1
|
Gao C, Song XD, Chen FH, Wei GL, Guo CY. The protective effect of natural medicines in rheumatoid arthritis via inhibit angiogenesis. Front Pharmacol 2024; 15:1380098. [PMID: 38881875 PMCID: PMC11176484 DOI: 10.3389/fphar.2024.1380098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Rheumatoid arthritis is a chronic immunological disease leading to the progressive bone and joint destruction. Angiogenesis, accompanied by synovial hyperplasia and inflammation underlies joint destruction. Delaying or even blocking synovial angiogenesis has emerged as an important target of RA treatment. Natural medicines has a long history of treating RA, and numerous reports have suggested that natural medicines have a strong inhibitory activity on synovial angiogenesis, thereby improving the progression of RA. Natural medicines could regulate the following signaling pathways: HIF/VEGF/ANG, PI3K/Akt pathway, MAPKs pathway, NF-κB pathway, PPARγ pathway, JAK2/STAT3 pathway, etc., thereby inhibiting angiogenesis. Tripterygium wilfordii Hook. f. (TwHF), sinomenine, and total glucoside of Paeonia lactiflora Pall. Are currently the most representative of all natural products worthy of development and utilization. In this paper, the main factors affecting angiogenesis were discussed and different types of natural medicines that inhibit angiogenesis were systematically summarized. Their specific anti-angiogenesis mechanisms are also reviewed which aiming to provide new perspective and options for the management of RA by targeting angiogenesis.
Collapse
Affiliation(s)
- Chang Gao
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Xiao-Di Song
- Gannan Medical University, Jiangxi, Ganzhou, China
| | - Fang-Hui Chen
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Gui-Lin Wei
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Chun-Yu Guo
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| |
Collapse
|
2
|
Xiao J, Zhou F, Zhao Z, Cao F, Xiao H, Zhang L, Chen H, Wang K, Zhang A. PDCD5 as a Potential Biomarker for Improved Prediction of the Incidence and Remission for Patients with Rheumatoid Arthritis. Rheumatol Ther 2023; 10:1369-1383. [PMID: 37528307 PMCID: PMC10468452 DOI: 10.1007/s40744-023-00587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) often involves an altered T-cell subpopulation, higher levels of inflammatory cytokines, and auto-antibodies. This study investigated whether PDCD5 could be a biomarker to predict the incidence and remission of RA so as to guide the therapeutic management of clinical RA. METHODS One hundred fifty-two patients (41 being in both active status and stable remission status) who were newly diagnosed with RA and 38 healthy controls were enrolled. Basic clinical data were collected before using blood samples remaining in the clinic after routine complete blood count. The ability of PDCD5 and important indicators to predict the remission of RA was estimated based on receiver operating characteristic curve (ROC) analysis. RESULTS PDCD5 expression was found to be significantly increased in RA patients in active status in comparison with healthy controls or those in stable remission status. Compared with anti-CCP, ESR and DAS28 score, PDCD5 was of better predictive value with an AUC of 0.846 (95% CI 0.780-0.912) for RA remission. The incidence risk of RA increased with higher levels of PDCD5 (OR = 1.73, 95% CI = 1.45-1.98, P = 0.005) in multiple logistic regression analysis, with the risk increasing by 2.94-times for high-risk group in comparison with low-risk group (OR = 2.94, 95% CI = 2.35-4.62, P < 0.001). The association between PDCD5 and RA remission showed a similar result. For correlation analysis, significant associations were eventually found between PDCD5 and indicated genes (FOXP3, TNF-α, IL-17A, IFN-γ and IL-6) as well as several important clinical parameters including IgG, RF, CRP, ESR, anti-CCP and DAS28 score. CONCLUSIONS This study suggested that increased PDCD5 expression was significantly linked to the incidence and remission of RA. PDCD5 may be used as a novel biomarker for the prediction of RA incidence and remission, especially due to its potential involvement in the development of the condition.
Collapse
Affiliation(s)
- Juan Xiao
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China
| | - Fengqiao Zhou
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China
| | - Zhenwang Zhao
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China
| | - Fengsheng Cao
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China
| | - Hong Xiao
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China
| | - Lu Zhang
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China
| | - Huabo Chen
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China
| | - Ke Wang
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China.
| | - Anbing Zhang
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 136 Jinzhou Street, Xiangyang, 441021, Hubei, China.
| |
Collapse
|
3
|
Ayeni EA, Ma C, Hu Y, Bai X, Zhang Y, Liao X. Screening of Monoamine Oxidase Inhibitors from Seeds of Nigella glandulifera Freyn et Sint. by Ligand Fishing and Their Neuroprotective Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:882. [PMID: 36840231 PMCID: PMC9960078 DOI: 10.3390/plants12040882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Nigella glandulifera is a traditional medicinal plant used to treat seizures, insomnia, and mental disorders among the Tibetan and Xinjiang people of China. Recent pharmacological research indicates that the seeds of this plant have a neuroprotective effect; however, the chemical components responsible for this effect are unknown. Monoamine oxidase B (MAO-B) has been recognized as a target for developing anti-Parkinson's disease drugs. In this work, MAO-B functionalized magnetic nanoparticles were used to enrich the enzyme's ligands in extracts of N. glandulifera seeds for rapid screening of MAO-B inhibitors coupled with HPLC-MS. Tauroside E and thymoquinone were found to inhibit the enzyme with IC50 values of 35.85 μM and 25.54 μM, respectively. Both compounds exhibited neuroprotective effects on 6-OHDA-induced PC-12 cells by increasing the cell viability to 52% and 58%, respectively, compared to 50% of the injured cells. Finally, molecular docking indicated strong interactions of both inhibitors with the enzyme. This work shows that MAO-B functionalized magnetic nanoparticles are effective for rapid screening of anti-PD inhibitors from complex herbal mixtures and, at the same time, shows the promising potential of this plant's seeds in developing anti-PD drugs.
Collapse
Affiliation(s)
- Emmanuel Ayodeji Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Ma
- Phytochemistry Laboratory, Tibet Plateau Institute of Biology, Lhasa 850001, China
| | - Yikao Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongmei Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
4
|
Tilianin Ameliorates Cognitive Dysfunction and Neuronal Damage in Rats with Vascular Dementia via p-CaMKII/ERK/CREB and ox-CaMKII-Dependent MAPK/NF- κB Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6673967. [PMID: 34527176 PMCID: PMC8437593 DOI: 10.1155/2021/6673967] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022]
Abstract
Vascular dementia (VaD) is a common cause of cognitive decline and dementia of vascular origin, but the precise pathological mechanisms are unknown, and so effective clinical treatments have not been established. Tilianin, the principal active compound of total flavonoid extract from Dracocephalum moldavica L., is a candidate therapy for cardio-cerebrovascular diseases in China. However, its potential in the treatment of VaD is unclear. The present study is aimed at investigating the protective effects of tilianin on VaD and exploring the underlying mechanism of the action. A model of VaD was established by permanent 2-vessel occlusion (2VO) in rats. Human neurons (hNCs) differentiated from human-induced pluripotent stem cells were used to establish an oxygen-glucose deprivation (OGD) model. The therapeutic effects and potential mechanisms of tilianin were identified using behavioral tests, histochemistry, and multiple molecular biology techniques such as Western blot analysis and gene silencing. The results demonstrated that tilianin modified spatial cognitive impairment, neurodegeneration, oxidation, and apoptosis in rats with VaD and protected hNCs against OGD by increasing cell viability and decreasing apoptosis rates. A study of the mechanism indicated that tilianin restored p-CaMKII/ERK1/2/CREB signaling in the hippocampus, maintaining hippocampus-independent memory. In addition, tilianin inhibited an ox-CaMKII/p38 MAPK/JNK/NF-κB associated inflammatory response caused by cerebral oxidative stress imbalance in rats with VaD. Furthermore, specific CaMKIIα siRNA action revealed that tilianin-exerted neuroprotection involved increase of neuronal viability, inhibition of apoptosis, and suppression of inflammation, which was dependent on CaMKIIα. In conclusion, the results suggested the neuroprotective effect of tilianin in VaD and the potential mechanism associated with dysfunction in the regulation of p-CaMKII-mediated long-term memory and oxidation and inflammation involved with ox-CaMKII, which may lay the foundation for clinical trials of tilianin for the treatment of VaD in the future.
Collapse
|