1
|
Doğan G, Kayır S, Ayaz E, Özcan O, Ekici AA. Curcumin as a Potential Therapeutic Agent for Mitigating Carbon Monoxide Poisoning: Evidence from an Experimental Rat Study. Med Sci Monit 2024; 30:e943739. [PMID: 38896554 PMCID: PMC11305075 DOI: 10.12659/msm.943739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Carbon monoxide (CO) is a poisonous gas and causes tissue damage through oxidative stress. We aimed to investigate the protective value of curcumin in CO poisoning. MATERIAL AND METHODS Twenty-four female Spraque Dawley rats were divided into 4 subgroups: controls (n=6), curcumin group (n=6), CO group (n=6), and curcumin+CO group (n=6). The experimental group was exposed to 3 L/min of CO gas at 3000 ppm. Curcumin was administered intraperitoneally at a dosage of 50 mg/kg. Hippocampal tissues were removed and separated for biochemical and immunohistochemical analysis. Tissue malondialdehyde (MDA) levels, nitric oxide (NO) levels, and superoxide dismutase (SOD) and catalase (CAT) activities were assayed spectrophotometrically, and serum asymmetric dimethylarginine (ADMA) were measured using the ELISA technique. Tissue Bcl-2 levels were detected by the immunohistochemistry method. RESULTS Tissue CAT and SOD activities and NO levels were significantly lower, and MDA and serum ADMA levels were higher in the CO group than in the control group (P<0.001). The curcumin+CO group had higher CAT activities (P=0.007) and lower MDA than the CO group (P<0.001) and higher ADMA levels than the control group (P=0.023). However, there was no significant difference observed for tissue SOD activity or NO levels between these 2 groups. In the curcumin+CO group, the Bcl-2 level was higher than that in the CO group (P=0.017). CONCLUSIONS The positive effect of curcumin on CAT activities, together with suppression of MDA levels, has shown that curcumin may have a protective effect against CO poisoning.
Collapse
Affiliation(s)
- Güvenç Doğan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Hitit University, Çorum, Türkiye
| | - Selçuk Kayır
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Hitit University, Çorum, Türkiye
| | - Ercan Ayaz
- Department of Histology and Embryology, Faculty of Medicine, Hitit University, Çorum, Türkiye
| | - Oğuzhan Özcan
- Department of Biochemistry, Faculty of Medicine, Mustafa Kemal University, Hatay, Türkiye
| | - Arzu Akdağlı Ekici
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Hitit University, Çorum, Türkiye
| |
Collapse
|
2
|
Effects of dietary oat supplementation on carcass traits, muscle metabolites, amino acid profiles, and its association with meat quality of Small-tail Han sheep. Food Chem 2023; 411:135456. [PMID: 36669340 DOI: 10.1016/j.foodchem.2023.135456] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/04/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Oat supplementation of the ruminant diet can improve growth performance and meat quality traits, but the role of muscle metabolites has not been evaluated. This study aimed to establish whether oat grass supplementation (OS) of Small-tail Han sheep improved growth performance and muscle tissue metabolites that are associated with better meat quality and flavor. After 90-day, OS fed sheep had higher live-weight and carcass-weight, and lower carcass fat. Muscle metabolomics analysis showed that OS fed sheep had higher levels of taurine, l-carnitine, inosine-5'-monophospgate, cholic acid, and taurocholic acid, which are primarily involved in taurine and hypotaurine metabolism, purine metabolism, and bile acid biosynthesis and secretion, decreased fat accumulation and they promote functional or flavor metabolites. OS also increased muscle levels of amino acids that are attributed to better quality and flavorsome mutton. These findings provided further evidence for supplementing sheep with oat grass to improve growth performance and meat quality.
Collapse
|
3
|
Nascimento TS, Pinto DV, Dias RP, Raposo RS, Nunes PIG, Roque CR, Santos FA, Andrade GM, Viana JL, Fostier AH, Sussulini A, Alvarez-Leite JI, Fontes-Ribeiro C, Malva JO, Oriá RB. Chronic Methylmercury Intoxication Induces Systemic Inflammation, Behavioral, and Hippocampal Amino Acid Changes in C57BL6J Adult Mice. Int J Mol Sci 2022; 23:13837. [PMID: 36430321 PMCID: PMC9697706 DOI: 10.3390/ijms232213837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Methylmercury (MeHg) is highly toxic to the human brain. Although much is known about MeHg neurotoxic effects, less is known about how chronic MeHg affects hippocampal amino acids and other neurochemical markers in adult mice. In this study, we evaluated the MeHg effects on systemic lipids and inflammation, hippocampal oxidative stress, amino acid levels, neuroinflammation, and behavior in adult male mice. Challenged mice received MeHg in drinking water (2 mg/L) for 30 days. We assessed weight gain, total plasma cholesterol (TC), triglycerides (TG), endotoxin, and TNF levels. Hippocampal myeloperoxidase (MPO), malondialdehyde (MDA), acetylcholinesterase (AChE), amino acid levels, and cytokine transcripts were evaluated. Mice underwent open field, object recognition, Y, and Barnes maze tests. MeHg-intoxicated mice had higher weight gain and increased the TG and TC plasma levels. Elevated circulating TNF and LPS confirmed systemic inflammation. Higher levels of MPO and MDA and a reduction in IL-4 transcripts were found in the hippocampus. MeHg-intoxication led to increased GABA and glycine, reduced hippocampal taurine levels, delayed acquisition in the Barnes maze, and poor locomotor activity. No significant changes were found in AChE activity and object recognition. Altogether, our findings highlight chronic MeHg-induced effects that may have long-term mental health consequences in prolonged exposed human populations.
Collapse
Affiliation(s)
- Tyciane S. Nascimento
- Neuroscience and Behavior Laboratory, Drug Research and Development Center, Federal University of Ceará, Fortaleza 60430-275, Brazil
| | - Daniel V. Pinto
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, Brazil
| | - Ronaldo P. Dias
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, Brazil
| | - Ramon S. Raposo
- Experimental Biology Core, Health Sciences Center, University of Fortaleza, Fortaleza 60812-020, Brazil
| | - Paulo Iury G. Nunes
- Natural Products Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, Brazil
| | - Cássia R. Roque
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, Brazil
| | - Flávia A. Santos
- Natural Products Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, Brazil
| | - Geanne M. Andrade
- Neuroscience and Behavior Laboratory, Drug Research and Development Center, Federal University of Ceará, Fortaleza 60430-275, Brazil
| | - José Lucas Viana
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13083-862, Brazil
| | - Anne H. Fostier
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13083-862, Brazil
| | - Alessandra Sussulini
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13083-862, Brazil
| | - Jacqueline I. Alvarez-Leite
- Laboratory of Atherosclerosis and Nutritional Biochemistry, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Carlos Fontes-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Institute of Pharmacology and Experimental Therapeutics and Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - João O. Malva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Institute of Pharmacology and Experimental Therapeutics and Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Reinaldo B. Oriá
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, Brazil
| |
Collapse
|
4
|
Prophylactic Zinc Administration Combined with Swimming Exercise Prevents Cognitive-Emotional Disturbances and Tissue Injury following a Transient Hypoxic-Ischemic Insult in the Rat. Behav Neurol 2022; 2022:5388944. [PMID: 35637877 PMCID: PMC9146809 DOI: 10.1155/2022/5388944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Exercise performance and zinc administration individually yield a protective effect on various neurodegenerative models, including ischemic brain injury. Therefore, this work was aimed at evaluating the combined effect of subacute prophylactic zinc administration and swimming exercise in a transient cerebral ischemia model. The prophylactic zinc administration (2.5 mg/kg of body weight) was provided every 24 h for four days before a 30 min common carotid artery occlusion (CCAO), and 24 h after reperfusion, the rats were subjected to swimming exercise in the Morris Water Maze (MWM). Learning was evaluated daily for five days, and memory on day 12 postreperfusion; anxiety or depression-like behavior was measured by the elevated plus maze and the motor activity by open-field test. Nitrites, lipid peroxidation, and the activity of superoxide dismutase (SOD) and catalase (CAT) were assessed in the temporoparietal cortex and hippocampus. The three nitric oxide (NO) synthase isoforms, chemokines, and their receptor levels were measured by ELISA. Nissl staining evaluated hippocampus cytoarchitecture and Iba-1 immunohistochemistry activated the microglia. Swimming exercise alone could not prevent ischemic damage but, combined with prophylactic zinc administration, reversed the cognitive deficit, decreased NOS and chemokine levels, prevented tissue damage, and increased Iba-1 (+) cell number. These results suggest that the subacute prophylactic zinc administration combined with swimming exercise, but not the individual treatment, prevents the ischemic damage on day 12 postreperfusion in the transient ischemia model.
Collapse
|
5
|
Vargas-Castro V, Gomez-Diaz R, Blanco-Alvarez VM, Tomas-Sanchez C, Gonzalez-Vazquez A, Aguilar-Peralta AK, Gonzalez-Barrios JA, Martinez-Fong D, Eguibar JR, Vivar C, Ugarte A, Soto-Rodriguez G, Brambila E, Millán-Perez-Peña L, Leon-Chavez BA. Long-term taurine administration improves motor skills in a tubulinopathy rat model by decreasing oxidative stress and promoting myelination. Mol Cell Neurosci 2021; 115:103643. [PMID: 34186187 DOI: 10.1016/j.mcn.2021.103643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 11/18/2022] Open
Abstract
The taiep rat undergoes hypomyelination and progressive demyelination caused by an abnormal microtubule accumulation in oligodendrocytes, which elicits neuroinflammation and motor behavior dysfunction. Based on taurine antioxidant and proliferative actions, this work explored whether its sustained administration from the embryonic age to adulthood could prevent neuroinflammation, stimulate cell proliferation, promote myelination, and relieve motor impairment. Taurine (50 mg/L of drinking water = 50 ppm) was given to taiep pregnant rats on gestational day 15 and afterward to the male offspring until eight months of age. We measured the levels of nitric oxide (NO), malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA), CXCL1, CXCR2 receptor, growth factors (BNDF and FGF2), cell proliferation, and myelin content over time. Integral motor behavior was also evaluated. Our results showed that taurine administration significantly decreased NO and MDA + 4-HDA levels, increased cell proliferation, and promoted myelination in an age- and brain region-dependent fashion compared with untreated taiep rats. Taurine effect on chemokines and growth factors was also variable. Taurine improved vestibular reflexes and limb muscular strength in perinatal rats and fine movements and immobility episodes in adult rats. These results show that chronic taurine administration partially alleviates the taiep neuropathology.
Collapse
Affiliation(s)
- Viridiana Vargas-Castro
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico
| | - Ricardo Gomez-Diaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico
| | - Victor M Blanco-Alvarez
- Facultad de Enfermería, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72304, Mexico
| | - Constantino Tomas-Sanchez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico
| | - Alejandro Gonzalez-Vazquez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico
| | - Ana Karina Aguilar-Peralta
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico
| | - Juan A Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional 1° de Octubre, ISSSTE, Mexico City C. P. 07760, Mexico
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, C. P. 07000 Mexico City, Mexico
| | - Jose R Eguibar
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72590, Mexico
| | - Carmen Vivar
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, C. P. 07000 Mexico City, Mexico
| | - Araceli Ugarte
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72590, Mexico
| | - Guadalupe Soto-Rodriguez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72304, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico
| | - Lourdes Millán-Perez-Peña
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico
| | - Bertha Alicia Leon-Chavez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico.
| |
Collapse
|