1
|
Wang Y, Li D, Yan Z, Shi D. Immunoglobulin E, the potential accelerator of comorbid psoriasis and atherosclerosis. Biomed Pharmacother 2025; 183:117860. [PMID: 39848109 DOI: 10.1016/j.biopha.2025.117860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025] Open
Abstract
Immunoglobulin (Ig) E is a key mediator in the induction and maintenance of allergic inflammation, characterized by a Th2-dominated immune response. Recently epidemiological studies have showed that elevated serum total IgE levels or an increased abundance of mast cells (MCs) at the lesion site are observed in psoriatic patients with cardiovascular diseases (CVD), such as atherosclerosis. Although the underlying mechanisms by which IgE synergizing with MCs in promoting these chronic immune-inflammatory diseases remain unclear, the interleukin (IL)-23/IL-17 axis appears to play a crucial role in comorbidity of psoriasis and atherosclerosis. High IgE production may result from IL-17A response, further exacerbating inflammatory pathways involved in both psoriasis and atherosclerosis. This review explores the possible mechanisms of IgE in these comorbid conditions, reinforcing the rationale for IL-17A targeted biologics in the treatment of psoriasis and atherosclerosis comorbidity. Additionally, IgE is proposed as a potential therapeutic target for alleviating patients suffering from these comorbidity conditions.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC, United States
| | - Zhongrui Yan
- Department of Neurology, Jining No.1 People's Hospital affiliated to Shandong First Medical University, Jining, Shandong, China.
| | - Dongmei Shi
- Laboratory of Medical Mycology & Department of Dermatology, Jining No.1 People's Hospital affiliated to Shandong First Medical University, Jining, Shandong, China.
| |
Collapse
|
2
|
Liu SH, Zhang J, Zuo YG. Macrophages in inflammatory skin diseases and skin tumors. Front Immunol 2024; 15:1430825. [PMID: 39703508 PMCID: PMC11656021 DOI: 10.3389/fimmu.2024.1430825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Macrophages, as specialized, long-lasting phagocytic cells of the innate immune system, have garnered increasing attention due to their wide distribution and various functions. The skin, being the largest immune organ in the human body, presents an intriguing landscape for macrophage research, particularly regarding their roles in inflammatory skin diseases and skin tumors. In this review, we compile the latest research on macrophages in conditions such as atopic dermatitis, psoriasis, systemic sclerosis, systemic lupus erythematosus, rosacea, bullous pemphigoid, melanoma and cutaneous T-cell lymphoma. We aim to contribute to illustrating the pathogenesis and potential new therapies for inflammatory skin diseases and skin tumors from the perspective of macrophages.
Collapse
Affiliation(s)
| | | | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Liu J, Qiu C, Zhou Z, Li J, Zhen Y, Wang R, Zhuang Y, Zhang F. Pentraxin 3 exacerbates psoriasiform dermatitis through regulation of macrophage polarization. Int Immunopharmacol 2024; 130:111805. [PMID: 38457930 DOI: 10.1016/j.intimp.2024.111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE To elucidate the mechanism of Pentraxin 3 (PTX3) in the pathogenesis of psoriasiform dermatitis using Ptx3-knockout (Ptx3-KO) background mice. METHODS An Imiquimod (IMQ)-induced murine psoriatic model was created using Ptx3-KO (Ptx3-/-) and wild-type (Ptx3+/+) mice. Skin lesion severity and expression of inflammatory mediators (IL-6 and TNFα) were assessed using PASI score and ELISA, respectively. Cutaneous tissues from the two mice groups were subjected to histological analyses, including HE staining, Masson staining, and Immunohistochemistry (IHC). The PTX3, iNOS, COX2, and Arg1 expressions were quantified and compared between the two groups. We used RNA-seq to clarify the underlying mechanisms of the disease. Flow cytometry was used to analyze systemic Th17 cell differentiation and macrophage polarization. RESULT The psoriatic region exhibited a higher PTX3 expression than the normal cutaneous area. Moreover, PTX3 was upregulated in HaCaT cells post-TNFα stimulation. Upon IMQ stimulation, Ptx3-/- mice displayed a lower degree of the psoriasiform dermatitis phenotype compared to Ptx3+/+ mice. Consistent with the RNA-seq results, further experiments confirmed that compared to the wild-type group, the PTX3-KO group exhibited a generally lower IL-6, TNFα, iNOS, and COX2 expression and a contrasting trend in macrophage polarization. However, no significant difference in Th17 cell activation was observed between the two groups. CONCLUSIONS This study revealed that PTX3 was upregulated in psoriatic skin tissues and TNFα-stimulated HaCaT cells. We also discovered that PTX3 deficiency in mice ameliorated the psoriasiform dermatitis phenotype upon IMQ stimulation. Mechanistically, PTX3 exacerbates psoriasiform dermatitis by regulating macrophage polarization rather than Th17 cell differentiation.
Collapse
Affiliation(s)
- Jingwei Liu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Cheng Qiu
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, Shandong, PR China.
| | - Zhonghua Zhou
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Jinxu Li
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Yunyue Zhen
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Ruijie Wang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Yan Zhuang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Fan Zhang
- Department of Burn and Plastic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
4
|
Hao S, Cong J, Ma Z, Xia Y, Zhang Y, Tong N, Tian J, Li Y. SPRR1B is Related to the Immune Microenvironment and Can Be Used as a Biomarker for the Diagnosis of Psoriasis. Int J Gen Med 2024; 17:401-418. [PMID: 38333021 PMCID: PMC10849920 DOI: 10.2147/ijgm.s439845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024] Open
Abstract
Background Psoriasis, a chronic inflammatory disorder with an unknown cause, significantly impacts the physical and psychological well-being of patients. However, current biomarkers related to psoriasis lack clinical specificity, sensitivity, and predictive ability. Methods In this study, we collected skin lesion tissues from 20 psoriasis patients and 20 normal skin samples. Additionally, we obtained four datasets from the GEO database, which included human psoriasis and healthy specimens. We utilized SVM-RFE analysis and the LASSO regression model to identify potential biomarkers. Furthermore, we examined the composition of immune cell types in psoriasis and their correlation with specific genes. Results Our investigation revealed 57 differentially expressed genes (DEGs), and we identified significantly enriched pathways through KEGG pathway analysis. The results of machine learning and WGCNA suggested that LCE3D and SPRR1B could potentially be used as marker genes for diagnosing psoriasis. RT-PCR and immunohistochemical detection confirmed the abnormally high expression of the SPRR1B gene in psoriasis. Analysis of immune cell infiltration revealed a strong positive correlation between SPRR1B and Macrophages M0 and T cells follicular helper, while showing the strongest negative correlation with resting Mast cells. In addition, we found that silencing SPRR1B in IFN-γ-treated HaCat cells could significantly reduce the increase in IL-17, IL-22, KRT6, and KRT16 caused by IFN-γ. Conclusion These findings suggest that SPRR1B may have a significant role in the pathogenesis of psoriasis and could be employed as a novel immunomarker for its development.
Collapse
Affiliation(s)
- Siyu Hao
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Jiuyi Cong
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Zhiqiang Ma
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Yan Xia
- Scientific Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yu Zhang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Nannan Tong
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jiangtian Tian
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
5
|
Lu YW, Dong RJ, Yang LH, Liu J, Yang T, Xiao YH, Chen YJ, Wang RR, Li YY. Identification of gene signatures and molecular mechanisms underlying the mutual exclusion between psoriasis and leprosy. Sci Rep 2024; 14:2199. [PMID: 38273053 PMCID: PMC10810956 DOI: 10.1038/s41598-024-52783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024] Open
Abstract
Leprosy and psoriasis rarely coexist, the specific molecular mechanisms underlying their mutual exclusion have not been extensively investigated. This study aimed to reveal the underlying mechanism responsible for the mutual exclusion between psoriasis and leprosy. We obtained leprosy and psoriasis data from ArrayExpress and GEO database. Differential expression analysis was conducted separately on the leprosy and psoriasis using DEseq2. Differentially expressed genes (DEGs) with opposite expression patterns in psoriasis and leprosy were identified, which could potentially involve in their mutual exclusion. Enrichment analysis was performed on these candidate mutually exclusive genes, and a protein-protein interaction (PPI) network was constructed to identify hub genes. The expression of these hub genes was further validated in an external dataset to obtain the critical mutually exclusive genes. Additionally, immune cell infiltration in psoriasis and leprosy was analyzed using single-sample gene set enrichment analysis (ssGSEA), and the correlation between critical mutually exclusive genes and immune cells was also examined. Finally, the expression pattern of critical mutually exclusive genes was evaluated in a single-cell transcriptome dataset. We identified 1098 DEGs in the leprosy dataset and 3839 DEGs in the psoriasis dataset. 48 candidate mutually exclusive genes were identified by taking the intersection. Enrichment analysis revealed that these genes were involved in cholesterol metabolism pathways. Through PPI network analysis, we identified APOE, CYP27A1, FADS1, and SOAT1 as hub genes. APOE, CYP27A1, and SOAT1 were subsequently validated as critical mutually exclusive genes on both internal and external datasets. Analysis of immune cell infiltration indicated higher abundance of 16 immune cell types in psoriasis and leprosy compared to normal controls. The abundance of 6 immune cell types in psoriasis and leprosy positively correlated with the expression levels of APOE and CYP27A1. Single-cell data analysis demonstrated that critical mutually exclusive genes were predominantly expressed in Schwann cells and fibroblasts. This study identified APOE, CYP27A1, and SOAT1 as critical mutually exclusive genes. Cholesterol metabolism pathway illustrated the possible mechanism of the inverse association of psoriasis and leprosy. The findings of this study provide a basis for identifying mechanisms and therapeutic targets for psoriasis.
Collapse
Affiliation(s)
- You-Wang Lu
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
| | - Rong-Jing Dong
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
| | - Lu-Hui Yang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jiang Liu
- Department of Reproduction and Genetics, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Ting Yang
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Yong-Hong Xiao
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yong-Jun Chen
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China.
| | - Rui-Rui Wang
- College of Pharmaceutical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China.
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
6
|
Ding R, Zheng Y, Bu J. Exploration of the biomarkers of comorbidity of psoriasis with inflammatory bowel disease and their association with immune infiltration. Skin Res Technol 2023; 29:e13536. [PMID: 38115636 PMCID: PMC10730979 DOI: 10.1111/srt.13536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND There was evidence that significant bidirectional associations between psoriasis and inflammatory bowel diseases (IBDs), which influences management strategy of the patients, so the investigation on the mechanisms by which these two diseases co-occur is important. METHODS The Gene Expression Omnibus (GEO) database was used to download gene expression profiles of psoriasis and IBD. The differentially expressed genes (DEGs) between disease and health control groups for each data set were calculated, and Venn diagram was used to obtain for intersection. We performed Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on the intersection, followed by developing a protein-protein interaction network and module construction, and identified hub genes by cytoHubba. Thereafter, least absolute shrinkage and selection operator algorithms was used to identify the co-biomarkers of psoriasis and IBD from the top 50 hub genes. The biomarkers were used to construct a screening model, the discriminatory capacity of which was verified by receiver operating characteristic (ROC) curves. CIBERSORT algorithm was utilized to estimate the compositional patterns of immune cell infiltration in biomarkers of psoriasis and IBD. Spearman rank correlation analysis was used to further evaluate the correlation between the identified biomarkers and immune cells. RESULTS A total of 271 shared DEGs were screened. The GO and KEGG enrichment analysis indicated that the shared DEGs were mainly enriched in response to lipopolysaccharide, secretory granule lumen, cytokine activity, and interleukin (IL)-17 signaling pathway. Fifty genes such as IL1B, IL6, were identified as hub genes, based on which, FOS, IFI44, MMP9, MNDA, PTGS2, S100A9, and STAT1 were identified as biomarkers of psoriasis. CCL20, CD274, CTGF, CXCL1, CXCL10, CXCL2, CXCL9, FCGR3B, FOS, GBP1, GZMB, IFI27, IFI6, IL1RN, ISG15, ISG20, LCN2, LILRB2, MMP12, MMP7, S100A8, TLR8, and TNFSF13B were identified as biomarkers of IBD. FOS was the common biomarker of psoriasis and IBD. Screening models were validated in the validation data set (Psoriasis: area under the curve (AUC) = 1.000, IBD: AUC = 0.870). Immunocyte infiltration analysis showed the macrophages cells, mast cells resting, and T cells CD4 memory activated have the common characteristics in psoriasis and IBD. CONCLUSIONS FOS may play a key role in the occurrence and development of psoriasis complicated with IBD and macrophages cells may be an entrance for treating this comorbidity.
Collapse
Affiliation(s)
- Rui‐Lian Ding
- Hospital for Skin Diseases (Institute of Dermatology)Chinese Academy of Medical Sciences & Peking Union Medical CollegeNanjingJiangsuChina
| | - Yu Zheng
- Hospital for Skin Diseases (Institute of Dermatology)Chinese Academy of Medical Sciences & Peking Union Medical CollegeNanjingJiangsuChina
| | - Jin Bu
- Hospital for Skin Diseases (Institute of Dermatology)Chinese Academy of Medical Sciences & Peking Union Medical CollegeNanjingJiangsuChina
| |
Collapse
|
7
|
Guo Y, Gan H, Xu S, Zeng G, Xiao L, Ding Z, Zhu J, Xiong X, Fu Z. Deciphering the Mechanism of Xijiao Dihuang Decoction in Treating Psoriasis by Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2023; 17:2805-2819. [PMID: 37719360 PMCID: PMC10504908 DOI: 10.2147/dddt.s417954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose This study aims to confirm the efficacy of Xijiao Dihuang decoction (XJDHT), a classic prescription, in treating psoriasis and to explore the potential therapeutic mechanism. Methods For pharmacodynamic analysis, a mouse model of imiquimod cream (IMQ)-induced psoriasis was constructed. Active ingredients and genes of XJDHT, as well as psoriasis-related targets, were obtained from public databases. Intersecting genes (IGEs) of XJDHT and psoriasis were collected by Venn Diagram. A protein-protein interaction (PPI) network of IGEs is constructed through the STRING database. The Molecular Complex Detection (MCODE) and Cytohubba plug-ins of Cytoscape software were used to identified hub genes. In addition, we conducted enrichment analysis of IGEs using the R package clusterProfiler. Hub genes were validated via external GEO databases. The influence of XJDHT on Hub gene expression was examined by qPCR and ELISA, and molecular docking was used to evaluate the binding efficacy between active ingredients and hub genes. Results The results revealed that XJDHT possesses 92 potential genes for psoriasis, and 8 Hub genes were screened. Enrichment analysis suggested that XJDHT ameliorate psoriasis through multiple pathways, including AGE-RAGE, HIF-1, IL-17 and TNF signaling pathway. Validation data confirmed the differential expression of IL6, VEGFA, TNF, MMP9, STAT3, and TLR4. Molecular docking revealed a strong affinity between active ingredients and Hub genes. The efficacy of XJDHT in improving psoriatic lesions in model mice was demonstrated by PASI score and HE staining, potentially attributed to the down-regulation of VEGFA, MMP9, STAT3, TNF, and IL-17A, as evidenced by ELISA and qPCR. Conclusion This study employed network pharmacology and in vitro experiments to identify the potential mechanisms underlying the therapeutic effects of XJDHT on psoriasis, providing a new theoretical basis for its clinical application in the treatment of psoriasis.
Collapse
Affiliation(s)
- Yicheng Guo
- Department of Pharmacy, Dermatology Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| | - Huiqun Gan
- Department of Pharmacy, Dermatology Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| | - Shigui Xu
- Department of Pharmacy, Dermatology Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| | - Guosheng Zeng
- Jiangxi Provincial Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Lili Xiao
- Jiangxi Provincial Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Zhijun Ding
- Jiangxi Provincial Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Jie Zhu
- Candidate Branch of National Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Xinglong Xiong
- Candidate Branch of National Clinical Research Center for Skin Diseases, Nanchang, People’s Republic of China
| | - Zhiyuan Fu
- Department of Pharmacy, Dermatology Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| |
Collapse
|
8
|
Sun Q, Hu S, Lou Z, Gao J. The macrophage polarization in inflammatory dermatosis and its potential drug candidates. Biomed Pharmacother 2023; 161:114469. [PMID: 37002572 DOI: 10.1016/j.biopha.2023.114469] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Inflammatory dermatosis is characterized by persistent inflammatory infiltration and hard repair of diseased skin. As a member of the human innate immune cells, macrophages usually show different phenotypes in different diseases. The macrophage phenotype (M1/M2) imbalance caused by the increase of M1 macrophages or the decrease of M2 macrophages is common in inflammatory dermatosis. In recent years, with the deepening research on inflammatory skin diseases, more and more natural medicines/traditional Chinese medicines (TCMs), represented by Shikonin and Angelica Dahurica, have shown their therapeutic effects by affecting the polarization of macrophages. This review introduced macrophage polarization in different inflammatory dermatosis, such as psoriasis. Then summarized the natural medicines/TCMs that have potential therapeutic effects so far and introduced their mechanisms of action and the proteins/signal pathways involved. We found that the TCMs with therapeutic effects listed in this review are closely related to the theory of five flavors and four properties of Chinese medicinal, and most of them are bitter, acrid and sweet. Bitter TCMs have antipyretic, anti-inflammatory and antibacterial effects, which may improve the persistent inflammation of M1 macrophage infiltration. Acrid TCMs have the effect of promoting blood circulation, while sweet TCMs have the effect of nourishing. These 2 flavors may accelerate the repair of skin lesions of inflammatory dermatosis by affecting M2 macrophages. In conclusion, we hope to provide sufficient knowledge for natural medicine research and the development of inflammatory dermatosis related to macrophage phenotype imbalance.
Collapse
Affiliation(s)
- Qingru Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Shiyu Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China.
| |
Collapse
|
9
|
Guo Y, Luo L, Zhu J, Li C. Multi-Omics Research Strategies for Psoriasis and Atopic Dermatitis. Int J Mol Sci 2023; 24:ijms24098018. [PMID: 37175722 PMCID: PMC10178671 DOI: 10.3390/ijms24098018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Psoriasis and atopic dermatitis (AD) are multifactorial and heterogeneous inflammatory skin diseases, while years of research have yielded no cure, and the costs associated with caring for people suffering from psoriasis and AD are a huge burden on society. Integrating several omics datasets will enable coordinate-based simultaneous analysis of hundreds of genes, RNAs, chromatins, proteins, and metabolites in particular cells, revealing networks of links between various molecular levels. In this review, we discuss the latest developments in the fields of genomes, transcriptomics, proteomics, and metabolomics and discuss how they were used to identify biomarkers and understand the main pathogenic mechanisms underlying these diseases. Finally, we outline strategies for achieving multi-omics integration and how integrative omics and systems biology can advance our knowledge of, and ability to treat, psoriasis and AD.
Collapse
Affiliation(s)
- Youming Guo
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| | - Lingling Luo
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| | - Jing Zhu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| | - Chengrang Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| |
Collapse
|
10
|
Du Y, Zuo L, Xiong Y, Wang X, Zou J, Xu H. CD8A is a Promising Biomarker Associated with Immunocytes Infiltration in Hyperoxia-Induced Bronchopulmonary Dysplasia. J Inflamm Res 2023; 16:1653-1669. [PMID: 37092130 PMCID: PMC10120826 DOI: 10.2147/jir.s397491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/18/2023] [Indexed: 04/25/2023] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) refers to a chronic lung disease which is commonly observed in preterm infants. It can usually be caused by several pathological processes that endanger the long-term lung development, such as inflammation and immune dysfunction. Methods In this study, a bioinformatics approach was applied to identify the differentially expressed immune-related genes (DEIRGs). We downloaded the transcriptional profiles (GSE32472 dataset) from the Gene Expression Omnibus (GEO) database and performed gene set enrichment analysis (GSEA). Cell type Identification By Estimating Relative Subsets of RNA Transcripts (CIBERSORT), microenvironment cell populations counter (MCPcounter), and Estimation of STromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) were used for the analysis of the immune cell infiltration landscape of BPD. A weighted co-expression network was subsequently constructed using weighted gene co-expression network analysis (WGCNA) to screen candidate differentially expressed immune related genes (DEIRGs). Results GSEA results indicated that immune-related pathways were mainly involved in BPD. Ten significantly different immune cell types were observed between BPD and normal groups. A total of 228 DEGs in the turquoise module were identified, and 31 DEIRGs were further identified. Cluster of the differentiation 8 alpha (CD8A) expression was down-regulated in BPD, and its expression was validated by the GSE25286, GSE25293, GSE99633 datasets and qRT-PCR. In addition, CD8A expression was closely associated with immune cells infiltration, especially T cells CD8 and neutrophil. Conclusion A distinct immune cell infiltration landscape was found between BPD and normal group. CD8A can be a novel candidate biomarker for BPD, which plays an essential role in the onset and progress of hyperoxia-related BPD via the disruption of immune cell functions.
Collapse
Affiliation(s)
- Yiting Du
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, People’s Republic of China
| | - Limin Zuo
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, People’s Republic of China
| | - Ying Xiong
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Correspondence: Ying Xiong, Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Sec. 3 No. 17, South Renmin Road, Chengdu, 610041, People’s Republic of China, Email
| | - Xuedong Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jun Zou
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, People’s Republic of China
| | - Hong Xu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
11
|
Zhang Y, Xu X, Cheng H, Zhou F. AIM2 and Psoriasis. Front Immunol 2023; 14:1085448. [PMID: 36742336 PMCID: PMC9889639 DOI: 10.3389/fimmu.2023.1085448] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide, with multiple systemic complications, which seriously affect the quality of life and physical and mental health of patients. The pathogenesis of psoriasis is related to the environment, genetics, epigenetics, and dysregulation of immune cells such as T cells, dendritic cells (DCs), and nonimmune cells such as keratinocytes. Absent in melanoma 2 (AIM2), a susceptibility gene locus for psoriasis, has been strongly linked to the genetic and epigenetic aspects of psoriasis and increased in expression in psoriatic keratinocytes. AIM2 was found to be activated in an inflammasome-dependent way to release IL-1β and IL-18 to mediate inflammation, and to participate in immune regulation in psoriasis, or in an inflammasome-independent way by regulating the function of regulatory T(Treg) cells or programming cell death in keratinocytes as well as controlling the proliferative state of different cells. AIM2 may also play a role in the recurrence of psoriasis by trained immunity. In this review, we will elaborate on the characteristics of AIM2 and how AIM2 mediates the development of psoriasis.
Collapse
Affiliation(s)
- Yuxi Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiaoqing Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hui Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
12
|
Zhou XY, Chen K, Zhang JA. Mast cells as important regulators in the development of psoriasis. Front Immunol 2022; 13:1022986. [PMID: 36405690 PMCID: PMC9669610 DOI: 10.3389/fimmu.2022.1022986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/24/2022] [Indexed: 08/22/2023] Open
Abstract
Psoriasis is a chronic inflammatory immune skin disease mediated by genetic and environmental factors. As a bridge between innate and adaptive immunity, mast cells are involved in the initiation, development, and maintenance of psoriasis by interactions and communication with a variety of cells. The current review describes interactions of mast cells with T cells, Tregs, keratinocytes, adipocytes, and sensory neurons in psoriasis to emphasize the important role of mast cell-centered cell networks in psoriasis.
Collapse
Affiliation(s)
| | | | - Jia-An Zhang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| |
Collapse
|
13
|
Wang J, Gao J, Huang C, Jeong S, Ko R, Shen X, Chen C, Zhong W, Zou Y, Yu B, Shen C. Roles of AIM2 Gene and AIM2 Inflammasome in the Pathogenesis and Treatment of Psoriasis. Front Genet 2022; 13:929162. [PMID: 36118867 PMCID: PMC9481235 DOI: 10.3389/fgene.2022.929162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Psoriasis is an immune-mediated chronic inflammatory skin disease caused by a combination of environmental incentives, polygenic genetic control, and immune regulation. The inflammation-related gene absent in melanoma 2 (AIM2) was identified as a susceptibility gene for psoriasis. AIM2 inflammasome formed from the combination of AIM2, PYD-linked apoptosis-associated speck-like protein (ASC) and Caspase-1 promotes the maturation and release of inflammatory cytokines such as IL-1β and IL-18, and triggers an inflammatory response. Studies showed the genetic and epigenetic associations between AIM2 gene and psoriasis. AIM2 gene has an essential role in the occurrence and development of psoriasis, and the inhibitors of AIM2 inflammasome will be new therapeutic targets for psoriasis. In this review, we summarized the roles of the AIM2 gene and AIM2 inflammasome in pathogenesis and treatment of psoriasis, hopefully providing a better understanding and new insight into the roles of AIM2 gene and AIM2 inflammasome in psoriasis.
Collapse
Affiliation(s)
- Jieyi Wang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- School of Clinical Medicine, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Jing Gao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Cong Huang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Sohyun Jeong
- Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Randy Ko
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Xue Shen
- Department of Dermatology, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Chaofeng Chen
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Weilong Zhong
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yanfen Zou
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- School of Clinical Medicine, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Changbing Shen
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Dermcidin-derived polypeptides: DCD(86-103) induced inflammatory reaction in the skin by activation of mast cells via ST2. Immunol Lett 2022; 251-252:29-37. [DOI: 10.1016/j.imlet.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022]
|
15
|
Nguyen LTH. Signaling pathways and targets of natural products in psoriasis treatment. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aim: Psoriasis is a common chronic inflammatory skin disorder, which has adverse effects on patients’ quality of life. Natural products exhibit significant therapeutic capacities with small side effects and might be preferable alternative treatments for patients with psoriasis. This study summarizes the signaling pathways with the potential targets of natural products and their efficacy for psoriasis treatment.
Methods: The literature for this article was acquired from PubMed and Web of Science, from January 2010 to December 2020. The keywords for searching included “psoriasis” and “natural product”, “herbal medicine”, “herbal therapy”, “medicinal plant”, “medicinal herb” or “pharmaceutical plant”.
Results: Herbal extracts, natural compounds, and herbal prescriptions could regulate the signaling pathways to alleviate psoriasis symptoms, such as T helper 17 (Th17) differentiation, Janus kinase (JAK)/signal transducer and activator of transcription (STAT), nuclear factor-kappa B (NF-κB), mitogen‑activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and other signaling pathways, which are involved in the inflammatory response and keratinocyte hyperproliferation. The anti-psoriatic effect of natural products in clinical trials was summarized.
Conclusions: Natural products exerted the anti-psoriatic effect by targeting multiple signaling pathways, providing evidence for the investigation of novel drugs. Further experimental research should be performed to screen and characterize the therapeutic targets of natural products for application in psoriasis treatment.
Collapse
Affiliation(s)
- Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
16
|
Said EA, Al-Dughaishi S, Al-Hatmi W, Al-Reesi I, Al-Riyami M, Al-Balushi MS, Al-Bimani A, Al-Busaidi JZ, Al-Khabori M, Al-Kindi S, Procopio FA, Al-Rashdi A, Al-Ansari A, Babiker H, Koh CY, Al-Naamani K, Pantaleo G, Al-Jabri AA. Human macrophages and monocyte-derived dendritic cells stimulate the proliferation of endothelial cells through midkine production. PLoS One 2022; 17:e0267662. [PMID: 35476724 PMCID: PMC9045650 DOI: 10.1371/journal.pone.0267662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 04/12/2022] [Indexed: 11/19/2022] Open
Abstract
The cytokine midkine (MK) is a growth factor that is involved in different physiological processes including tissue repair, inflammation, the development of different types of cancer and the proliferation of endothelial cells. The production of MK by primary human macrophages and monocyte-derived dendritic cells (MDDCs) was never described. We investigated whether MK is produced by primary human monocytes, macrophages and MDDCs and the capacity of macrophages and MDDCs to modulate the proliferation of endothelial cells through MK production. The TLR stimulation of human monocytes, macrophages and MDDCs induced an average of ≈200-fold increase in MK mRNA and the production of an average of 78.2, 62, 179 pg/ml MK by monocytes, macrophages and MDDCs respectively (p < 0.05). MK production was supported by its detection in CD11c+ cells, CLEC4C+ cells and CD68+ cells in biopsies of human tonsils showing reactive lymphoid follicular hyperplasia. JSH-23, which selectively inhibits NF-κB activity, decreased the TLR-induced production of MK in PMBCs, macrophages and MDDCs compared to the control (p < 0.05). The inhibition of MK production by macrophages and MDDCs using anti-MK siRNA decreased the capacity of their supernatants to stimulate the proliferation of endothelial cells (p = 0.01 and 0.04 respectively). This is the first study demonstrating that the cytokine MK is produced by primary human macrophages and MDDCs upon TLR triggering, and that these cells can stimulate endothelial cell proliferation through MK production. Our results also suggest that NF-κB plays a potential role in the production of MK in macrophages and MDDCs upon TLR stimulation. The production of MK by macrophages and MDDCs and the fact that these cells can enhance the proliferation of endothelial cells by producing MK are novel immunological phenomena that have potentially important therapeutic implications.
Collapse
Affiliation(s)
- Elias A. Said
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- * E-mail:
| | - Sumaya Al-Dughaishi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Wadha Al-Hatmi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Iman Al-Reesi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Marwa Al-Riyami
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohammed S. Al-Balushi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Atika Al-Bimani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Juma Z. Al-Busaidi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Murtadha Al-Khabori
- Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Salam Al-Kindi
- Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Francesco A. Procopio
- Laboratory of AIDS Immunopathogenesis, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) University of Lausanne, Lauzane, Switzerland
| | - Afrah Al-Rashdi
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Aliyaa Al-Ansari
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Hamza Babiker
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Crystal Y. Koh
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Giuseppe Pantaleo
- Laboratory of AIDS Immunopathogenesis, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) University of Lausanne, Lauzane, Switzerland
| | - Ali A. Al-Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
17
|
Zeng J, Wang D, Luo J, Li L, Lin L, Li J, Zheng W, Zuo D, Yang B. Mannan-binding lectin exacerbates the severity of psoriasis by promoting plasmacytoid dendritic cell differentiation via the signal transducer and activator of transcription 3-interferon regulatory factor 8 axis. J Dermatol 2022; 49:496-507. [PMID: 35347767 DOI: 10.1111/1346-8138.16323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/29/2021] [Accepted: 01/09/2022] [Indexed: 11/26/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease mediated by host immune responses. Plasmacytoid dendritic cells (pDC) and interferon (IFN)-α secreted by pDC are involved in the initiation of psoriasis. Mannan-binding lectin (MBL), a vital component of the complement pathway, plays a critical role in innate immune defense and the inflammatory response. Our previous study found that MBL could exacerbate skin inflammation in psoriatic mice, but the effect of MBL on pDC remains unstudied. Herein, we revealed that the circulating level of MBL was elevated in patients with psoriasis compared with the healthy controls. Moreover, the MBL level was positively correlated with disease severity, relative inflammatory cytokine levels, and peripheral blood (PB) pDC frequency in psoriasis. An in vitro study determined that the MBL protein could promote the differentiation of human pDC and upregulate the production of relative inflammatory cytokines and chemokines. Additionally, MBL-deficient (MBL-/- ) mice exhibited decreased accumulation of pDC in lymph nodes, spleens, and skin lesions with reduced secretion of pDC-related cytokines compared with wild-type (WT) mice in the preliminary stage of psoriasis induced by imiquimod. Notably, the differentiation of pDC from bone marrow (BM) cells derived from MBL-/- mice was weakened compared with that from WT mice upon Fms-like tyrosine kinase 3 ligand (Flt3L) incubation. Mechanistic research indicated that the signal transducer and activator of transcription 3 (STAT3)-interferon regulatory factor 8 (IRF8) axis was responsible for MBL-modulated pDC differentiation. In summary, these results suggest that MBL exacerbates the severity of psoriasis by enhancing pDC differentiation and pDC-related cytokine secretion via the STAT3-IRF8 axis, thus providing a new target for psoriasis treatment.
Collapse
Affiliation(s)
- Jiaqi Zeng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Luyang Lin
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangzhou Institute of Dermatology, Guangzhou, China
| | - Jingyi Li
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wen Zheng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|