1
|
Wu Q, Chen M, Lin Y, Zhang J, Gao X, Wu Y, Wu C, Wen J, Li J, Li C, Bao W, Zhang D, Zheng M, Zhu A. Multiomics profiling uncovers curdione-induced reproductive toxicity in HTR-8/SVneo cells. Heliyon 2024; 10:e38650. [PMID: 39524727 PMCID: PMC11550733 DOI: 10.1016/j.heliyon.2024.e38650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
The assessment of medication toxicity and safety is pivotal during pregnancy. Curdione, a sesquiterpene compound extracted from Curcumae Radix, displays beneficial properties in terms of anti-inflammatory, tumor growth suppression, and anti-coagulative effects. However, its reproductive toxicity and precise mechanism remain unclear. This study aims to explore the mechanism of curdione-induced toxicity damage in HTR-8/SVneo cells through the epigenetics, proteomics, and metabolomics, and experimental verification. The results showed that curdione elicited alterations in m6A modification, gene expression, protein levels, and cellular metabolism of HTR-8/SVneo cells. Additionally, curdione induces oxidative stress, mitochondrial and DNA damage, while also downregulating the expression of Wnt6, β-catenin, ZO-1, and CLDN1 proteins. Curdione has the potential to modulate oxidative stress, mitochondrial dysfunction, and disruption of tight junctions via the Wnt/β-catenin signaling pathway, which contributes to cellular damage in HTR-8/SVneo cells.
Collapse
Affiliation(s)
- Qibin Wu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Mengting Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Yifan Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Jian Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Xinyue Gao
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Yajiao Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Caijin Wu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Jiaxin Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Jiaqi Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Chutao Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Wenqiang Bao
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Dongcheng Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Meijin Zheng
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - An Zhu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| |
Collapse
|
2
|
Weng J, Wang L, Wang K, Su H, Luo D, Yang H, Wen Y, Wu Q, Li X. Tauroursodeoxycholic Acid Inhibited Apoptosis and Oxidative Stress in H 2O 2-Induced BMSC Death via Modulating the Nrf-2 Signaling Pathway: the Therapeutic Implications in a Rat Model of Spinal Cord Injury. Mol Neurobiol 2024; 61:3753-3768. [PMID: 38015303 PMCID: PMC11236931 DOI: 10.1007/s12035-023-03754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Spinal cord injury (SCI) is a prevalent and significant injury to the central nervous system, resulting in severe consequences. This injury is characterized by motor, sensory, and excretory dysfunctions below the affected spinal segment. Transplantation of bone marrow mesenchymal stem cells (BMSCs) has emerged as a potential treatment for SCI. However, the low survival as well as the differentiation rates of BMSCs within the spinal cord microenvironment significantly limit their therapeutic efficiency. Tauroursodeoxycholic acid (TUDCA), an active ingredient found in bear bile, has demonstrated its neuroprotective, antioxidant, and antiapoptotic effects on SCI. Thus, the present study was aimed to study the possible benefits of combining TUDCA with BMSC transplantation using an animal model of SCI. The results showed that TUDCA significantly enhanced BMSC viability and reduced apoptosis (assessed by Annexin V-FITC, TUNEL, Bax, Bcl-2, and Caspase-3) as well as oxidative stress (assessed by ROS, GSH, SOD, and MDA) both in vitro and in vivo. Additionally, TUDCA accelerated tissue regeneration (assessed by HE, Nissl, MAP2, MBP, TUJ1, and GFAP) and improved functional recovery (assessed by BBB score) following BMSC transplantation in SCI. These effects were mediated via the Nrf-2 signaling pathway, as evidenced by the upregulation of Nrf-2, NQO-1, and HO-1 expression levels. Overall, these results indicate that TUDCA could serve as a valuable adjunct to BMSC transplantation therapy for SCI, potentially enhancing its therapeutic efficacy.
Collapse
Affiliation(s)
- Jiaxian Weng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Le Wang
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Kai Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Haitao Su
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery,, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Dan Luo
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery,, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Haimei Yang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yaqian Wen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiduan Wu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xing Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery,, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
3
|
Abdolmaleki A, Karimian A, Khoshnazar SM, Asadi A, Samarein ZA, Smail SW, Bhattacharya D. The role of Nrf2 signaling pathways in nerve damage repair. Toxicol Res (Camb) 2024; 13:tfae080. [PMID: 38799411 PMCID: PMC11116835 DOI: 10.1093/toxres/tfae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/05/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
The protein, Nuclear factor-E2-related factor 2 (Nrf2), is a transitory protein that acts as a transcription factor and is involved in the regulation of many cytoprotective genes linked to xenobiotic metabolism and antioxidant responses. Based on the existing clinical and experimental data, it can be inferred that neurodegenerative diseases are characterized by an excessive presence of markers of oxidative stress (OS) and a reduced presence of antioxidant defense systems in both the brain and peripheral tissues. The presence of imbalances in the homeostasis between oxidants and antioxidants has been recognized as a substantial factor in the pathogenesis of neurodegenerative disorders. The dysregulations include several cellular processes such as mitochondrial failure, protein misfolding, and neuroinflammation. These dysregulations all contribute to the disruption of proteostasis in neuronal cells, leading to their eventual mortality. A noteworthy component of Nrf2, as shown by recent research undertaken over the last decade, is to its role in the development of resistance to OS. Nrf2 plays a pivotal role in regulating systems that defend against OS. Extant research offers substantiation for the protective and defensive roles of Nrf2 in the context of neurodegenerative diseases. The purpose of this study is to provide a comprehensive analysis of the influence of Nrf2 on OS and its function in regulating antioxidant defense systems within the realm of neurodegenerative diseases. Furthermore, we evaluate the most recent academic inquiries and empirical evidence about the beneficial and potential role of certain Nrf2 activator compounds within the realm of therapeutic interventions.
Collapse
Affiliation(s)
- Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Aida Karimian
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Imam Khomeini Highway, Mustafa Khomeini Boulevard, Ibn Sina, Kerman, 9986598, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Zahra Akhavi Samarein
- Department of Counseling, Faculty of Education and Psychology, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Shukur Wasman Smail
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, 1235897, Iraq
| | - Deepak Bhattacharya
- Ph.D., Policy, Nursing, At Fight-Cancer at Home, Medicinal Toxicology & QC, Sri Radha Krishna Raas Mandir, KedarGouri Road, Bhubaneswar, Odisa 751002, India
| |
Collapse
|
4
|
Li Z, Su H, Lin G, Wang K, Huang Y, Wen Y, Luo D, Hou Y, Cao X, Weng J, Lin D, Wang L, Li X. Transplantation of MiR-28-5p-Modified BMSCs Promotes Functional Recovery After Spinal Cord Injury. Mol Neurobiol 2024; 61:2197-2214. [PMID: 37864767 DOI: 10.1007/s12035-023-03702-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Traumatic spinal cord injury (TSCI) is a prevalent central nervous system condition that imposes a significant burden on both families and society, affecting more than 2 million people worldwide. Recently, there has been increasing interest in bone marrow mesenchymal stem cell (BMSC) transplantation as a promising treatment for spinal cord injury (SCI) due to their accessibility and low immunogenicity. However, the mere transplantation of BMSCs has limited capacity to directly participate in the repair of host spinal cord nerve function. MiR-28-5p, identified as a key differentially expressed miRNA in spinal cord ischemia-reperfusion injury, exhibits differential expression and regulation in various neurological diseases. Nevertheless, its involvement in this process and its specific regulatory mechanisms in SCI remain unclear. Therefore, this study aimed to investigate the potential mechanisms through which miR-28-5p promotes the neuronal differentiation of BMSCs both in vivo and in vitro. Our results indicate that miR-28-5p may directly target Notch1, thereby facilitating the neuronal differentiation of BMSCs in vitro. Furthermore, the transplantation of lentivirus-mediated miR-28-5p-overexpressed BMSCs into SCI rats effectively improved footprint tests and Basso, Beattie, and Bresnahan (BBB) scores, ameliorated histological morphology (hematoxylin-eosin [HE] and Nissl staining), promoted axonal regeneration (MAP2 and growth-associated protein 43 [GAP43]), and facilitated axonal remyelination (myelin basic protein [MBP]). These findings may suggest that miR-28-5p-modified BMSCs could serve as a therapeutic target to enhance the behavioral and neurological recovery of SCI rats.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Haitao Su
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Guandai Lin
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Kai Wang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Yongming Huang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Yaqian Wen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Dan Luo
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Yu Hou
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xuewei Cao
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Jiaxian Weng
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Dingkun Lin
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Le Wang
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, 510080, Guangdong, China.
| | - Xing Li
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
5
|
Mendonça ELSS, Xavier JA, Fragoso MBT, Silva MO, Escodro PB, Oliveira ACM, Tucci P, Saso L, Goulart MOF. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals (Basel) 2024; 17:232. [PMID: 38399446 PMCID: PMC10891666 DOI: 10.3390/ph17020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Stilbenes are phytoalexins, and their biosynthesis can occur through a natural route (shikimate precursor) or an alternative route (in microorganism cultures). The latter is a metabolic engineering strategy to enhance production due to stilbenes recognized pharmacological and medicinal potential. It is believed that in the human body, these potential activities can be modulated by the regulation of the nuclear factor erythroid derived 2 (Nrf2), which increases the expression of antioxidant enzymes. Given this, our review aims to critically analyze evidence regarding E-stilbenes in human metabolism and the Nrf2 activation pathway, with an emphasis on inflammatory and oxidative stress aspects related to the pathophysiology of chronic and metabolic diseases. In this comprehensive literature review, it can be observed that despite the broad number of stilbenes, those most frequently explored in clinical trials and preclinical studies (in vitro and in vivo) were resveratrol, piceatannol, pterostilbene, polydatin, stilbestrol, and pinosylvin. In some cases, depending on the dose/concentration and chemical nature of the stilbene, it was possible to identify activation of the Nrf2 pathway. Furthermore, the use of some experimental models presented a challenge in comparing results. In view of the above, it can be suggested that E-stilbenes have a relationship with the Nrf2 pathway, whether directly or indirectly, through different biological pathways, and in different diseases or conditions that are mainly related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Elaine L. S. S. Mendonça
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | - Jadriane A. Xavier
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Marilene B. T. Fragoso
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Messias O. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | | | | | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| |
Collapse
|
6
|
Bao HL, Chen CZ, Ren CZ, Sun KY, Liu H, Song SH, Fu ZR. Polydatin ameliorates hepatic ischemia-reperfusion injury by modulating macrophage polarization. Hepatobiliary Pancreat Dis Int 2024; 23:25-34. [PMID: 36058783 DOI: 10.1016/j.hbpd.2022.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Polydatin, a glucoside of resveratrol, has shown protective effects against various diseases. However, little is known about its effect on hepatic ischemia-reperfusion (I/R) injury. This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism. METHODS After gavage feeding polydatin once daily for a week, mice underwent a partial hepatic I/R procedure. Serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST), hematoxylin-eosin (H&E) and TdT-mediated dUTP nick-end labeling (TUNEL) staining were used to evaluate liver injury. The severity related to the inflammatory response and reactive oxygen species (ROS) production was also investigated. Furthermore, immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages. RESULTS Compared with the I/R group, polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis. The oxidative stress marker (dihydroethidium fluorescence, malondialdehyde, superoxide dismutase and glutathione peroxidase) and I/R related inflammatory cytokines (interleukin-1β, interleukin-10 and tumor necrosis factor-α) were significantly suppressed after polydatin treatment. In addition, the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro. Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway. CONCLUSIONS Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NF-κB signaling.
Collapse
Affiliation(s)
- Hai-Li Bao
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai 200003, China
| | - Chuan-Zhi Chen
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chang-Zhen Ren
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Military Medical University, Shanghai 200003, China
| | - Ke-Yan Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shao-Hua Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi-Ren Fu
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai 200003, China.
| |
Collapse
|
7
|
Yin Z, Wan B, Gong G, Yin J. ROS: Executioner of regulating cell death in spinal cord injury. Front Immunol 2024; 15:1330678. [PMID: 38322262 PMCID: PMC10844444 DOI: 10.3389/fimmu.2024.1330678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
The damage to the central nervous system and dysfunction of the body caused by spinal cord injury (SCI) are extremely severe. The pathological process of SCI is accompanied by inflammation and injury to nerve cells. Current evidence suggests that oxidative stress, resulting from an increase in the production of reactive oxygen species (ROS) and an imbalance in its clearance, plays a significant role in the secondary damage during SCI. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulatory molecule for cellular redox. This review summarizes recent advancements in the regulation of ROS-Nrf2 signaling and focuses on the interaction between ROS and the regulation of different modes of neuronal cell death after SCI, such as apoptosis, autophagy, pyroptosis, and ferroptosis. Furthermore, we highlight the pathways through which materials science, including exosomes, hydrogels, and nanomaterials, can alleviate SCI by modulating ROS production and clearance. This review provides valuable insights and directions for reducing neuronal cell death and alleviating SCI through the regulation of ROS and oxidative stress.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, the Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People’s Hospital of Lianyungang), Lianyungang, China
| | - Bowen Wan
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Jiangning Clinical Teaching Hospitals of Jiangsu Vocational College of Medicine, Nanjing, China
| |
Collapse
|
8
|
Sun Y, Xu D, Yang W, Zhang H, Su Y, Gao B, Zou X, Zhong Y, Sun H, Xiang L. Diallyl trisulfide improves spinal cord ischemia-reperfusion injury damage by activating AMPK to stabilize mitochondrial function. J Orthop Surg Res 2023; 18:838. [PMID: 37932742 PMCID: PMC10629077 DOI: 10.1186/s13018-023-04176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/09/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Spinal cord ischemia-reperfusion injury (SCII) is a catastrophic event, which can cause paraplegia in severe cases. In the reperfusion stage, oxidative stress was up-regulated, which aggravated the injury and apoptosis of neurons. As the main active ingredient of garlic, diallyl trisulfide (DATS) displays strong antioxidant capacity. However, it is unknown whether DATS can protect the neurons of SCII. MATERIALS AND METHODS In this study, the descending aorta at the distal end of the left subclavian artery was ligated and perfused again after 14 min. Samples including blood and spinal cord (L2-L5) were taken 24 h later for morphological and biochemical examination. RESULTS After SCII, the rats showed motor dysfunction, increase apoptosis, malondialdehyde content, mitochondrial biogenesis and dynamic balance disorder. After the application of DATS, the adenosine monophosphate activated protein kinase (AMPK) was activated, the mitochondrial damage was improved, the oxidative stress was weakened, and the neuronal damage was recovered to some extent. However, the addition of compound C significantly weakened the protective effect of DATS. CONCLUSION Oxidative stress caused by mitochondrial damage was one of the important mechanisms of neuronal damage in SCII. DATS could activate AMPK, stabilize mitochondrial biogenesis and dynamic balance, and reduce neuronal damage caused by oxidative stress.
Collapse
Affiliation(s)
- Yang Sun
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China
- Postgraduate College, China Medical University, No. 77, Puhe Road, New Shenbei District, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Dengyue Xu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning Province, People's Republic of China
| | - Weidong Yang
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China
| | - Hongquan Zhang
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China
| | - Yi Su
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China
| | - Bin Gao
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China
| | - Xiaowei Zou
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China
| | - Yiming Zhong
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China
| | - Huanwei Sun
- Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, No. 826, Southwest Road, Shahekou District, Dalian, 116000, Liaoning Province, People's Republic of China.
| | - Liangbi Xiang
- Department of Orthopedics, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China.
| |
Collapse
|
9
|
Li N, Chen L, Zhao X, Gu C, Chang Y, Feng S. Targeting ANXA7/LAMP5-mTOR axis attenuates spinal cord injury by inhibiting neuronal apoptosis via enhancing autophagy in mice. Cell Death Discov 2023; 9:309. [PMID: 37620352 PMCID: PMC10449888 DOI: 10.1038/s41420-023-01612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Spinal cord injury (SCI) could lead to severe disabilities in motor and sensory functions, and cause a heavy burden on patient physiology and psychology due to lack of specific repair measures so far. ANXA7 is an annexin with Ca2+ -dependent GTPase activity, which were mainly expressed in neuron in spinal cord and downregulated significantly after SCI in mice. In our study, GTPase activity activation of ANXA7 plays the protective role in neuron after OGD/R through inhibiting neuron apoptosis, which mediated by enhancing autophagy via mTOR/TFEB pathway. We also discovered that ANXA7 has significant interaction with neural-specific lysosomal-associated membrane protein LAMP5, which together with ANXA7 regulates autophagy and apoptosis. Asp411 mutation of ANXA7 obviously impaired the interaction of ANXA7 and LAMP5 compared with the wild type. Furthermore, it was found that activation of ANXA7 could help to stabilize the protein expression of LAMP5. Overexpression of LAMP5 could attenuate the destruction of lysosomal acidic environment, inhibition of autophagy and activation of apoptosis caused by ANXA7 downregulation after OGD/R. We verified that injecting ANXA7 overexpression lentivirus and activation of ANXA7 both have significant repair effects on SCI mice by using CatWalk assay and immunohistochemistry staining. In summary, our findings clarify the new role of ANXA7 and LAMP5 in SCI, provided a new specific target of neuronal repair and discovered new molecular mechanisms of ANXA7 to regulate autophagy and apoptosis. Targeting ANXA7 may be a prospective therapeutic strategy for SCI in future.
Collapse
Affiliation(s)
- Na Li
- Orthopaedic Research Center of Shandong University, Department of orthopaedics, Qilu Hospital of Shandong University, #44 Wenhua West Road, 250012, Jinan, Shandong, China
| | - Lu Chen
- Orthopaedic Research Center of Shandong University, Department of orthopaedics, Qilu Hospital of Shandong University, #44 Wenhua West Road, 250012, Jinan, Shandong, China
| | - Xiaoqing Zhao
- Orthopaedic Research Center of Shandong University, Department of orthopaedics, Qilu Hospital of Shandong University, #44 Wenhua West Road, 250012, Jinan, Shandong, China
| | - Chi Gu
- Orthopaedic Research Center of Shandong University, Department of orthopaedics, Qilu Hospital of Shandong University, #44 Wenhua West Road, 250012, Jinan, Shandong, China
| | - Yong Chang
- Orthopaedic Research Center of Shandong University, Department of orthopaedics, Qilu Hospital of Shandong University, #44 Wenhua West Road, 250012, Jinan, Shandong, China
| | - Shiqing Feng
- Orthopaedic Research Center of Shandong University, Department of orthopaedics, Qilu Hospital of Shandong University, #44 Wenhua West Road, 250012, Jinan, Shandong, China.
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Li Y, Zhang S, Cui K, Cao L, Fan Y, Fang B. miR-872-5p/FOXO3a/Wnt signaling feed-forward loop promotes proliferation of endogenous neural stem cells after spinal cord ischemia-reperfusion injury in rats. FASEB J 2023; 37:e22760. [PMID: 36607643 DOI: 10.1096/fj.202200962rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
The activation of endogenous neural stem cells (NSCs) is considered an important mechanism of neural repair after mechanical spinal cord injury; however, whether endogenous NSC proliferation can also occur after spinal cord ischemia-reperfusion injury (SCIRI) remains unclear. In this study, we aimed to verify the existence of endogenous NSC proliferation after SCIRI and explore the underlying molecular mechanism. NSC proliferation was observed after SCIRI in vivo and oxygen-glucose deprivation and reperfusion (OGD/R) in vitro, accompanied by a decrease in forkhead box protein O 3a (FOXO3a) expression. This downward trend was regulated by the increased expression of microRNA-872-5p (miR-872-5p). miR-872-5p affected NSC proliferation by targeting FOXO3a to increase the expression of β-catenin and T-cell factor 4 (TCF4). In addition, TCF4 in turn acted as a transcription factor to increase the expression level of miR-872-5p, and knockdown of FOXO3a enhanced the binding of TCF4 to the miR-872-5p promoter. In conclusion, SCIRI in vivo and OGD/R in vitro stimulated the miR-872-5p/FOXO3a/β-catenin-TCF4 pathway, thereby promoting NSC proliferation. At the same time, FOXO3a affected TCF4 transcription factor activity and miR-872-5p expression, forming a positive feedback loop that promotes NSC proliferation.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Shaoqiong Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Kaile Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Linyan Cao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Yiting Fan
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Zhan J, Luo D, Zhao B, Chen S, Luan J, Luo J, Hou Y, Hou Y, Xu W, Yan W, Qi J, Li X, Zhang Q, Lin D. Polydatin administration attenuates the severe sublesional bone loss in mice with chronic spinal cord injury. Aging (Albany NY) 2022; 14:8856-8875. [DOI: 10.18632/aging.204382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Jiheng Zhan
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Workstation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- Postdoctoral Research Station, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dan Luo
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Bingde Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Shudong Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Jiyao Luan
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou 450046, China
| | - Junhua Luo
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu Hou
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yonghui Hou
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Wenke Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wanying Yan
- National Quality Testing Center for Processed Food, Guangzhou Inspection and Testing Certification Group Company Limited, Guangzhou 511447, China
| | - Ji Qi
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Workstation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Research Station, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xing Li
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Qing Zhang
- Postdoctoral Research Station, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Spine, Wangjing Hospital of Chinese Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Dingkun Lin
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Workstation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
12
|
Wang Z, Wu Z, Xie Z, Zhou W, Li M. Metformin Attenuates Ferroptosis and Promotes Functional Recovery of Spinal Cord Injury. World Neurosurg 2022; 167:e929-e939. [PMID: 36058489 DOI: 10.1016/j.wneu.2022.08.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Ferroptosis is involved in traumatic spinal cord injury (SCI), and its inhibition may improve functional recovery after traumatic SCI. This study investigated whether metformin (Met) can have a neuroprotective effect in SCI repair by inhibiting ferroptosis. METHODS We assessed functional change to determine the long-term effects after intraperitoneal injection of Met in SCI rats with the Basso-Beattie-Bresnahan locomotor rating scale. Malondialdehyde level and relative expression of key proteins, inflammatory cytokines, and nuclear factor E2-related factor 2 signalling molecules were determined in SCI rats and PC12 cells exposed to FeCl3 solution. RESULTS Met treatment decreased the contents of malondialdehyde, regulated the levels of inflammatory factors, activated the nuclear factor E2-related factor 2 signalling pathway, and improved long-term outcomes by ameliorating SCI-induced locomotor deficits. In vitro studies further confirmed the beneficial and antiferroptotic actions of Met partly through activation of nuclear factor E2-related factor 2 signalling. CONCLUSION Met can have a neuroprotective effect on SCI repair partly through antiferroptotic effects.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhiwu Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhiping Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
13
|
Karami A, Fakhri S, Kooshki L, Khan H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022; 27:6474. [PMID: 36235012 PMCID: PMC9572446 DOI: 10.3390/molecules27196474] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Polydatin is a natural potent stilbenoid polyphenol and a resveratrol derivative with improved bioavailability. Polydatin possesses potential biological activities predominantly through the modulation of pivotal signaling pathways involved in inflammation, oxidative stress, and apoptosis. Various imperative biological activities have been suggested for polydatin towards promising therapeutic effects, including anticancer, cardioprotective, anti-diabetic, gastroprotective, hepatoprotective, neuroprotective, anti-microbial, as well as health-promoting roles on the renal system, the respiratory system, rheumatoid diseases, the skeletal system, and women's health. In the present study, the therapeutic targets, biological activities, pharmacological mechanisms, and health benefits of polydatin are reviewed to provide new insights to researchers. The need to develop further clinical trials and novel delivery systems of polydatin is also considered to reveal new insights to researchers.
Collapse
Affiliation(s)
- Ahmad Karami
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Leila Kooshki
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
14
|
Zhang Y, Yu W, Liu Y, Chang W, Wang M, Zhang L. Regulation of nuclear factor erythroid-2-related factor 2 as a potential therapeutic target in intracerebral hemorrhage. Front Mol Neurosci 2022; 15:995518. [PMID: 36245922 PMCID: PMC9559574 DOI: 10.3389/fnmol.2022.995518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Hemorrhagic stroke can be categorized into several subtypes. The most common is intracerebral hemorrhage (ICH), which exhibits significant morbidity and mortality, affecting the lives of millions of people worldwide every year. Brain injury after ICH includes the primary injury that results from direct compression as well as stimulation by the hematoma and secondary brain injury (SBI) that is due to ischemia and hypoxia in the penumbra around the hematoma. A number of recent studies have analyzed the mechanisms producing the oxidative stress and inflammation that develop following hematoma formation and are associated with the ICH induced by the SBI as well as the resulting neurological dysfunction. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a critical component in mediating oxidative stress and anti-inflammatory response. We summarize the pathological mechanisms of ICH focusing on oxidative stress and the regulatory role of Nrf2, and review the mechanisms regulating Nrf2 at the transcriptional and post-transcriptional levels by influencing gene expression levels, protein stability, subcellular localization, and synergistic effects with other transcription factors. We further reviewing the efficacy of several Nrf2 activators in the treatment of ICH in experimental ICH models. Activation of Nrf2 might produce antioxidant, anti-inflammatory, and neuron-protection effects, which could potentially be a focus for developing future treatments and prevention of ICH.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Yuan Zhang,
| | - Wanpeng Yu
- Medical College, Qingdao University, Qingdao, China
| | - Yingying Liu
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenguang Chang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Man Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Wang Z, Long R, Yang Z, Feng C. lncRNA HOTAIR Inhibition by Regulating HMGB1/ROS/NF- κB Signal Pathway Promotes the Recovery of Spinal Cord Function. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4955982. [PMID: 35799628 PMCID: PMC9256348 DOI: 10.1155/2022/4955982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/24/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Spinal cord ischemia-reperfusion injury (SCII) is one of the most serious complications of clinical aortic aneurysm and vascular malformation surgery. Long noncoding RNA (lncRNA) is involved in the progression of SCII, whereas long noncoding RNA HOX transcript antisense RNA (lncRNA HOTAIR) is unclear in SCII. This study is aimed at confirming the role and related mechanism of HOTAIR in SCII. Later on, a model of SCII was established by clamping the aortic arch for 14 minutes. RNA expression of HOTAIR was detected via qRT-PCR at 12 h, 24 h, 36 h, and 48 h after SCII. The Tarlov scoring system and TUNEL assay were used to evaluate neurological function and neuronal apoptosis. Oxidative stress factor levels were assessed according to the instructions of the kit. Inflammatory cytokines were assessed by ELISA. Western blot was used to detect levels of p65, p-p65, I-κBα, and p-I-κBα. We found HOTAIR was raised in SCII rats. si-HOTAIR was able to reverse SCII-induced oxidative stress in SCII rats. The HMGB1 expression was upregulated in SCII tissues and negatively correlated with HOTAIR. HMGB1 was able to partially reverse si-HOTAIR inhibition of oxidative stress, inflammatory injury, and neuronal cell apoptosis in SCII. In addition, the ROS/NF-κB signaling pathway is involved in HOTAIR/HMGB1 regulation of SCII. In a word, HOTAIR inhibition is able to inhibit oxidative stress, inflammatory injury, and neuronal apoptosis in SCII through downregulation of the high mobility group protein B1(HMGB1), which is achieved by inhibiting the ROS/NF-κB signaling pathway. The HOTAIR/HMGB1/ROS/NF-κB molecular pathway may be a new mechanism for the treatment of SCII.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang Hangzhou 311200, China
| | - Ruchao Long
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang Hangzhou 311200, China
| | - Zhihua Yang
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang Hangzhou 311200, China
| | - Chunzhi Feng
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang Hangzhou 311200, China
| |
Collapse
|
16
|
Jiang T, He Y. Recent Advances in the Role of Nuclear Factor Erythroid-2-Related Factor 2 in Spinal Cord Injury: Regulatory Mechanisms and Therapeutic Options. Front Aging Neurosci 2022; 14:851257. [PMID: 35754957 PMCID: PMC9226435 DOI: 10.3389/fnagi.2022.851257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/09/2022] [Indexed: 01/09/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) is a pleiotropic transcription factor, and it has been documented that it can induce defense mechanisms both oxidative stress and inflammatory injury. At present, more and more evidences show that the Nrf2 signaling pathway is a key pharmacological target for the treatment of spinal cord injury (SCI), and activating the Nrf2 signaling pathway can effectively treat the inflammatory injury and oxidative stress after SCI. This article firstly introduces the biological studies of the Nrf2 pathway. Meanwhile, it is more powerful to explain that activating the Nrf2 signaling pathway can effectively treat SCI by deeply exploring the relationship between Nrf2 and oxidative stress, inflammatory injury, and SCI. In addition, several potential drugs for the treatment of SCI by promoting Nrf2 activation and Nrf2-dependent gene expression are reviewed. And some other treatment strategies of SCI by modulating the Nrf2 pathway are also summarized. It will provide new ideas and directions for the treatment of SCI.
Collapse
Affiliation(s)
- Tianqi Jiang
- Graduate School of Inner Mongolia Medical University, Hohhot, China,Spine Surgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Yongxiong He
- Spine Surgery, Inner Mongolia People’s Hospital, Hohhot, China,*Correspondence: Yongxiong He,
| |
Collapse
|
17
|
The Neuroprotective Role of Polydatin: Neuropharmacological Mechanisms, Molecular Targets, Therapeutic Potentials, and Clinical Perspective. Molecules 2021; 26:molecules26195985. [PMID: 34641529 PMCID: PMC8513080 DOI: 10.3390/molecules26195985] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/09/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are one of the leading causes of death and disability in humans. From a mechanistic perspective, the complexity of pathophysiological mechanisms contributes to NDDs. Therefore, there is an urgency to provide novel multi-target agents towards the simultaneous modulation of dysregulated pathways against NDDs. Besides, their lack of effectiveness and associated side effects have contributed to the lack of conventional therapies as suitable therapeutic agents. Prevailing reports have introduced plant secondary metabolites as promising multi-target agents in combating NDDs. Polydatin is a natural phenolic compound, employing potential mechanisms in fighting NDDs. It is considered an auspicious phytochemical in modulating neuroinflammatory/apoptotic/autophagy/oxidative stress signaling mediators such as nuclear factor-κB (NF-κB), NF-E2–related factor 2 (Nrf2)/antioxidant response elements (ARE), matrix metalloproteinase (MMPs), interleukins (ILs), phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt), and the extracellular regulated kinase (ERK)/mitogen-activated protein kinase (MAPK). Accordingly, polydatin potentially counteracts Alzheimer’s disease, cognition/memory dysfunction, Parkinson’s disease, brain/spinal cord injuries, ischemic stroke, and miscellaneous neuronal dysfunctionalities. The present study provides all of the neuroprotective mechanisms of polydatin in various NDDs. Additionally, the novel delivery systems of polydatin are provided regarding increasing its safety, solubility, bioavailability, and efficacy, as well as developing a long-lasting therapeutic concentration of polydatin in the central nervous system, possessing fewer side effects.
Collapse
|