1
|
Niu N, Miao H, Ren H. Transcriptome Analysis of Myocardial Ischemic-Hypoxic Injury in Rats and Hypoxic H9C2 Cells. ESC Heart Fail 2024; 11:3775-3795. [PMID: 39010664 PMCID: PMC11631282 DOI: 10.1002/ehf2.14903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 07/17/2024] Open
Abstract
AIMS This study aimed to address inconsistencies in results between the H9C2 myocardial hypoxia (MH) cell line and myocardial infarction (MI) rat models used in MI research. We identified differentially expressed genes (DEGs) and underlying molecular mechanisms using RNA sequencing technology. METHODS RNA sequencing was used to analyse DEGs in MI rat tissues and H9C2 cells exposed to hypoxia for 24 h. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to identify key biological processes and pathways. Weighted correlation network analysis [weighted gene co-expression network analysis (WGCNA)] was used to construct gene co-expression networks, and hub genes were compared with published MI datasets [Gene Expression Omnibus (GEO)] for target identification. RESULTS GO analysis revealed enrichment of immune inflammation and mitochondrial respiration processes among 5139 DEGs in MI tissues and 2531 in H9C2 cells. KEGG analysis identified 537 overlapping genes associated with metabolism and oxidative stress pathways. Cross-analyses using the published GSE35088 and GSE47495 datasets identified 40 and 16 overlapping genes, respectively, with nine genes overlapping across all datasets and our models. WGCNA identified a key module in the MI model enriched for mRNA processing and protein binding. GO analysis revealed enrichment of mRNA processing, protein binding and mitochondrial respiratory chain complex I assembly in MI and H9C2 MH models. Five relevant hub genes were identified via a cross-analysis between the 92 hub genes that showed a common expression trend in both models. CONCLUSIONS This study reveals both shared and distinct transcriptomic responses in the MI and H9C2 models, highlighting the importance of model selection for studying myocardial ischaemia and hypoxia.
Collapse
Affiliation(s)
- Nan Niu
- Department of Cardiovascular MedicinePeople's Hospital of Ningxia Hui Autonomous RegionYinchuanChina
| | - Huangtai Miao
- Coronary Heart Disease Center,Beijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Hongmei Ren
- Department of Cardiovascular MedicinePeople's Hospital of Ningxia Hui Autonomous RegionYinchuanChina
| |
Collapse
|
2
|
ÖZTUĞ M, KILINÇ E, ÖZTUĞ DURER ZA, BALOĞLU E. Proteomic investigation of acute and chronic hypoxia/reoxygenation responsive proteins and pathways in H9C2 cardiomyoblasts. Turk J Biol 2024; 48:192-202. [PMID: 39050708 PMCID: PMC11265846 DOI: 10.55730/1300-0152.2695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/26/2024] [Accepted: 04/24/2024] [Indexed: 07/27/2024] Open
Abstract
Background/aim Ischemic heart diseases continue to be a significant global cardiovascular problem in today's world. Myocardial reperfusion (R) is provided with an effective and rapid treatment; however, it can lead to fatal results, as well as ischemia (I). This study aims to use proteomic analysis to assess proteins and pathways in H9C2 cardiomyoblast cells exposed to hypoxic conditions, followed by reoxygenation, representing I/R injury for both short and long terms, reflecting acute and chronic hypoxia, respectively. Utilizing advanced techniques, our goal is to identify and characterize key proteins undergoing alterations during these critical phases. Materials and methods H9C2 cardiomyoblasts, a commonly used cell line for simulating in vivo I/R damage, were exposed to normoxia and hypoxia (0.4% O2) in six experimental groups: normoxia (3h), acute hypoxia (3h), acute hypoxia (3h) + reoxygenation (3h), normoxia (21h), chronic hypoxia (21h), and chronic hypoxia (21h) + reoxygenation (3h). Analyses were conducted using Nano LC/MSMS from tryptic digest of the whole cell lysates. Proteins were quantified using the label-free quantification (LFQ) algorithm in Proteome Discoverer 2.4. Results Proteomic analysis resulted in identification of 2383 protein groups. Proteins that differentially expressed in the various groups were identified (p < 0.05 among mean values for groups). Short-term hypoxia induces mitochondrial damage, energy demand, and cytoskeletal modifications. Chronic hypoxia triggers metabolic shifts, stress-response proteins, and extracellular matrix alterations. Data are available via ProteomeXchange with identifier PXD047994. Conclusion Our research provides in-depth insights into how H9C2 cardiomyoblasts respond to both short-term and prolonged oxygen deprivation. Understanding hypoxia-related pathophysiology provides avenues for therapeutic intervention in hypoxia-related disorders.
Collapse
Affiliation(s)
- Merve ÖZTUĞ
- TÜBİTAK National Metrology Institute (TÜBİTAK UME), Kocaeli,
Turkiye
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul,
Turkiye
| | - Evren KILINÇ
- Department of Biophysics, Hamidiye School of Medicine, University of Health Sciences, İstanbul,
Turkiye
- Department of Biophysics, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, İstanbul,
Turkiye
| | - Zeynep A. ÖZTUĞ DURER
- Department of Biophysics, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, İstanbul,
Turkiye
- Department of Biochemistry, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, İstanbul,
Turkiye
| | - Emel BALOĞLU
- Department of Medical Pharmacology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, İstanbul,
Turkiye
- Department of Medical Pharmacology, School of Medicine, İstanbul Medeniyet University, İstanbul,
Turkiye
| |
Collapse
|
3
|
Thakur MR, Nachane SS, Tupe RS. Alleviation of albumin glycation-induced diabetic cardiomyopathy by L-Arginine: Insights into Nrf-2 signaling. Int J Biol Macromol 2024; 264:130478. [PMID: 38428781 DOI: 10.1016/j.ijbiomac.2024.130478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
In hyperglycemia, accelerated glycation and oxidative stress give rise to many diabetic complications, such as diabetic cardiomyopathy (DCM). Glycated human serum albumin (GHSA) has disturbed structural integrity and hampered functional capabilities. When GHSA accumulates around cardiac cells, Nrf-2 is dysregulated, aiding oxidative stress. L-Arginine (L-Arg) is prescribed to patients with diabetes and cardiovascular diseases. This research contributes to the mechanistic insights on antiglycation and antioxidant potential of L-Arg in alleviating DCM. HSA was glycated with methylglyoxal in the presence of L-Arg (20-640 mM). Structural and functional modifications of HSA were studied. L-Arg and HSA, GHSA interactions, and thermodynamics were determined by steady-state fluorescence. H9c2 cardiomyocytes were given treatments of GHSA-L-Arg along with the inhibitor of the receptor of AGEs. Cellular antioxidant levels, detoxification enzyme activities were measured. Gene, protein expressions, and immunofluorescence data examined the activation and nuclear translocation of Nrf-2 during glycation and oxidative stress. L-Arg protected HSA from glycation-induced structural and functional modifications. The binding affinity of L-Arg was more towards HSA (104 M-1). L-Arg, specifically at lower concentration (20 mM), upregulated Nrf-2 gene, protein expressions and facilitated its nuclear translocation by activating Nrf-2 signaling. The study concluded that L-Arg can be of therapeutic advantage in glycation-induced DCM and associated oxidative stress.
Collapse
Affiliation(s)
- Muskan R Thakur
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra State, India
| | - Sampada S Nachane
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra State, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra State, India.
| |
Collapse
|
4
|
Egorov D, Kopaliani I, Ameln AKV, Speier S, Deussen A. Mechanism of pro-MMP9 activation in co-culture of pro-inflammatory macrophages and cardiomyocytes. Exp Cell Res 2024; 434:113868. [PMID: 38043722 DOI: 10.1016/j.yexcr.2023.113868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVE A wide range of cardiac diseases is associated with inflammation. "Inflamed" heart tissue is infiltrated with pro-inflammatory macrophages which extensively secrete matrix metalloproteinase 9 (MMP9), a regulator of extracellular matrix turnover. As MMP9 is released from macrophages in a latent form, it requires activation. The present study addresses the role of cardiomyocytes in the course of this activation process. METHODS AND RESULTS In mono- and co-cultures of pro-inflammatory rat macrophages (bone marrow-derived and peritoneal) and cardiomyocytes (H9C2 cell line) gelatin zymography demonstrated that activated macrophages robustly secreted latent pro-MMP9, whereas cardiomyocytes could not produce the enzyme. Co-culturing of the two cell species was critical for pro-MMP9 activation and was also accompanied by processing of cardiomyocyte-secreted pro-MMP2. A cascade of pro-MMP9 activation was initiated on macrophage membrane with pro-MMP2 cleavage. Namely, pro-inflammatory macrophages expressed an active membrane type 1 MMP (MT1MMP), which activated pro-MMP2, which in turn converted pro-MMP9. Downregulation of MT1MMP in macrophages by siRNA abolished activation of both pro-MMP2 and pro-MMP9 in co-culture. In addition, both cell species secreted MMP13 as a further pro-MMP9 activator. In co-culture, activation of pro-MMP13 occurred on membranes of macrophages and was enhanced in presence of active MMP2. Using incubations with recombinant MMPs and isolated macrophage membranes, we demonstrated that while both MMP2 and MMP13 individually had the ability to activate pro-MMP9, their combined action provided a synergistic effect. CONCLUSION Activation of pro-MMP9 in a co-culture of pro-inflammatory macrophages and cardiomyocytes was the result of a complex interaction of several MMPs on the cell membrane and in the extracellular space. Both cell types contributed critically to pro-MMP9 processing.
Collapse
Affiliation(s)
- Dmitry Egorov
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Irakli Kopaliani
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anne Klotzsche-von Ameln
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zenrtum München at University Clinic Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Andreas Deussen
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Singhal S, Rani V. Cardioprotective Role of Tinospora cordifolia against Trimethylamine-N-Oxide and Glucose Induced Stress in Rat Cardiomyocytes. Cardiovasc Hematol Agents Med Chem 2024; 22:475-494. [PMID: 37907489 DOI: 10.2174/0118715257270512231013064533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 09/15/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Type 2 diabetes has become a concern issue that affects the quality of life and can increase the risk of cardiac insufficiency elevating the threat to the life safety of patients. A recognized cause of cardiac insufficiency is diabetic cardiomyopathy, chronic hyperglycemia, and myocardial lipotoxicity which can reduce the myocardial contractile performance, and enhance the cardiomyocyte hypertrophy and interstitial fibrosis. The cause of diabetic cardiomyopathy is multi-factorial which includes oxidative stress, insulin resistance, inflammation, apoptosis, and autophagy. Recent clinical studies have suggested the dysbiosis of gut microbiota, secretion of metabolites, and their diffusion in to the host as to have direct detrimental effects on the cardiac contractility. MATERIALS AND METHODS In the present paper, we have done in silico studies including molecular interaction of phytoconstituents of Tinospora cordifolia against reactive oxygen species producing proteins. Whereas, in vitro studies were conducted on H9C2 cardiac cells including cell morphological examination, level of reactive oxygen species, cell count-viability, apoptotic status, in the presence of high glucose, trimethylamine-n-oxide, and plant extracts which were determined through cell analyzer and microscopic assays. RESULTS The treatment of high glucose and trimethylamine-n-oxide was found to be increase the cardiac stress approximately two fold by attenuating hypertrophic conditions, oxidative stress, and apoptosis in rat cardiomyocytes, and Tinospora cordifolia was found to be a cardioprotective agent. CONCLUSION Conclusively, our study has reported that the Indian medicinal plant Tinospora cordifolia has the ability to treat diabetic cardiomyopathy. Our study can open up a new herbal therapeutic strategy against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shivani Singhal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| | - Vibha Rani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| |
Collapse
|
6
|
Liu H, Huang Y, Huang M, Wang M, Ming Y, Chen W, Chen Y, Tang Z, Jia B. From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease. Eur J Med Res 2023; 28:425. [PMID: 37821966 PMCID: PMC10566198 DOI: 10.1186/s40001-023-01413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3-) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional L-arginine-NO synthase (L-NOS) pathway, whereas endogenous NO production by L-arginine is inhibited under hypoxia-ischemia or disease conditions. In contrast, exogenous NO3-/NO2-/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3-/NO2-/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3-/NO2-/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Moneo-Corcuera D, Viedma-Poyatos Á, Stamatakis K, Pérez-Sala D. Desmin Reorganization by Stimuli Inducing Oxidative Stress and Electrophiles: Role of Its Single Cysteine Residue. Antioxidants (Basel) 2023; 12:1703. [PMID: 37760006 PMCID: PMC10525603 DOI: 10.3390/antiox12091703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
The type III intermediate filament proteins vimentin and GFAP are modulated by oxidants and electrophiles, mainly through perturbation of their single cysteine residues. Desmin, the type III intermediate filament protein specific to muscle cells, is critical for muscle homeostasis, playing a key role in sarcomere organization and mitochondrial function. Here, we have studied the impact of oxidants and cysteine-reactive agents on desmin behavior. Our results show that several reactive species and drugs induce covalent modifications of desmin in vitro, of which its single cysteine residue, C333, is an important target. Moreover, stimuli eliciting oxidative stress or lipoxidation, including H2O2, 15-deoxy-prostaglandin J2, and CoCl2-elicited chemical hypoxia, provoke desmin disorganization in H9c2 rat cardiomyoblasts transfected with wild-type desmin, which is partially attenuated in cells expressing a C333S mutant. Notably, in cells lacking other cytoplasmic intermediate filaments, network formation by desmin C333S appears less efficient than that of desmin wt, especially when these proteins are expressed as fluorescent fusion constructs. Nevertheless, in these cells, the desmin C333S organization is also protected from disruption by oxidants. Taken together, our results indicate that desmin is a target for oxidative and electrophilic stress, which elicit desmin remodeling conditioned by the presence of its single cysteine residue.
Collapse
Affiliation(s)
- Diego Moneo-Corcuera
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (D.M.-C.); (Á.V.-P.)
| | - Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (D.M.-C.); (Á.V.-P.)
| | - Konstantinos Stamatakis
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
- Centro de Biología Molecular Severo Ochoa (UAM/CSIC), 28049 Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (D.M.-C.); (Á.V.-P.)
| |
Collapse
|
8
|
Protective Effect of Resveratrol against Hypoxia-Induced Neural Oxidative Stress. J Pers Med 2022; 12:jpm12081202. [PMID: 35893296 PMCID: PMC9330416 DOI: 10.3390/jpm12081202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress plays an important role in brain aging and in neurodegenerative diseases. New therapeutic agents are necessary to cross the blood–brain barrier and target disease pathogenesis without causing disagreeable side effects. Resveratrol (RSV) may act as a neuroprotective compound, but little is known about its potential in improving the cognitive and metabolic aspects that are associated with neurodegenerative diseases. The objective of this study was to investigate the protective effects and the underlying mechanisms of RSV against hypoxia-induced oxidative stress in neuronal PC12 cells. For the induction of the hypoxia model, the cells were exposed to oxygen-deprived gas in a hypoxic chamber. Cell cycle and apoptosis were analyzed by a fluorescence activated cell sorting (FACS) analysis. The intracellular reactive oxygen species (ROS) level was analyzed by using dichlorodihydrofluorescein diacetate (DCFDA) and 5-(and-6)-chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) tests. The expression of activated caspase-3, -9, Bcl-2, Bax, p53, and SOD was investigated by a Western blot analysis. We found that hypoxia reduced PC12 viability by inducing apoptosis, while RSV treatment attenuated the ROS-induced damage by reducing caspase-3, -9, and the Bax/Bcl-2 ratio. The RSV treated groups were found to improve cellular health, with a 7.41% increase in the S phase population in the 10 µM group, compared to the control. Hence, RSV has a protective effect in neuronal cells and may halt the cell cycle in the G1/S phase to repair the intracellular damage. Therefore, RSV could be a good candidate to act as an antioxidant and promising preventive therapeutic agent in neurodegenerative diseases for personalized medicine.
Collapse
|