1
|
Wang X, Shi H, Huang S, Zhang Y, He X, Long Q, Qian B, Zhong Y, Qi Z, Zhao Q, Ye X. Localized delivery of anti-inflammatory agents using extracellular matrix-nanostructured lipid carriers hydrogel promotes cardiac repair post-myocardial infarction. Biomaterials 2023; 302:122364. [PMID: 37883909 DOI: 10.1016/j.biomaterials.2023.122364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
A challenge in treating cardiac injury is the low heart-specificity of the drugs. Nanostructured lipid carriers (NLCs) are a relatively new format of lipid nanoparticles which have been used to deliver RNA and drugs. However, lipid nanoparticles exhibit higher affinity to the liver than the heart. To improve the delivery efficiency of NLCs into the heart, NLCs can be embedded into a scaffold and be locally released. In this study, a cardiac extracellular matrix (ECM) hydrogel-NLC composite was developed as a platform for cardiac repair. ECM-NLC composite gels at physiological conditions and releases payloads into the heart over weeks. ECM-NLC hydrogel carrying colchicine, an anti-inflammation agent, improved cardiac repair after myocardial infarction in mice. Transcriptome analysis indicated that Egfr downstream effectors participated in ECM-NLC-colchicine induced heart repair. In conclusion, ECM-NLC hydrogel is a potential platform for sustained and localized delivery of biomolecules into the heart, and loading appropriate medicines further increases the therapeutic efficacy of ECM-NLC hydrogel for cardiovascular diseases.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Hongpeng Shi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaojun He
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Long
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bei Qian
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoxi Qi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Kort-Mascort J, Flores-Torres S, Peza-Chavez O, Jang JH, Pardo LA, Tran SD, Kinsella J. Decellularized ECM hydrogels: prior use considerations, applications, and opportunities in tissue engineering and biofabrication. Biomater Sci 2023; 11:400-431. [PMID: 36484344 DOI: 10.1039/d2bm01273a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Tissue development, wound healing, pathogenesis, regeneration, and homeostasis rely upon coordinated and dynamic spatial and temporal remodeling of extracellular matrix (ECM) molecules. ECM reorganization and normal physiological tissue function, require the establishment and maintenance of biological, chemical, and mechanical feedback mechanisms directed by cell-matrix interactions. To replicate the physical and biological environment provided by the ECM in vivo, methods have been developed to decellularize and solubilize tissues which yield organ and tissue-specific bioactive hydrogels. While these biomaterials retain several important traits of the native ECM, the decellularizing process, and subsequent sterilization, and solubilization result in fragmented, cleaved, or partially denatured macromolecules. The final product has decreased viscosity, moduli, and yield strength, when compared to the source tissue, limiting the compatibility of isolated decellularized ECM (dECM) hydrogels with fabrication methods such as extrusion bioprinting. This review describes the physical and bioactive characteristics of dECM hydrogels and their role as biomaterials for biofabrication. In this work, critical variables when selecting the appropriate tissue source and extraction methods are identified. Common manual and automated fabrication techniques compatible with dECM hydrogels are described and compared. Fabrication and post-manufacturing challenges presented by the dECM hydrogels decreased mechanical and structural stability are discussed as well as circumvention strategies. We further highlight and provide examples of the use of dECM hydrogels in tissue engineering and their role in fabricating complex in vitro 3D microenvironments.
Collapse
Affiliation(s)
| | | | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Joyce H Jang
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Joseph Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Al-Hakim Khalak F, García-Villén F, Ruiz-Alonso S, Pedraz JL, Saenz-del-Burgo L. Decellularized Extracellular Matrix-Based Bioinks for Tendon Regeneration in Three-Dimensional Bioprinting. Int J Mol Sci 2022; 23:12930. [PMID: 36361719 PMCID: PMC9657326 DOI: 10.3390/ijms232112930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2023] Open
Abstract
In the last few years, attempts to improve the regeneration of damaged tendons have been rising due to the growing demand. However, current treatments to restore the original performance of the tissue focus on the usage of grafts; although, actual grafts are deficient because they often cannot provide enough support for tissue regeneration, leading to additional complications. The beneficial effect of combining 3D bioprinting and dECM as a novel bioink biomaterial has recently been described. Tendon dECMs have been obtained by using either chemical, biological, or/and physical treatments. Although decellularization protocols are not yet standardized, recently, different protocols have been published. New therapeutic approaches embrace the use of dECM in bioinks for 3D bioprinting, as it has shown promising results in mimicking the composition and the structure of the tissue. However, major obstacles include the poor structural integrity and slow gelation properties of dECM bioinks. Moreover, printing parameters such as speed and temperature have to be optimized for each dECM bioink. Here, we show that dECM bioink for 3D bioprinting provides a promising approach for tendon regeneration for future clinical applications.
Collapse
Affiliation(s)
- Fouad Al-Hakim Khalak
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - Fátima García-Villén
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
4
|
Poulis N, Martin M, Hoerstrup SP, Emmert MY, Fioretta ES. Macrophage-extracellular matrix interactions: Perspectives for tissue engineered heart valve remodeling. Front Cardiovasc Med 2022; 9:952178. [PMID: 36176991 PMCID: PMC9513146 DOI: 10.3389/fcvm.2022.952178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
In situ heart valve tissue engineering approaches have been proposed as promising strategies to overcome the limitations of current heart valve replacements. Tissue engineered heart valves (TEHVs) generated from in vitro grown tissue engineered matrices (TEMs) aim at mimicking the microenvironmental cues from the extracellular matrix (ECM) to favor integration and remodeling of the implant. A key role of the ECM is to provide mechanical support to and attract host cells into the construct. Additionally, each ECM component plays a critical role in regulating cell adhesion, growth, migration, and differentiation potential. Importantly, the immune response to the implanted TEHV is also modulated biophysically via macrophage-ECM protein interactions. Therefore, the aim of this review is to summarize what is currently known about the interactions and signaling networks occurring between ECM proteins and macrophages, and how these interactions may impact the long-term in situ remodeling outcomes of TEMs. First, we provide an overview of in situ tissue engineering approaches and their clinical relevance, followed by a discussion on the fundamentals of the remodeling cascades. We then focus on the role of circulation-derived and resident tissue macrophages, with particular emphasis on the ramifications that ECM proteins and peptides may have in regulating the host immune response. Finally, the relevance of these findings for heart valve tissue engineering applications is discussed.
Collapse
Affiliation(s)
- Nikolaos Poulis
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Wyss Zurich, University and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Wyss Zurich, University and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- *Correspondence: Maximilian Y. Emmert, ,
| | - Emanuela S. Fioretta
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Emanuela S. Fioretta,
| |
Collapse
|
5
|
Scalable macroporous hydrogels enhance stem cell treatment of volumetric muscle loss. Biomaterials 2022; 290:121818. [PMID: 36209578 DOI: 10.1016/j.biomaterials.2022.121818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/15/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Volumetric muscle loss (VML), characterized by an irreversible loss of skeletal muscle due to trauma or surgery, is accompanied by severe functional impairment and long-term disability. Tissue engineering strategies combining stem cells and biomaterials hold great promise for skeletal muscle regeneration. However, scaffolds, including decellularized extracellular matrix (dECM), hydrogels, and electrospun fibers, used for VML applications generally lack macroporosity. As a result, the scaffolds used typically delay host cell infiltration, transplanted cell proliferation, and new tissue formation. To overcome these limitations, we engineered a macroporous dECM-methacrylate (dECM-MA) hydrogel, which we will refer to as a dECM-MA sponge, and investigated its therapeutic potential in vivo. Our results demonstrate that dECM-MA sponges promoted early cellularization, endothelialization, and establishment of a pro-regenerative immune microenvironment in a mouse VML model. In addition, dECM-MA sponges enhanced the proliferation of transplanted primary muscle stem cells, muscle tissue regeneration, and functional recovery four weeks after implantation. Finally, we investigated the scale-up potential of our scaffolds using a rat VML model and found that dECM-MA sponges significantly improved transplanted cell proliferation and muscle regeneration compared to conventional dECM scaffolds. Together, these results validate macroporous hydrogels as novel scaffolds for VML treatment and skeletal muscle regeneration.
Collapse
|
6
|
Tan YH, Helms HR, Nakayama KH. Decellularization Strategies for Regenerating Cardiac and Skeletal Muscle Tissues. Front Bioeng Biotechnol 2022; 10:831300. [PMID: 35295645 PMCID: PMC8918733 DOI: 10.3389/fbioe.2022.831300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and is associated with approximately 17.9 million deaths each year. Musculoskeletal conditions affect more than 1.71 billion people globally and are the leading cause of disability. These two areas represent a massive global health burden that is perpetuated by a lack of functionally restorative treatment options. The fields of regenerative medicine and tissue engineering offer great promise for the development of therapies to repair damaged or diseased tissues. Decellularized tissues and extracellular matrices are cornerstones of regenerative biomaterials and have been used clinically for decades and many have received FDA approval. In this review, we first discuss and compare methods used to produce decellularized tissues and ECMs from cardiac and skeletal muscle. We take a focused look at how different biophysical properties such as spatial topography, extracellular matrix composition, and mechanical characteristics influence cell behavior and function in the context of regenerative medicine. Lastly, we describe emerging research and forecast the future high impact applications of decellularized cardiac and skeletal muscle that will drive novel and effective regenerative therapies.
Collapse
Affiliation(s)
| | | | - Karina H. Nakayama
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
7
|
Reuten R, Mayorca-Guiliani AE, Erler JT. Matritecture: Mapping the extracellular matrix architecture during health and disease. Matrix Biol Plus 2022; 14:100102. [PMID: 35243299 PMCID: PMC8861423 DOI: 10.1016/j.mbplus.2022.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
All cells in multicellular organisms are housed in the extracellular matrix (ECM), an acellular edifice built up by more than a thousand proteins and glycans. Cells engage in a reciprocal relationship with the ECM; they build, inhabit, maintain, and remodel the ECM, while, in turn, the ECM regulates their behavior. The homeostatic balance of cell-ECM interactions can be lost, due to ageing, irritants or diseases, which results in aberrant cell behavior. The ECM can suppress or promote disease progression, depending on the information relayed to cells. Instructions come in the form of biochemical (e.g., composition), biophysical (e.g., stiffness), and topographical (e.g., structure) cues. While advances have been made in many areas, we only have a very limited grasp of ECM topography. A detailed atlas deciphering the spatiotemporal arrangement of all ECM proteins is lacking. We feel that such an extracellular matrix architecture (matritecture) atlas should be a priority goal for ECM research. In this commentary, we will discuss the need to resolve the spatiotemporal matritecture to identify potential disease triggers and therapeutic targets and present strategies to address this goal. Such a detailed matritecture atlas will not only identify disease-specific ECM structures but may also guide future strategies to restructure disease-related ECM patterns reverting to a normal pattern.
Collapse
|