapeutic strategy has achieved the effective targeting of gCSCs. This review will focus on the properties of cancer stem cells in the context of therapy resistance and will summarize current knowledge regarding the impact of the gCSC regulators that have been associated with GC chemoradioresistance.
Collapse
Affiliation(s)
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (M.O.-U.); (A.M.)
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Estefania Carrasco-Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (M.O.-U.); (A.M.)
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-943-006296
| |
Collapse
|
11
|
Fu Y, Ci H, Du W, Dong Q, Jia H. CHRNA5 Contributes to Hepatocellular Carcinoma Progression by Regulating YAP Activity. Pharmaceutics 2022; 14:pharmaceutics14020275. [PMID: 35214008 PMCID: PMC8877699 DOI: 10.3390/pharmaceutics14020275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health concern worldwide. A better understanding of the mechanisms underlying the malignant phenotype is necessary for developing novel therapeutic strategies for HCC. Signaling pathways initiated by neurotransmitter receptors, such as α5-nicotinic acetylcholine receptor (CHRNA5), have been reported to be implicated in tumor progression. However, the functional mechanism of CHRNA5 in HCC remains unclear. In this study, we explored the role of CHRNA5 in HCC and found that CHRNA5 expression was increased in human HCC tissues and positively correlated with the T stage (p < 0.05) and AJCC phase (p < 0.05). The KM plotter database showed that the high expression level of CHRNA5 was strongly associated with worse survival in HCC patients. Both in vitro and in vivo assays showed that CHRNA5 regulates the proliferation ability of HCC by regulating YAP activity. In addition, CHRNA5 promotes the stemness of HCC by regulating stemness-associated genes, such as Nanog, Sox2 and OCT4. Cell migration and invasion assays demonstrated that CHRNA5 significantly enhanced the metastasis of HCC by regulating epithelial–mesenchymal transition (EMT)-associated genes. Furthermore, we found that CHRNA5 regulates the sensitivity of sorafenib in HCC. Our findings suggest that CHRNA5 plays a key role in the progression and drug resistance of HCC, and targeting CHRNA5 may be a strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
| | - Hongfei Ci
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
| | - Wei Du
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 200437, China
- Correspondence: (Q.D.); (H.J.); Tel./Fax: +86-21-5423-7960 (Q.D.); +86-21-5288-7175 (H.J.)
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
- Correspondence: (Q.D.); (H.J.); Tel./Fax: +86-21-5423-7960 (Q.D.); +86-21-5288-7175 (H.J.)
| |
Collapse
|