1
|
Song L, Ren Y, Xu S, Hou Y, He X. A hybrid spatiotemporal deep belief network and sparse representation-based framework reveals multilevel core functional components in decoding multitask fMRI signals. Netw Neurosci 2023; 7:1513-1532. [PMID: 38144693 PMCID: PMC10745082 DOI: 10.1162/netn_a_00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/17/2023] [Indexed: 12/26/2023] Open
Abstract
Decoding human brain activity on various task-based functional brain imaging data is of great significance for uncovering the functioning mechanism of the human mind. Currently, most feature extraction model-based methods for brain state decoding are shallow machine learning models, which may struggle to capture complex and precise spatiotemporal patterns of brain activity from the highly noisy fMRI raw data. Moreover, although decoding models based on deep learning methods benefit from their multilayer structure that could extract spatiotemporal features at multiscale, the relatively large populations of fMRI datasets are indispensable, and the explainability of their results is elusive. To address the above problems, we proposed a computational framework based on hybrid spatiotemporal deep belief network and sparse representations to differentiate multitask fMRI (tfMRI) signals. Using a relatively small cohort of tfMRI data as a test bed, our framework can achieve an average classification accuracy of 97.86% and define the multilevel temporal and spatial patterns of multiple cognitive tasks. Intriguingly, our model can characterize the key components for differentiating the multitask fMRI signals. Overall, the proposed framework can identify the interpretable and discriminative fMRI composition patterns at multiple scales, offering an effective methodology for basic neuroscience and clinical research with relatively small cohorts.
Collapse
Affiliation(s)
- Limei Song
- School of Information Science and Technology, Northwest University, Xi’an, China
| | - Yudan Ren
- School of Information Science and Technology, Northwest University, Xi’an, China
| | - Shuhan Xu
- School of Information Science and Technology, Northwest University, Xi’an, China
| | - Yuqing Hou
- School of Information Science and Technology, Northwest University, Xi’an, China
| | - Xiaowei He
- School of Information Science and Technology, Northwest University, Xi’an, China
| |
Collapse
|
2
|
Hannum A, Lopez MA, Blanco SA, Betzel RF. High-accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding. Hum Brain Mapp 2023; 44:5294-5308. [PMID: 37498048 PMCID: PMC10543109 DOI: 10.1002/hbm.26423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/26/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
The human brain is a complex network comprised of functionally and anatomically interconnected brain regions. A growing number of studies have suggested that empirical estimates of brain networks may be useful for discovery of biomarkers of disease and cognitive state. A prerequisite for realizing this aim, however, is that brain networks also serve as reliable markers of an individual. Here, using Human Connectome Project data, we build upon recent studies examining brain-based fingerprints of individual subjects and cognitive states based on cognitively demanding tasks that assess, for example, working memory, theory of mind, and motor function. Our approach achieves accuracy of up to 99% for both identification of the subject of an fMRI scan, and for classification of the cognitive state of a previously unseen subject in a scan. More broadly, we explore the accuracy and reliability of five different machine learning techniques on subject fingerprinting and cognitive state decoding objectives, using functional connectivity data from fMRI scans of a high number of subjects (865) across a number of cognitive states (8). These results represent an advance on existing techniques for functional connectivity-based brain fingerprinting and state decoding. Additionally, 16 different functional connectome (FC) matrix construction pipelines are compared in order to characterize the effects of different aspects of the production of FCs on the accuracy of subject and task classification, and to identify possible confounds.
Collapse
Affiliation(s)
- Andrew Hannum
- Department of Computer ScienceUniversity of DenverDenverColoradoUSA
| | - Mario A. Lopez
- Department of Computer ScienceUniversity of DenverDenverColoradoUSA
| | - Saúl A. Blanco
- Department of Computer ScienceIndiana UniversityBloomingtonIndianaUSA
| | - Richard F. Betzel
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| |
Collapse
|
3
|
Germani E, Fromont E, Maumet C. On the benefits of self-taught learning for brain decoding. Gigascience 2022; 12:giad029. [PMID: 37132522 PMCID: PMC10155221 DOI: 10.1093/gigascience/giad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/24/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023] Open
Abstract
CONTEXT We study the benefits of using a large public neuroimaging database composed of functional magnetic resonance imaging (fMRI) statistic maps, in a self-taught learning framework, for improving brain decoding on new tasks. First, we leverage the NeuroVault database to train, on a selection of relevant statistic maps, a convolutional autoencoder to reconstruct these maps. Then, we use this trained encoder to initialize a supervised convolutional neural network to classify tasks or cognitive processes of unseen statistic maps from large collections of the NeuroVault database. RESULTS We show that such a self-taught learning process always improves the performance of the classifiers, but the magnitude of the benefits strongly depends on the number of samples available both for pretraining and fine-tuning the models and on the complexity of the targeted downstream task. CONCLUSION The pretrained model improves the classification performance and displays more generalizable features, less sensitive to individual differences.
Collapse
Affiliation(s)
- Elodie Germani
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn ERL U 1228, 35000 Rennes, France
| | - Elisa Fromont
- Univ Rennes, IUF, Inria, CNRS, IRISA UMR 6074, 35000 Rennes, France
| | - Camille Maumet
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn ERL U 1228, 35000 Rennes, France
| |
Collapse
|
4
|
Saeidi M, Karwowski W, Farahani FV, Fiok K, Hancock PA, Sawyer BD, Christov-Moore L, Douglas PK. Decoding Task-Based fMRI Data with Graph Neural Networks, Considering Individual Differences. Brain Sci 2022; 12:1094. [PMID: 36009157 PMCID: PMC9405908 DOI: 10.3390/brainsci12081094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 12/05/2022] Open
Abstract
Task fMRI provides an opportunity to analyze the working mechanisms of the human brain during specific experimental paradigms. Deep learning models have increasingly been applied for decoding and encoding purposes study to representations in task fMRI data. More recently, graph neural networks, or neural networks models designed to leverage the properties of graph representations, have recently shown promise in task fMRI decoding studies. Here, we propose an end-to-end graph convolutional network (GCN) framework with three convolutional layers to classify task fMRI data from the Human Connectome Project dataset. We compared the predictive performance of our GCN model across four of the most widely used node embedding algorithms-NetMF, RandNE, Node2Vec, and Walklets-to automatically extract the structural properties of the nodes in the functional graph. The empirical results indicated that our GCN framework accurately predicted individual differences (0.978 and 0.976) with the NetMF and RandNE embedding methods, respectively. Furthermore, to assess the effects of individual differences, we tested the classification performance of the model on sub-datasets divided according to gender and fluid intelligence. Experimental results indicated significant differences in the classification predictions of gender, but not high/low fluid intelligence fMRI data. Our experiments yielded promising results and demonstrated the superior ability of our GCN in modeling task fMRI data.
Collapse
Affiliation(s)
- Maham Saeidi
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Waldemar Karwowski
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Farzad V. Farahani
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Krzysztof Fiok
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - P. A. Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
| | - Ben D. Sawyer
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | | | - Pamela K. Douglas
- School of Modeling, Simulation, and Training Computer Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
5
|
Saeidi M, Karwowski W, Farahani FV, Fiok K, Taiar R, Hancock PA, Al-Juaid A. Neural Decoding of EEG Signals with Machine Learning: A Systematic Review. Brain Sci 2021; 11:1525. [PMID: 34827524 PMCID: PMC8615531 DOI: 10.3390/brainsci11111525] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Electroencephalography (EEG) is a non-invasive technique used to record the brain's evoked and induced electrical activity from the scalp. Artificial intelligence, particularly machine learning (ML) and deep learning (DL) algorithms, are increasingly being applied to EEG data for pattern analysis, group membership classification, and brain-computer interface purposes. This study aimed to systematically review recent advances in ML and DL supervised models for decoding and classifying EEG signals. Moreover, this article provides a comprehensive review of the state-of-the-art techniques used for EEG signal preprocessing and feature extraction. To this end, several academic databases were searched to explore relevant studies from the year 2000 to the present. Our results showed that the application of ML and DL in both mental workload and motor imagery tasks has received substantial attention in recent years. A total of 75% of DL studies applied convolutional neural networks with various learning algorithms, and 36% of ML studies achieved competitive accuracy by using a support vector machine algorithm. Wavelet transform was found to be the most common feature extraction method used for all types of tasks. We further examined the specific feature extraction methods and end classifier recommendations discovered in this systematic review.
Collapse
Affiliation(s)
- Maham Saeidi
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA; (F.V.F.); (K.F.)
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA; (F.V.F.); (K.F.)
| | - Farzad V. Farahani
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA; (F.V.F.); (K.F.)
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Krzysztof Fiok
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA; (F.V.F.); (K.F.)
| | - Redha Taiar
- MATIM, Moulin de la Housse, Université de Reims Champagne Ardenne, CEDEX 02, 51687 Reims, France;
| | - P. A. Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA;
| | - Awad Al-Juaid
- Industrial Engineering Department, Taif University, Taif 26571, Saudi Arabia;
| |
Collapse
|