1
|
Nisco A, Tolomeo M, Scalise M, Zanier K, Barile M. Exploring the impact of flavin homeostasis on cancer cell metabolism. Biochim Biophys Acta Rev Cancer 2024; 1879:189149. [PMID: 38971209 DOI: 10.1016/j.bbcan.2024.189149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Flavins and their associated proteins have recently emerged as compelling players in the landscape of cancer biology. Flavins, encompassing flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), serve as coenzymes in a multitude of cellular processes, such as metabolism, apoptosis, and cell proliferation. Their involvement in oxidative phosphorylation, redox homeostasis, and enzymatic reactions has long been recognized. However, recent research has unveiled an extended role for flavins in the context of cancer. In parallel, riboflavin transporters (RFVTs), FAD synthase (FADS), and riboflavin kinase (RFK) have gained prominence in cancer research. These proteins, responsible for riboflavin uptake, FAD biosynthesis, and FMN generation, are integral components of the cellular machinery that governs flavin homeostasis. Dysregulation in the expression/function of these proteins has been associated with various cancers, underscoring their potential as diagnostic markers, therapeutic targets, and key determinants of cancer cell behavior. This review embarks on a comprehensive exploration of the multifaceted role of flavins and of the flavoproteins involved in nucleus-mitochondria crosstalk in cancer. We journey through the influence of flavins on cancer cell energetics, the modulation of RFVTs in malignant transformation, the diagnostic and prognostic significance of FADS, and the implications of RFK in drug resistance and apoptosis. This review also underscores the potential of these molecules and processes as targets for novel diagnostic and therapeutic strategies, offering new avenues for the battle against this relentless disease.
Collapse
Affiliation(s)
- Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy; Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Katia Zanier
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR 7242), Ecole Superieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy.
| |
Collapse
|
2
|
Leo G, Leone P, Ataie Kachoie E, Tolomeo M, Galluccio M, Indiveri C, Barile M, Capaldi S. Structural insights into the bifunctional enzyme human FAD synthase. Structure 2024; 32:953-965.e5. [PMID: 38688286 DOI: 10.1016/j.str.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Human flavin adenine dinucleotide synthase (hFADS) is a bifunctional, multi-domain enzyme that exhibits both flavin mononucleotide adenylyltransferase and pyrophosphatase activities. Here we report the crystal structure of full-length hFADS2 and its C-terminal PAPS domain in complex with flavin adenine dinucleotide (FAD), and dissect the structural determinants underlying the contribution of each individual domain, within isoforms 1 and 2, to each of the two enzymatic activities. Structural and functional characterization performed on complete or truncated constructs confirmed that the C-terminal domain tightly binds FAD and catalyzes its synthesis, while the combination of the N-terminal molybdopterin-binding and KH domains is the minimal essential substructure required for the hydrolysis of FAD and other ADP-containing dinucleotides. hFADS2 associates in a stable C2-symmetric dimer, in which the packing of the KH domain of one protomer against the N-terminal domain of the other creates the adenosine-specific active site responsible for the hydrolytic activity.
Collapse
Affiliation(s)
- Giulia Leo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnology and Environment, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Elham Ataie Kachoie
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari, via Orabona 4, 70126 Bari, Italy; Department of Biology, Ecology and Earth Sciences (DiBEST), Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, via P. Bucci 4c, 6c, 87036 Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department of Biology, Ecology and Earth Sciences (DiBEST), Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, via P. Bucci 4c, 6c, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department of Biology, Ecology and Earth Sciences (DiBEST), Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, via P. Bucci 4c, 6c, 87036 Arcavacata di Rende, Italy; National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), via Amendola 122/O, 70126 Bari, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnology and Environment, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Stefano Capaldi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
3
|
Larraga-Urdaz AL, Moreira-Álvarez B, Encinar JR, Costa-Fernández JM, Fernández-Sánchez ML. A plasmonic MNAzyme signal amplification strategy for quantification of miRNA-4739 breast cancer biomarker. Anal Chim Acta 2024; 1285:341999. [PMID: 38057053 DOI: 10.1016/j.aca.2023.341999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
A major challenge in the 21st century is the development of point-of-care diagnostic tools capable to detect and quantify disease biomarkers in a straightforward, affordable, sensitive, and specific manner. The remarkable plasmonic properties of gold nanoparticles (AuNPs) have promoted their use for development of simple methodologies for nucleic acid detection in combination with a variety of oligonucleotides amplification techniques. Here, assemblies of AuNPs with Multicomponent Nucleic Acid enzymes (MNAzymes) has been successfully used in the design of a highly sensitive and simple bioassay for rapid spectroscopic detection and quantification of miRNA-4739 in blood samples. The miRNA selected is a doxorubicin chemoresistant biomarker in breast cancer which overexpression promotes the proliferation, progression, and survival of cancer cells. In this work, two alternatives experimental designs, based on use of MNAzymes and AuNPs, have been optimized and applied for sensitive miRNA-4739 quantification: one based on a traditional direct measurement of wavelength shift and a second non-conventional simple approach based on isolation and measurement of free nanoparticles absorbance. Improvement in sensitivity and, higher measurement accuracy and precision were achieved with the second approach. The developed bioassay provides a detection limit as low as 7 pmolL-1 for miRNA-4739 quantification and performed satisfactory selectivity and well practical applicability by analysis of the miRNA-4739 in blood, demonstrating that the proposed strategy is a promising and suitable spectroscopic method for breast cancer diagnosis thought liquid biopsy of circulating tumoral cells.
Collapse
Affiliation(s)
- Andrea L Larraga-Urdaz
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, Oviedo 33006, Spain
| | - Borja Moreira-Álvarez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, Oviedo 33006, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, Oviedo 33006, Spain
| | - José M Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, Oviedo 33006, Spain.
| | - María Luisa Fernández-Sánchez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, Oviedo 33006, Spain.
| |
Collapse
|
4
|
Nisco A, Carvalho TMA, Tolomeo M, Di Molfetta D, Leone P, Galluccio M, Medina M, Indiveri C, Reshkin SJ, Cardone RA, Barile M. Increased demand for FAD synthesis in differentiated and stem pancreatic cancer cells is accomplished by modulating FLAD1 gene expression: the inhibitory effect of Chicago Sky Blue. FEBS J 2023; 290:4679-4694. [PMID: 37254652 DOI: 10.1111/febs.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
FLAD1, along with its FAD synthase (FADS, EC 2.7.7.2) product, is crucial for flavin homeostasis and, due to its role in the mitochondrial respiratory chain and nuclear epigenetics, is closely related to cellular metabolism. Therefore, it is not surprising that it could be correlated with cancer. To our knowledge, no previous study has investigated FLAD1 prognostic significance in pancreatic ductal adenocarcinoma (PDAC). Thus, in the present work, the FAD synthesis process was evaluated in two PDAC cell lines: (a) PANC-1- and PANC-1-derived cancer stem cells (CSCs), presenting the R273H mutation in the oncosuppressor p53, and (b) MiaPaca2 and MiaPaca2-derived CSCs, presenting the R248W mutation in p53. As a control, HPDE cells expressing wt-p53 were used. FADS expression/activity increase was found with malignancy and even more with stemness. An increased FAD synthesis rate in cancer cell lines is presumably demanded by the increase in the FAD-dependent lysine demethylase 1 protein amount as well as by the increased expression levels of the flavoprotein subunit of complex II of the mitochondrial respiratory chain, namely succinate dehydrogenase. With the aim of proposing FADS as a novel target for cancer therapy, the inhibitory effect of Chicago Sky Blue on FADS enzymatic activity was tested on the recombinant 6His-hFADS2 (IC50 = 1.2 μm) and PANC-1-derived CSCs' lysate (IC50 = 2-10 μm). This molecule was found effective in inhibiting the growth of PANC-1 and even more of its derived CSC line, thus assessing its role as a potential chemotherapeutic drug.
Collapse
Affiliation(s)
- Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Tiago M A Carvalho
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Michele Galluccio
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), University of Zaragoza, Spain
| | - Cesare Indiveri
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| |
Collapse
|
5
|
Kim SH, Joung JY, Park WS, Park J, Lee JS, Park B, Hong D. OGT and FLAD1 Genes Had Significant Prognostic Roles in Progressive Pathogenesis in Prostate Cancer. World J Mens Health 2023:41.e30. [PMID: 36792093 DOI: 10.5534/wjmh.220231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 02/17/2023] Open
Abstract
PURPOSE This study aimed to identify metabolic genes associated with non-metastatic prostate cancer progression using The Cancer Genome Atlas (TCGA) datasets and validate their prognostic role by assessing patients' immunohistochemical prostatectomy specimens. MATERIALS AND METHODS Several metabolic candidate genes analyzed were highly correlated with cancer progression to biochemical recurrence (BCR) and deaths in 335 patients' genetic information from TCGA datasets. Those candidate genes and their expressions in tissue specimens were validated retrospectively by immunohistochemical analysis of radical prostatectomy specimens collected from 514 consecutive patients with non-metastatic prostate cancer between 2000 and 2015. The Cox proportional-hazards model was used to predict the prognostic role of each candidate gene expression in BCR and survival prognoses with a statistical significance of p-value <0.05. Twenty metabolic genes were identified by own developed software (Targa; https://github.com/cgab-ncc/TarGA), whose median expression levels consistently increased with cancer progression to the BCR and deaths. RESULTS Five metabolic genes (MAT2A, FLAD1, UGDH, OGT, and RRM2) were found to be significantly involved in the overall survival in the TCGA dataset. The immunohistochemical validation and clinicopathological data showed that OGT (hazard ratio [HR], 1.002; 95% confidence interval [CI], 1.001-1.003) and FLAD1 (HR, 1.010; 95% CI, 1.003-1.017) remained significant factors for BCR and cancer-specific survival, respectively, in the multivariate analysis even after adjusting for confounding clinicopathological parameters (p<0.05). CONCLUSIONS OGT and FLAD1 showed significant prognostic factors of disease progression, even after adjustment for confounding clinicopathological parameters in non-metastatic prostate cancer.
Collapse
Affiliation(s)
- Sung Han Kim
- Department of Urology, Center for Urological Cancer, National Cancer Center, Goyang, Korea
| | - Jae Young Joung
- Department of Urology, Center for Urological Cancer, National Cancer Center, Goyang, Korea
| | - Weon Seo Park
- Department of Pathology, National Cancer Center, Goyang, Korea
| | - Jongkeun Park
- Department of Medical Informatics, College of Medicine, The Catholic University, Seoul, Korea.,Research Institute, National Cancer Center, Goyang, Korea
| | - Jin Seok Lee
- Department of Medical Informatics, College of Medicine, The Catholic University, Seoul, Korea.,Research Institute, National Cancer Center, Goyang, Korea.,Department of Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Boram Park
- Research Institute, National Cancer Center, Goyang, Korea.,Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Dongwan Hong
- Department of Medical Informatics, College of Medicine, The Catholic University, Seoul, Korea.,Research Institute, National Cancer Center, Goyang, Korea.,Precision Medicine Research Center, College of Medicine, The Catholic University, Seoul, Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University, Seoul, Korea.
| |
Collapse
|