1
|
Mohammed SH, Shakor JK, Salih M, Khafar K, Ali HM, Baqi HR, Karim DH, Muhammd SJ, Khdhir CJ, Raouf C. A Comparative Effect of Different Herbal Products on Lipid Metabolism and Hepatic Tissue: An Experimental Study on a Rat Model. Cureus 2024; 16:e73799. [PMID: 39691151 PMCID: PMC11650103 DOI: 10.7759/cureus.73799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2024] [Indexed: 12/19/2024] Open
Abstract
Background Dysregulation of lipid metabolism can lead to conditions such as hyperlipidemia, obesity, cardiovascular diseases, and hepatic steatosis. A high-fat diet (HFD) results in dysregulation of lipid metabolism and may primarily convert liver tissue to develop inflammation and fibrosis. Slimming pills, Japanese powder tea, and Shahana tea are common green teas that commercials have used for hyperlipidemia, obesity, and liver protection. The aim of this study was to investigate the effect of these three teas on dyslipidemia and liver in a rat model. Method This is an experimental study carried out on 20 adult male albino rats of about 240 g and 12 weeks old. The rats were randomly divided into five groups: Group 1: fed the standard pellet diet for four weeks; Group 2: fed with the HFD for four weeks; Group 3: fed with the HFD for the first four weeks and received Shahana tea (1.5 g/kg body weight (BW)); Group 4: fed with the HFD for the first four weeks and received Japanese powder tea (1.5 g/kg BW); and Group 5: fed with the HFD for the first four weeks and received slimming pill (0.6 g/kg BW). Blood samples were collected to measure the lipid profile in the rats. The rats were scarified under anesthesia, and liver tissue was collected for histopathological testing. Result HFD could significantly induce dyslipidemia and liver pathological disorders in model rats. Slimming pills could significantly improve total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) compared to Japanese powder tea and Shahana tea. In comparison to the Shahana tea, Japanese powder tea had a significant outcome on LDL but not on other lipid profiles. Slimming pills and Shahana tea could preserve the normal histological features of the liver. The central vein (CV) and sinusoidal (SN) Kupffer cells significantly remained normal compared to model rats. Conclusion Slimming pills and Shahana tea have significant positive effects on lipid metabolism regulation, dyslipidemia, and preserving the liver from injury and fat accumulation. The effects of the two products are mostly concerned with their main components, such as L-carnitine and Cassia angustifolia.
Collapse
Affiliation(s)
- Saman H Mohammed
- Nursing, Darbandikhan Technical Institute, Sulaimani Polytechnic University, Sulaymaniyah, IRQ
| | - Jamal K Shakor
- Nursing, Darbandikhan Technical Institute, Sulaimani Polytechnic University, Sulaymaniyah, IRQ
| | - Mohsin Salih
- Nursing, College of Health and Medical Technology, Sulaimani Polytechnic University, Sulaymaniyah, IRQ
| | - Kaniaw Khafar
- Nursing, Technical College of Applied Sciences, Sulaimani Polytechnic University, Sulaymaniyah, IRQ
| | - Halgord M Ali
- Nursing, Technical College of Applied Sciences, Halabja Research Center, Sulaimani Polytechnic University, Sulaymaniyah, IRQ
| | - Hardi R Baqi
- Medical Laboratory Technology, Shaqlawa Technical College, Erbil Polytechnic University, Erbil, IRQ
| | - Dyar H Karim
- Biology, College of Science, University of Sulaimani, Sulaymaniyah, IRQ
| | - Shagul J Muhammd
- Animal Science, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaymaniyah, IRQ
| | - Chrakhan J Khdhir
- College of Nursing, University of Human Development, Sulaymaniyah, IRQ
| | - Chro Raouf
- Medical Laboratory of Science, College of Health Sciences, University of Human Development, Kurdistan Regional Government, Sulaymaniyah, IRQ
| |
Collapse
|
2
|
Kerdsuknirund S, Kosinan A, Khunkaewla P, Kupittayanant P, Oonsivilai R, Tongdee P, Nimkuntod P, Wray S, Kupittayanant S. Therapeutic Potential of Thunbergia laurifolia L. Extract in Gestational Diabetes Mellitus: Insights from a Rat Model. Chin J Integr Med 2024; 30:788-798. [PMID: 38941042 DOI: 10.1007/s11655-024-3764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE To assess the effects of Thunbergia laurifolia L. extract (TLE) on gestational diabetes mellitus (GDM) in a rat model. METHODS Thunbergia laurifolin L. leaves were subjected to ethanolic extraction. In vivo study, 50 pregnant rats were randomly divided into 5 groups (10 for each): non-GDM group, GDM induced by streptozotocin (STZ, 60 mg/kg i.p.), metformin (MET) 100 mg/kg, TLE 50, and 500 mg/kg groups. Administration was performed on gestation day 7 until term (day 21). The effects of TLE on blood glucose, insulin levels, lipid profiles, liver enzymes, and maternal performances were assessed. In in vitro study, the effect of TLE was examined using the organ bath for uterine force measurement. RESULTS In in vivo study, TLE significantly reduced blood glucose as compared to GDM (P<0.05) with gradually increased insulin level. This effect was consistent with islets of Langerhans restoration. Histologically, the uterine muscular layer displayed a marked increase in fiber area in response to both doses as compared to GDM (P<0.05). Additionally, TLE significantly reduced total cholesterol, triglyceride, and alanine transaminase levels (P<0.05). Intriguingly, TLE also led to a notable augmentation in gravid uterus size, live fetuses count, and implantation numbers, while significantly reducing the post-implantation loss rate associated with fetal classification (P<0.05). Thus, GDM improvements were close to those produced by MET. In in vitro study, TLE exerted a concentration-dependent inhibition of spontaneous uterine contractility (half-maximal inhibition concentration=1.2 mg/L). This inhibitory effect extended to potassium chloride depolarization and oxytocin-mediated contractions. When combined with its major constituent, rosmarinic acid, TLE produced an enhanced inhibitory effect (P<0.05). CONCLUSIONS TLE ameliorated blood glucose levels, enhanced uterine muscular structure, and improved maternal and fetal performance in GDM. TLE also displayed tocolytic properties. These findings underscore the need for further exploration of TLE as a potential tocolytic agent to mitigate GDM-associated complications.
Collapse
Affiliation(s)
- Sasitorn Kerdsuknirund
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Arreeya Kosinan
- Biochemistry-Electrochemistry Research Unit, School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Panida Khunkaewla
- Biochemistry-Electrochemistry Research Unit, School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pakanit Kupittayanant
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Ratchadaporn Oonsivilai
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pattama Tongdee
- School of Obstetrics and Gynecology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Porntip Nimkuntod
- School of Internal Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Susan Wray
- Harris-Wellbeing Preterm Birth Research Centre, Department of Women and Children's Health, the Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Sajeera Kupittayanant
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
3
|
Chatterjee A, Sarkar B. Polyphenols and terpenoids derived from Ocimum species as prospective hepatoprotective drug leads: a comprehensive mechanistic review. PHYTOCHEMISTRY REVIEWS 2024. [DOI: 10.1007/s11101-024-09992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/28/2024] [Indexed: 01/03/2025]
|
4
|
Zakaria NH, Mohamed Tap F, Aljohani GF, Abdul Majid FA. Molecular docking and dynamics simulations revealed the potential inhibitory activity of honey-iQfood ingredients against GSK-3β and CDK5 protein targets for brain health. J Biomol Struct Dyn 2024:1-20. [PMID: 38165434 DOI: 10.1080/07391102.2023.2298726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Honey-iQfood is an herbal supplement made of a mixture of polyherbal extracts and wild honey. The mixture is traditionally claimed to improve various conditions related to brain cells and functions including dementia and Alzheimer's disease. Glycogen synthase kinase-3 beta (GSK-3β) and cyclin-dependent kinase 5 (CDK5) have been identified as being involved in the pathological hyperphosphorylation of tau proteins, which leads to the formation of neurofibrillary tangles and causes Alzheimer's disease. Therefore, this study was conducted to confirm the traditional claims by detection of active compounds, namely curcumin, gallic acid, catechin, rosmarinic acid, and andrographolide in the raw materials of Honey-iQfood through HPLC analysis, molecular docking, and dynamic simulations. Two potential compounds, andrographolide, and rosmarinic acid, produced the best binding affinities following the molecular docking of the active compounds against the GSK-3β and CDK5 targets. Andrographolide binds with GSK-3β at -8.2 kcal/mol, whereas rosmarinic acid binds to CDK5 targets at -8.6 kcal/mol. Molecular dynamics was further carried out to confirm the docking results and clarify their dynamic properties such as RMSD, RMSF, rGyr, SASA, PSA, and binding free energy. CDK5-andrographolide complexes had the best MM-GBSA score (-83.63 kcal/mol) compared to other complexes, indicating the better interaction profile and stability of the complex. These findings warrant further research into andrographolide and rosmarinic acid as efficient inhibitors of tau protein hyperphosphorylation to verify their therapeutic potential in brain-related illnesses.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nor Hafizah Zakaria
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Fatahiya Mohamed Tap
- Universiti Teknologi Mara Terengganu, Bukit Besi Campus, Dungun, Terengganu, Malaysia
| | - Ghadah Faraj Aljohani
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Fadzilah Adibah Abdul Majid
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
5
|
Eid AM, Jaradat N, Shraim N, Hawash M, Issa L, Shakhsher M, Nawahda N, Hanbali A, Barahmeh N, Taha B, Mousa A. Assessment of anticancer, antimicrobial, antidiabetic, anti-obesity and antioxidant activity of Ocimum Basilicum seeds essential oil from Palestine. BMC Complement Med Ther 2023; 23:221. [PMID: 37403162 DOI: 10.1186/s12906-023-04058-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/26/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Many modern pharmaceutical researchers continue to focus on the discovery and evaluation of natural compounds for possible therapies for obesity, diabetes, infections, cancer, and oxidative stress. Extraction of Ocimum basilicum seed essential oil and evaluation of its antioxidant, anti-obesity, antidiabetic, antibacterial, and cytotoxic activities were the goals of the current study. METHOD O. basilicum seed essential oil was extracted and evaluated for its anticancer, antimicrobial, antioxidant, anti-obesity, and anti-diabetic properties utilizing standard biomedical assays. RESULTS O. basilicum seed essential oil showed good anticancer activity against Hep3B (IC50 56.23 ± 1.32 µg/ml) and MCF-7 (80.35 ± 1.17 µg/ml) when compared with the positive control, Doxorubicin. In addition, the essential oil showed potent antibacterial (against Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Proteus mirabilis, and Pseudomonas aeruginosa) and antifungal (against Candida albicans) activities. Moreover, as for the anti-amylase test, IC50 was 74.13 ± 1.1 µg/ml, a potent effect compared with the IC50 of acarbose, which was 28.10 ± 0.7 µg/ml. On the other hand, for the anti-lipase test, the IC50 was 112.20 ± 0.7 µg/ml a moderate effect compared with the IC50 of orlistat, which was 12.30 ± 0.8 µg/ml. Finally, the oil had a potent antioxidant effect with an IC50 of 23.44 ± 0.9 µg/ml compared with trolox (IC50 was 2.7 ± 0.5 µg/ml). CONCLUSION This study has provided initial data that supports the importance of O. basilcum essential oil in traditional medicine. The extracted oil not only exhibited significant anticancer, antimicrobial, and antioxidant properties but also antidiabetic and anti-obesity effects, which provided a foundation for future research.
Collapse
Affiliation(s)
- Ahmad M Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Naser Shraim
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Linda Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Mohammad Shakhsher
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Nour Nawahda
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Ali Hanbali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Noor Barahmeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Basil Taha
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Ahmed Mousa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
6
|
Qasem A, Assaggaf H, Mrabti HN, Minshawi F, Rajab BS, Attar AA, Alyamani RA, Hamed M, Mrabti NN, Baaboua AE, Omari NE, Alshahrani MM, Awadh AAA, Sheikh RA, Ming LC, Goh KW, Bouyahya A. Determination of Chemical Composition and Investigation of Biological Activities of Ocimum basilicum L. Molecules 2023; 28:614. [PMID: 36677672 PMCID: PMC9866482 DOI: 10.3390/molecules28020614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 01/11/2023] Open
Abstract
This study aimed to determine the chemical composition of the essential oils (EOs) of Ocimum basilicum L., as well as to evaluate the antibacterial, antidiabetic, dermatoprotective, and anti-inflammatory properties, and the EOs and aqueous extracts of O. basilicum. The antibacterial activity was evaluated against bacterial strains, Gram-positive and Gram-negative, using the well diffusion and microdilution methods, whereas the antidiabetic activity was assessed in vitro using two enzymes involved in carbohydrate digestion, α-amylase and α-glucosidase. On the other hand, the dermatoprotective and anti-inflammatory activities were studied by testing tyrosinase and lipoxygenase inhibition activity, respectively. The results showed that the chemical composition of O. basilicum EO (OBEO) is dominated by methyl chavicol (86%) and trans-anethol (8%). OBEO exhibited significant antibacterial effects against Gram-negative and Gram-positive strains, demonstrated by considerable diameters of the inhibition zones and lower MIC and MBC values. In addition, OBEO exhibited significant inhibition of α-amylase (IC50 = 50.51 ± 0.32 μg/mL) and α-glucosidase (IC50 = 39.84 ± 1.2 μg/mL). Concerning the anti-inflammatory activity, OBEO significantly inhibited lipoxygenase activity (IC50 = 18.28 ± 0.03 μg/mL) compared to the aqueous extract (IC50 = 24.8 ± 0.01 μg/mL). Moreover, tyrosinase was considerably inhibited by OBEO (IC50 = 68.58 ± 0.03 μg/mL) compared to the aqueous extract (IC50 = 118.37 ± 0.05 μg/mL). The toxicological investigations revealed the safety of O. basilicum in acute and chronic toxicity. The finding of in silico analysis showed that methyl chavicol and trans-anethole (main compounds of OBEO) validate the pharmacokinetics of these compounds and decipher some antibacterial targets.
Collapse
Affiliation(s)
- Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hanae Naceiri Mrabti
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, B.P. 8359006 Lille, France
| | - Faisal Minshawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bodour S. Rajab
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ammar A. Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Reema A. Alyamani
- Faculty of Applied Medical Sciences, Clinical Nutrition Department, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nidal Naceiri Mrabti
- Engineering Materials, Modeling and Environmental Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Aicha El Baaboua
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan 93000, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ryan Adnan Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10100, Morocco
| |
Collapse
|
7
|
Syarifah AN, Suryadi H, Hayun H, Simamora A, Mun’im A. Detoxification of comfrey ( Symphytum officinale L.) extract using natural deep eutectic solvent (NADES) and evaluation of its anti-inflammatory, antioxidant, and hepatoprotective properties. Front Pharmacol 2023; 14:1012716. [PMID: 36937831 PMCID: PMC10020234 DOI: 10.3389/fphar.2023.1012716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Comfrey (Symphytum officinale L.) contains rosmarinic acid which has different pharmacological activities, such as antioxidant and anti-inflammatory activities. However, the medicinal use of comfrey is limited by the hepatotoxic effect of lycopsamine in comfrey, which overshadows the health benefits of rosmarinic acid. Natural deep eutectic solvents (NADES) have a wide range of extraction properties, that provides a new approach to the detoxification of comfrey. In the present study, betaine-based and choline chloride-based NADES were screened for selective extraction of rosmarinic acid over lycopsamine. Ultrasonication was used in conjunction with NADES extraction. The chemical profile of the NADES extracts on antioxidant, anti-inflammatory and hepatotoxic activities were investigated using some chemical reagents. Betaine-urea (1:2 molar ratio, 50% water) obtained the highest content of rosmarinic acid and a low level of lycopsamine (1.934 and 0.018 mg/g, respectively). Betaine-urea was also shown to be more effective to extract rosmarinic acid compared to methanol-UAE under the same conditions, which gave lower rosmarinic acid and higher lycopsamine levels (0.007 and 0.031 mg/g, respectively). Betaine-urea extracts showed higher antioxidant and anti-inflammatory properties as compared with other NADES extracts, however, had lower hepatotoxic profile. This study recommends the use of betaine-urea to detroxify comfrey to open wider opportunities for the development of comfrey for medicinal use.
Collapse
Affiliation(s)
- Andiri Niza Syarifah
- Graduate Program, Universitas Indonesia, Faculty of Pharmacy, Depok, Indonesia
- Department of Biology Pharmacy, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Herman Suryadi
- Laboratory of Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Hayun Hayun
- Laboratory of Pharmaceutical, Medicinal and Bioanalysis, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Adelina Simamora
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta, Indonesia
- National Metabolomic Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Abdul Mun’im
- National Metabolomic Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
- Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
- *Correspondence: Abdul Mun’im,
| |
Collapse
|
8
|
Silva DPD, Ferreira SDS, Torres-Rêgo M, Furtado AA, Yamashita FDO, Diniz EADS, Vieira DS, Ururahy MAG, Silva-Júnior AAD, Luna KPDO, Fernandes-Pedrosa MDF. Antiophidic potential of chlorogenic acid and rosmarinic acid against Bothrops leucurus snake venom. Biomed Pharmacother 2022; 148:112766. [PMID: 35247716 DOI: 10.1016/j.biopha.2022.112766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/22/2022] Open
Abstract
Bothrops leucurus is responsible for most cases of snakebite in Northeast Brazil; however, this species is not included in the pool of venoms used in antivenom production in Brazil. The serotherapy has logistical and effectiveness limitations, which stimulates the search for therapeutic alternatives. Chlorogenic acid and rosmarinic acid present several biological activities, but their antiophidic potential has been poorly explored. Thus, the aim of this approach was to evaluate the potential inhibitory effects of these compounds on B. leucurus venom. Initially, the enzymatic inhibition of toxins was evaluated in vitro. Then, anti-hemorrhagic, anti-myotoxic, and anti-edematogenic assays were performed in vivo, as well analysis of several biochemical markers and hemostatic parameters. In addition, the interaction of inhibitors with SVMP and PLA2 was investigated by docking analysis. Results revealed that compounds inhibited in vitro the enzymatic activities and venom-induced edema, with a decrease in both myeloperoxidase and interleukin quantification. The inhibitors also attenuated the hemorrhagic and myotoxic actions and mitigated changes in serum biochemical and hemostatic markers, as well as decreased lipid peroxidation in liver and kidney tissues. Docking analysis revealed attractive interactions of both inhibitors with the zinc-binding site of SVMP and, in the case of PLA2, chlorogenic acid showed a similar inhibition mechanism to that described for rosmarinic acid. The results evidenced the antiophidic potential of both compounds, which showed higher efficiency than antivenom serum. Thus, both inhibitors are promising candidates for future adjuvants to be used to complement antivenom serotherapy.
Collapse
Affiliation(s)
- Diana Pontes da Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Sarah de Sousa Ferreira
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Manoela Torres-Rêgo
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil; Chemistry Institute, Federal University of Rio Grande do Norte, Avenue Senador Salgado Filho, 3000, Lagoa Nova, Natal 59072-970, Brazil.
| | - Allanny Alves Furtado
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Fabiana de Oliveira Yamashita
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Eduardo Augusto da Silva Diniz
- Chemistry Institute, Federal University of Rio Grande do Norte, Avenue Senador Salgado Filho, 3000, Lagoa Nova, Natal 59072-970, Brazil.
| | - Davi Serradella Vieira
- Chemistry Institute, Federal University of Rio Grande do Norte, Avenue Senador Salgado Filho, 3000, Lagoa Nova, Natal 59072-970, Brazil.
| | - Marcela Abbott Galvão Ururahy
- Biochemistry Laboratory, Department of Clinical Analysis and Toxicological, College of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Karla Patrícia de Oliveira Luna
- Center of Biological and Health Sciences, State University of Paraíba, Avenue Baraúnas, S/N, Bodocongó, Campina Grande 58429-500, Brazil.
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| |
Collapse
|
9
|
Noor S, Mohammad T, Rub MA, Raza A, Azum N, Yadav DK, Hassan MI, Asiri AM. Biomedical features and therapeutic potential of rosmarinic acid. Arch Pharm Res 2022; 45:205-228. [PMID: 35391712 PMCID: PMC8989115 DOI: 10.1007/s12272-022-01378-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
For decades, the use of secondary metabolites of various herbs has been an attractive strategy in combating human diseases. Rosmarinic acid (RA) is a bioactive phenolic compound commonly found in plants of Lamiaceae and Boraginaceae families. RA is biosynthesized using amino acids tyrosine and phenylalanine via enzyme-catalyzed reactions. However, the chemical synthesis of RA involves an esterification reaction between caffeic acid and 3,4-dihydroxy phenyl lactic acid contributing two phenolic rings to the structure of RA. Several studies have ascertained multiple therapeutic benefits of RA in various diseases, including cancer, diabetes, inflammatory disorders, neurodegenerative disorders, and liver diseases. Many previous scientific papers indicate that RA can be used as an anti-plasmodic, anti-viral and anti-bacterial drug. In addition, due to its high anti-oxidant capacity, this natural polyphenol has recently gained attention for its possible application as a nutraceutical compound in the food industry. Here we provide state-of-the-art, flexible therapeutic potential and biomedical features of RA, its implications and multiple uses. Along with various valuable applications in safeguarding human health, this review further summarizes the therapeutic advantages of RA in various human diseases, including cancer, diabetes, neurodegenerative diseases. Furthermore, the challenges associated with the clinical applicability of RA have also been discussed.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Malik Abdul Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ali Raza
- Department of Medical Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsugu, Incheon, 21924, Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
10
|
Aminian AR, Mohebbati R, Boskabady MH. The Effect of Ocimum basilicum L. and Its Main Ingredients on Respiratory Disorders: An Experimental, Preclinical, and Clinical Review. Front Pharmacol 2022; 12:805391. [PMID: 35046828 PMCID: PMC8762307 DOI: 10.3389/fphar.2021.805391] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Ocimum basilicum L. (O. basilicum) and its constituents show anti-inflammatory, immunomodulatory, and antioxidant effects. The plant has been mainly utilized in traditional medicine for the treatment of respiratory disorders. In the present article, effects of O. basilicum and its main constituents on respiratory disorders, assessed by experimental and clinical studies, were reviewed. Relevant studies were searched in PubMed, Science Direct, Medline, and Embase databases using relevant keywords including “Ocimum basilicum,” “basilicums,” “linalool,” “respiratory disease,” “asthma,” “obstructive pulmonary disease,” “bronchodilatory,” “bronchitis,” “lung cancer,” and “pulmonary fibrosis,” and other related keywords.The reviewed articles showed both relieving and preventing effects of the plant and its ingredients on obstructive pulmonary diseases such as chronic obstructive pulmonary disease (COPD), asthma, and other respiratory disorders such as bronchitis, aspergillosis tuberculosis, and lung cancer. The results of the reviewed articles suggest the therapeutic potential of O. basilicum and its constituent, linalool, on respiratory disorders.
Collapse
Affiliation(s)
- Ahmad Reza Aminian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Teofilović B, Tomas A, Martić N, Stilinović N, Popović M, Čapo I, Grujić N, Ilinčić B, Rašković A. Antioxidant and hepatoprotective potential of sweet basil (Ocimum basilicum L.) extract in acetaminophen-induced hepatotoxicity in rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Boldura OM, Marc S, Otava G, Hutu I, Balta C, Tulcan C, Mircu C. Utilization of Rosmarinic and Ascorbic Acids for Maturation Culture Media in Order to Increase Sow Oocyte Quality Prior to IVF. Molecules 2021; 26:7215. [PMID: 34885797 PMCID: PMC8659116 DOI: 10.3390/molecules26237215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
The beneficial effect of antioxidant supplementation in maturation culture media of sow oocytes was evaluated by the expression quantification of apoptotic genes and the genes that ensure stability of germ cells during fertilization. The oocytes were cultivated for 44 h in conventional medium (C) or in medium supplemented with 105 µM rosmarinic acid (R) and 0.5 mM ascorbic acid (A) and classified into three quality classes by morphological observation from which the total RNA was isolated. The gene expression of Ptx3 and the apoptotic regulator p53, Bax and BCL-2 were evaluated by quantitative PCR technique. The decreased expression of the Bax gene in the A and R groups, compared to the control, indicates a protective role of antioxidants in the cells. Cell homeostasis was maintained, as reflected in the ratio of Bax/Bcl-2 in class I COCs (cumulus-oocyte complex) regardless of the experimental group, indicating minimum cellular stress. The expression of p53 genes was higher in all class III COC, but in A1 and R1 the expression was lower than in C1, and a similar Ptx-3 gene decreased significantly in groups A1, A2, A3 and R1 compared with control groups. Antioxidant supplementation showed beneficial effects on all morphological classes of pig COCs.
Collapse
Affiliation(s)
- Oana-Maria Boldura
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I” Timisoara, 300645 Timişoara, Romania; (O.-M.B.); (S.M.); (G.O.); (I.H.); (C.M.)
- BUASVM’s Research Institute for Biosecurity and Bioengineering, University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania” from Timisoara, 300645 Timişoara, Romania
| | - Simona Marc
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I” Timisoara, 300645 Timişoara, Romania; (O.-M.B.); (S.M.); (G.O.); (I.H.); (C.M.)
- BUASVM’s Research Institute for Biosecurity and Bioengineering, University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania” from Timisoara, 300645 Timişoara, Romania
| | - Gabriel Otava
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I” Timisoara, 300645 Timişoara, Romania; (O.-M.B.); (S.M.); (G.O.); (I.H.); (C.M.)
- BUASVM’s Research Institute for Biosecurity and Bioengineering, University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania” from Timisoara, 300645 Timişoara, Romania
| | - Ioan Hutu
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I” Timisoara, 300645 Timişoara, Romania; (O.-M.B.); (S.M.); (G.O.); (I.H.); (C.M.)
- BUASVM’s Research Institute for Biosecurity and Bioengineering, University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania” from Timisoara, 300645 Timişoara, Romania
| | - Cornel Balta
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania;
| | - Camelia Tulcan
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I” Timisoara, 300645 Timişoara, Romania; (O.-M.B.); (S.M.); (G.O.); (I.H.); (C.M.)
- BUASVM’s Research Institute for Biosecurity and Bioengineering, University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania” from Timisoara, 300645 Timişoara, Romania
| | - Calin Mircu
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I” Timisoara, 300645 Timişoara, Romania; (O.-M.B.); (S.M.); (G.O.); (I.H.); (C.M.)
- BUASVM’s Research Institute for Biosecurity and Bioengineering, University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania” from Timisoara, 300645 Timişoara, Romania
| |
Collapse
|