1
|
Li C, Li B, Han M, Tian H, Gao J, Han D, Ling Z, Jing Y, Li N, Hua J. SPARC overexpression in allogeneic adipose-derived mesenchymal stem cells in dog dry eye model induced by benzalkonium chloride. Stem Cell Res Ther 2024; 15:195. [PMID: 38956738 PMCID: PMC11218109 DOI: 10.1186/s13287-024-03815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Nowadays, companion and working dogs hold significant social and economic importance. Dry eye, also known as dry keratoconjunctivitis (KCS), a common disease in ophthalmology, can readily impact a dog's working capacity and lead to economic losses. Although there are several medications available for this disease, all of them only improve the symptoms on the surface of the eye, and they are irritating and not easy to use for long periods of time. Adipose-derived mesenchymal stem cells (ADMSC) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro passaging leads to stemness loss of ADMSC. Here, we aimed to use ADMSC overexpressing Secreted Protein Acidic and Rich in Cysteine (SPARC) to treat 0.25% benzalkonium chloride-treated dogs with dry eye to verify its efficacy. For in vitro validation, we induced corneal epithelial cell (HCECs) damage using 1 µg/mL benzalkonium chloride. METHODS Fifteen male crossbred dogs were randomly divided into five groups: normal, dry eye self-healing control, cyclosporine-treated, ADMSC-CMV-treated and ADMSC-OESPARC-treated. HCECs were divided into four groups: normal control group, untreated model group, ADMSC-CMV supernatant culture group and ADMSC-OESRARC supernatant culture group. RESULTS SPARC-modified ADMSC had the most significant effect on canine ocular surface inflammation, corneal injury, and tear recovery, and the addition of ADMSC-OESPARC cell supernatant also had a salvage effect on HCECs cellular damage, such as cell viability and cell proliferation ability. Moreover, analysis of the co-transcriptome sequencing data showed that SPARC could promote corneal epithelial cell repair by enhancing the in vitro viability, migration and proliferation and immunosuppression of ADMSC. CONCLUSION The in vitro cell test and in vivo model totally suggest that the combination of SPARC and ADMSC has a promising future in novel dry eye therapy.
Collapse
Affiliation(s)
- Chenchen Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Balun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Miao Han
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongkai Tian
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiaqi Gao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongyao Han
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zixi Ling
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanxiang Jing
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Campos FG, Ibelli AMG, Cantão ME, Oliveira HC, Peixoto JO, Ledur MC, Guimarães SEF. Long Non-Coding RNAs Differentially Expressed in Swine Fetuses. Animals (Basel) 2024; 14:1897. [PMID: 38998009 PMCID: PMC11240794 DOI: 10.3390/ani14131897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding transcripts involved in various biological processes. The Y chromosome is known for determining the male sex in mammals. LncRNAs on the Y chromosome may play important regulatory roles. However, knowledge about their action mechanisms is still limited, especially during early fetal development. Therefore, we conducted this exploratory study aiming to identify, characterize, and investigate the differential expression of lncRNAs between male and female swine fetuses at 35 days of gestation. RNA-Seq libraries from 10 fetuses were prepared and sequenced using the Illumina platform. After sequencing, a data quality control was performed using Trimmomatic, alignment with HISAT2, and transcript assembly with StringTie. The differentially expressed lncRNAs were identified using the limma package of the R software (4.3.1). A total of 871 potentially novel lncRNAs were identified and characterized. Considering differential expression, eight lncRNAs were upregulated in male fetuses. One was mapped onto SSC12 and seven were located on the Y chromosome; among them, one lncRNA is potentially novel. These lncRNAs are involved in diverse functions, including the regulation of gene expression and the modulation of chromosomal structure. These discoveries enable future studies on lncRNAs in the fetal stage in pigs.
Collapse
Affiliation(s)
- Francelly G Campos
- Laboratory of Animal Biotecnology, Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil
| | - Adriana M G Ibelli
- Embrapa Suínos e Aves, Concordia 89715-899, SC, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | | | - Haniel C Oliveira
- Laboratory of Animal Biotecnology, Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil
| | - Jane O Peixoto
- Embrapa Suínos e Aves, Concordia 89715-899, SC, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | - Mônica C Ledur
- Embrapa Suínos e Aves, Concordia 89715-899, SC, Brazil
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó 89815-630, SC, Brazil
| | - Simone E F Guimarães
- Laboratory of Animal Biotecnology, Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil
| |
Collapse
|
3
|
Zhang MF, Wan SC, Chen WB, Yang DH, Liu WQ, Li BL, Aierken A, Du XM, Li YX, Wu WP, Yang XC, Wei YD, Li N, Peng S, Li XL, Li GP, Hua JL. Transcription factor Dmrt1 triggers the SPRY1-NF-κB pathway to maintain testicular immune homeostasis and male fertility. Zool Res 2023; 44:505-521. [PMID: 37070575 PMCID: PMC10236308 DOI: 10.24272/j.issn.2095-8137.2022.440] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Bacterial or viral infections, such as Brucella, mumps virus, herpes simplex virus, and Zika virus, destroy immune homeostasis of the testes, leading to spermatogenesis disorder and infertility. Of note, recent research shows that SARS-CoV-2 can infect male gonads and destroy Sertoli and Leydig cells, leading to male reproductive dysfunction. Due to the many side effects associated with antibiotic therapy, finding alternative treatments for inflammatory injury remains critical. Here, we found that Dmrt1 plays an important role in regulating testicular immune homeostasis. Knockdown of Dmrt1 in male mice inhibited spermatogenesis with a broad inflammatory response in seminiferous tubules and led to the loss of spermatogenic epithelial cells. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that Dmrt1 positively regulated the expression of Spry1, an inhibitory protein of the receptor tyrosine kinase (RTK) signaling pathway. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) analysis indicated that SPRY1 binds to nuclear factor kappa B1 (NF-κB1) to prevent nuclear translocation of p65, inhibit activation of NF-κB signaling, prevent excessive inflammatory reaction in the testis, and protect the integrity of the blood-testis barrier. In view of this newly identified Dmrt1- Spry1-NF-κB axis mechanism in the regulation of testicular immune homeostasis, our study opens new avenues for the prevention and treatment of male reproductive diseases in humans and livestock.
Collapse
Affiliation(s)
- Meng-Fei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shi-Cheng Wan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Bo Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong-Hui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Qing Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Center of Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam 1105AZ, Amsterdam, Netherlands
| | - Ba-Lun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aili Aierken
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Min Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yun-Xiang Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Ping Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin-Chun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu-Dong Wei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue-Ling Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Guang-Peng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
4
|
Chen J, Chen Y, Du X, Liu G, Fei X, Peng JR, Zhang X, Xiao F, Wang X, Yang X, Feng Z. Integrative Studies of Human Cord Blood Derived Mononuclear Cells and Umbilical Cord Derived Mesenchyme Stem Cells in Ameliorating Bronchopulmonary Dysplasia. Front Cell Dev Biol 2021; 9:679866. [PMID: 34858969 PMCID: PMC8631197 DOI: 10.3389/fcell.2021.679866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common pulmonary complication observed in preterm infants that is composed of multifactorial pathogenesis. Current strategies, albeit successful in moderately reducing morbidity and mortality of BPD, failed to draw overall satisfactory conclusion. Here, using a typical mouse model mimicking hallmarks of BPD, we revealed that both cord blood-derived mononuclear cells (CB-MNCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) are efficient in alleviating BPD. Notably, infusion of CB-MNCs has more prominent effects in preventing alveolar simplification and pulmonary vessel loss, restoring pulmonary respiratory functions and balancing inflammatory responses. To further elucidate the underlying mechanisms within the divergent therapeutic effects of UC-MSC and CB-MNC, we systematically investigated the long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) and circular RNA (circRNA)-miRNA-mRNA networks by whole-transcriptome sequencing. Importantly, pathway analysis integrating Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG)/gene set enrichment analysis (GSEA) method indicates that the competing endogenous RNA (ceRNA) network is mainly related to the regulation of GTPase activity (GO: 0043087), extracellular signal-regulated kinase 1 (ERK1) and ERK2 signal cascade (GO: 0070371), chromosome regulation (GO: 0007059), and cell cycle control (GO: 0044770). Through rigorous selection of the lncRNA/circRNA-based ceRNA network, we demonstrated that the hub genes reside in UC-MSC- and CB-MNC-infused networks directed to the function of cell adhesion, motor transportation (Cdk13, Lrrn2), immune homeostasis balance, and autophagy (Homer3, Prkcd) relatively. Our studies illustrate the first comprehensive mRNA-miRNA-lncRNA and mRNA-miRNA-circRNA networks in stem cell-infused BPD model, which will be valuable in identifying reliable biomarkers or therapeutic targets for BPD pathogenesis and shed new light in the priming and conditioning of UC-MSCs or CB-MNCs in the treatment of neonatal lung injury.
Collapse
Affiliation(s)
- Jia Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Yuhan Chen
- Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Xue Du
- Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China.,The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guojun Liu
- Shandong Qilu Stem Cell Engineering Co., Ltd., Jinan, China
| | - Xiaowei Fei
- The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Jian Ru Peng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Xing Zhang
- Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Fengjun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xue Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Yang
- Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Zhichun Feng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China.,The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|