1
|
He Q, Wan S, Jiang M, Li W, Zhang Y, Zhang L, Wu M, Lin J, Zou L, Hu Y. Exploring the therapeutic potential of tonic Chinese herbal medicine for gynecological disorders: An updated review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118144. [PMID: 38583732 DOI: 10.1016/j.jep.2024.118144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynecological disorders have the characteristics of high incidence and recurrence rate, which sorely affects female's health. Since ancient times, traditional Chinese medicine (TCM), especially tonic medicine (TM), has been used to deal with gynecological disorders and has unique advantages in effectiveness and safety. AIM OF THE REVIEW In this article, we aim to summarize the research progress of TMs in-vivo and in-vitro, including their formulas, single herbs, and compounds, for gynecological disorders treatment in recent years, and to offer a reference for further research on the treatment of gynecological disorders and their clinical application in the treatment of TMs. MATERIALS AND METHODS Relevant information on the therapeutic potential of TMs against gynecological disorders was collected from several scientific databases including Web of Science, PubMed, CNKI, Google Scholar and other literature sources. RESULTS So far, there are 46 different formulas, 3 single herbs, and 24 compounds used in the treatment of various gynecological disorders such as premature ovarian failure, endometriosis breast cancer, and so on. Many experimental results have shown that TMs can regulate apoptosis, invasion, migration, oxidative stress, and the immune system. In addition, the effect of TMs in gynecological disorders treatment may be due to the regulation of VEGF, PI3K-AKT, MAPK, NF-κB, and other signaling pathways. Apparently, TMs play an active role in the treatment of gynecological disorders by regulating these signaling pathways. CONCLUSION TMs have a curative effect on the prevention and treatment of gynecological disorders. It could relieve and treat gynecological disorders through a variety of pathways. Therefore, the appropriate TM treatment program makes it more possible to treat gynecological disorders.
Collapse
Affiliation(s)
- Qizhi He
- School of Pharmacy, Zunyi Medical University, Guizhou, China; School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Shun Wan
- Hunan University of Chinese Medicine, Changsha, China
| | - Mingli Jiang
- School of Pharmacy, Zunyi Medical University, Guizhou, China
| | - Wei Li
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Yan Zhang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Lele Zhang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Mengyao Wu
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Jie Lin
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Liang Zou
- School of Pharmacy, Zunyi Medical University, Guizhou, China; Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China.
| | - Yingfan Hu
- School of Preclinical Medicine, Chengdu University, Chengdu, China.
| |
Collapse
|
2
|
Mouithys-Mickalad A, Etsè KS, Franck T, Ceusters J, Niesten A, Graide H, Deby-Dupont G, Sandersen C, Serteyn D. Free Radical Inhibition Using a Water-Soluble Curcumin Complex, NDS27: Mechanism Study Using EPR, Chemiluminescence, and Docking. Antioxidants (Basel) 2024; 13:80. [PMID: 38247504 PMCID: PMC10812671 DOI: 10.3390/antiox13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
There is a growing interest in the use of natural compounds to tackle inflammatory diseases and cancers. However, most of them face the bioavailability and solubility challenges to reaching cellular compartments and exert their potential biological effects. Polyphenols belong to that class of molecules, and numerous efforts have been made to improve and overcome these problems. Curcumin is widely studied for its antioxidant and anti-inflammatory properties as well as its use as an anticancer agent. However, its poor solubility and bioavailability are often a source of concern with disappointing or unexpected results in cellular models or in vivo, which limits the clinical use of curcumin as such. Beside nanoparticles and liposomes, cyclodextrins are one of the best candidates to improve the solubility of these molecules. We have used lysine and cyclodextrin to form a water-soluble curcumin complex, named NDS27, in which potential anti-inflammatory effects were demonstrated in cellular and in vivo models. Herein, we investigated for the first time its direct free radicals scavenging activity on DPPH/ABTS assays as well as on hydroxyl, superoxide anion, and peroxyl radical species. The ability of NDS27 to quench singlet oxygen, produced by rose bengal photosensitization, was studied, as was the inhibiting effect on the enzyme-catalyzed oxidation of the co-substrate, luminol analog (L012), using horseradish peroxidase (HRP)/hydrogen peroxide (H2O2) system. Finally, docking was performed to study the behavior of NDS27 in the active site of the peroxidase enzyme.
Collapse
Affiliation(s)
- Ange Mouithys-Mickalad
- Centre for Oxygen R&D (CORD)-CIRM, Institute of Chemistry, University of Liège, Allée de la Chimie, 3, 4000 Liège, Belgium; (T.F.); (J.C.); (A.N.); (G.D.-D.); (D.S.)
| | - Koffi Senam Etsè
- Laboratory of Medicinal Analytic (CIRM), University of Liège, Hospital Quarter, 15 Hospital Avenue, 4000 Liège, Belgium;
| | - Thierry Franck
- Centre for Oxygen R&D (CORD)-CIRM, Institute of Chemistry, University of Liège, Allée de la Chimie, 3, 4000 Liège, Belgium; (T.F.); (J.C.); (A.N.); (G.D.-D.); (D.S.)
- Veterinary Clinic, Large Animal Surgery, B32, Boulevard du Rectorat, 4000 Liège, Belgium;
| | - Justine Ceusters
- Centre for Oxygen R&D (CORD)-CIRM, Institute of Chemistry, University of Liège, Allée de la Chimie, 3, 4000 Liège, Belgium; (T.F.); (J.C.); (A.N.); (G.D.-D.); (D.S.)
| | - Ariane Niesten
- Centre for Oxygen R&D (CORD)-CIRM, Institute of Chemistry, University of Liège, Allée de la Chimie, 3, 4000 Liège, Belgium; (T.F.); (J.C.); (A.N.); (G.D.-D.); (D.S.)
| | - Hélène Graide
- Centre for Oxygen R&D (CORD)-CIRM, Institute of Chemistry, University of Liège, Allée de la Chimie, 3, 4000 Liège, Belgium; (T.F.); (J.C.); (A.N.); (G.D.-D.); (D.S.)
| | - Ginette Deby-Dupont
- Centre for Oxygen R&D (CORD)-CIRM, Institute of Chemistry, University of Liège, Allée de la Chimie, 3, 4000 Liège, Belgium; (T.F.); (J.C.); (A.N.); (G.D.-D.); (D.S.)
| | - Charlotte Sandersen
- Veterinary Clinic, Large Animal Surgery, B32, Boulevard du Rectorat, 4000 Liège, Belgium;
| | - Didier Serteyn
- Centre for Oxygen R&D (CORD)-CIRM, Institute of Chemistry, University of Liège, Allée de la Chimie, 3, 4000 Liège, Belgium; (T.F.); (J.C.); (A.N.); (G.D.-D.); (D.S.)
- Veterinary Clinic, Large Animal Surgery, B32, Boulevard du Rectorat, 4000 Liège, Belgium;
| |
Collapse
|
3
|
Lv L, Shi Y, Deng Z, Xu J, Ye Z, He J, Chen G, Yu X, Wu J, Huang X, Li G. A polymeric nanocarrier that eradicates breast cancer stem cells and delivers chemotherapeutic drugs. Biomater Res 2023; 27:133. [PMID: 38102651 PMCID: PMC10722842 DOI: 10.1186/s40824-023-00465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Drug nanocarriers can markedly reduce the toxicities and side effects of encapsulated chemotherapeutic drugs in the clinic. However, these drug nanocarriers have little effect on eradicating breast cancer stem cells (BCSCs). Although compounds that can inhibit BCSCs have been reported, these compounds are difficult to use as carriers for the widespread delivery of conventional chemotherapeutic drugs. METHODS Herein, we synthesize a polymeric nanocarrier, hyaluronic acid-block-poly (curcumin-dithiodipropionic acid) (HA-b-PCDA), and explore the use of HA-b-PCDA to simultaneously deliver chemotherapeutic drugs and eradicate BCSCs. RESULTS Based on molecular docking and molecular dynamics studies, HA-b-PCDA delivers 35 clinical chemotherapeutic drugs. To further verify the drug deliver ability of HA-b-PCDA, doxorubicin, paclitaxel, docetaxel, gemcitabine and camptothecin are employed as model drugs to prepare nanoparticles. These drug-loaded HA-b-PCDA nanoparticles significantly inhibit the proliferation and stemness of BCSC-enriched 4T1 mammospheres. Moreover, doxorubicin-loaded HA-b-PCDA nanoparticles efficiently inhibit tumor growth and eradicate approximately 95% of BCSCs fraction in vivo. Finally, HA-b-PCDA eradicates BCSCs by activating Hippo and inhibiting the JAK2/STAT3 pathway. CONCLUSION HA-b-PCDA is a polymeric nanocarrier that eradicates BCSCs and potentially delivers numerous clinical chemotherapeutic drugs.
Collapse
Affiliation(s)
- Li Lv
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Yonghui Shi
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Zhicheng Deng
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, 516600, China
| | - Jiajia Xu
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zicong Ye
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Jianxiong He
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Guanghui Chen
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Xiaoxia Yu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Junyan Wu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.
| | - Xingzhen Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Guocheng Li
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, 516600, China.
| |
Collapse
|
4
|
Song Z, Song K, Zhao H, He Y, Hu J. Network analysis and experimental approach to investigate the potential therapeutic mechanism of zishen yutai pills on premature ovarian insufficiency. Heliyon 2023; 9:e20025. [PMID: 37809603 PMCID: PMC10559743 DOI: 10.1016/j.heliyon.2023.e20025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Background As society continues to develop, women are more at risk of gonadotoxic substance exposure. Consequently, the incidence of premature ovarian insufficiency (POI) has increased significantly in the past decades. Hormone replacement therapy (HRT) is recommended as the standard treatment to relieve hypoestrogenic symptoms; however, its potential side effects and contraindications have drawn widespread controversy and concern. As such, the Chinese medicine Zishen Yutai Pill (ZSYTP) commonly used for treating miscarriage and menoxenia, is a highly promising alternative drug candidate against POI, however its therapeutic mechanism has not been completely elucidated. Objective To systematically analyze the potential therapeutic targets of ZSYTP on POI, we combined network pharmacology analysis and molecular docking to predict critical target genes, with experimental validation on POI murine models. Methods The active compounds of ZSYTP were collected from three online databases, and the candidate targets were predicted based on the chemical structure. The POI-related targets were obtained from four databases. A PPI network was constructed to find the key target genes between ZSYTP and POI, while GO and KEGG enrichment analyses were employed to study the mechanism of ZSYTP against POI. The binding capability of the key co-targets with active components was examined by molecular docking. We used a cyclophosphamide (CTX)-inducible POI mouse model to verify our predictions by histopathological observation, immunohistochemical staining (caspase-3, TUNEL assay), hormone determination (FSH, AMH) and ribonucleic acid sequencing (RNA Seq). Progynova was also used to study the difference between ZSYTP and HRT. Result We identified 21 target genes as the hub between ZSYTP and POI. The GO and KEGG analyses revealed that the molecular mechanism of ZSYTP against POI were mainly based on the regulation of gene and protein expression. A variety of signaling pathways may be involved in the treatment of ZSYTP against POI, especially PI3K-AKT, HIF-1 and the AGE-RAGE cascades. Docking simulation showed that G1, C1, SR5, and F1 had relatively lower binding energy. In vivo, ZSYTP significantly reversed CTX-induced ovarian damage in follicle number, hormone level and apoptosis, with an overall improved therapeutic effect compared to Progynova. Results from RNA-Seq revealed that the PI3K-AKT, Hippo, AGE-RAGE, and Rap1 signaling pathways and regulation of inflammation, immune response, and lipid metabolism may mediate the protective effects of ZSYTP against POI, which is different than Progynova's mechanism of action. Conclusions Collectively, this study indicates that ZSYTP could be a highly promising alternative as a non-HRT-based therapy for POI. Its mechanism involves multiple signaling pathways, alleviating ovarian apoptosis and recovering AMH and FSH level. However, the discrepancy between different research techniques highlight the necessity of further experimental verification from other aspects such as translation and posttranslational modification.
Collapse
Affiliation(s)
- Zifan Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kuangyu Song
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Hongru Zhao
- Department of Microbiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Yuanqiao He
- Center of Laboratory Animal Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Laboratory Animal, Nanchang, Jiangxi, 330031, PR China
- Nanchang Royo Biotech Co,. Ltd, Nanchang, Jiangxi, China
| | - Jia Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Wu S, Huang Q, Sheng F, Zhang L, Zou L, Yang L, Cao J, Pang X, Ning N, Li P. Identification of potential quality markers of Zishen Yutai pill based on spectrum-effect relationship analysis. Front Pharmacol 2023; 14:1211304. [PMID: 37397490 PMCID: PMC10311498 DOI: 10.3389/fphar.2023.1211304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: The current quality evaluation of traditional Chinese medicine (TCM) is difficult to attribute to clinical efficacy due to the complexity of TCM. Zishen Yutai pill (ZYP), a well-known traditional Chinese patent medicine, has been widely used to prevent recurrent miscarriage and treat threatened abortion. However, the chemical components of ZYP are unknown, and there is no convincing quality control method applied on ZYP. Although ZYP has been found to promote endometrial receptivity and treat impending abortion, the substantial basis of the therapeutic effects is unclear. The aim of this study was to clarify the quality markers correlated with the potential medicinal activities and provide a theoretical foundation for scientific quality control and product quality improvement of ZYP. Methods: The chemical constituents of ZYP were comprehensively analyzed by offline two-dimensional liquid chromatography-mass spectrometry (2DLC-LTQ-Orbitrap-MS). The efficacy of the 27 ZYP orthogonal groups was investigated using the HTR-8/SVneo oxidative damage model and migration model in vitro, as well as the endometrial receptivity disorder mouse model and premature ovarian failure mouse model in vivo. Based on the efficacy and mass spectral results, spectrum-effect relationship analysis was used to identify the chemical components with corresponding pharmacological activities. Results: A total of 589 chemical components were found in ZYP, of which 139 were not identified in the literature. The potential quality markers for ZYP were successfully identified through orthogonal design and spectrum-effect relationship analysis. By combining mass spectrum data and pharmacological results of 27 orthogonal groups, 39 substances were identified as potential quality markers. Conclusion: The approaches used in this study will provide a feasible strategy for the discovery of quality markers with bioactivity and further investigation into the quality evaluation of TCM.
Collapse
Affiliation(s)
- Sijia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qiuling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd., Guangzhou, Guangdong, China
| | - Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Lele Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jiliang Cao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xiufei Pang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd., Guangzhou, Guangdong, China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd., Guangzhou, Guangdong, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
6
|
Zhang C, Yu D, Mei Y, Liu S, Shao H, Sun Q, Lu Q, Hu J, Gu H. Single-cell RNA sequencing of peripheral blood reveals immune cell dysfunction in premature ovarian insufficiency. Front Endocrinol (Lausanne) 2023; 14:1129657. [PMID: 37223018 PMCID: PMC10200870 DOI: 10.3389/fendo.2023.1129657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/30/2023] [Indexed: 05/25/2023] Open
Abstract
Background Premature ovarian insufficiency (POI) is one of the most common causes of female infertility and the etiology is highly heterogeneous. Most cases are idiopathic and the pathogenesis remains unclear. Previous studies proved that the immune system plays a crucial role in POI. However, the precise role of immune system remains unclear. This study aimed to analyze the characteristics of peripheral blood mononuclear cells (PBMC) from patients with POI by single-cell RNA sequencing (scRNA-seq) and to explore the potential involvement of immune response in idiopathic POI. Methods PBMC was collected from three normal subjects and three patients with POI. PBMC was subjected to scRNA-seq to identify cell clusters and differently expressed genes (DEGs). Enrichment analysis and cell-cell communication analysis were performed to explore the most active biological function in the immune cells of patients with POI. Results In total, 22 cell clusters and 10 cell types were identified in the two groups. Compared with normal subjects, the percentage of classical monocytes and NK cells was decreased, the abundance of plasma B cells was increased, and CD4/CD8 ratio was significantly higher in POI. Furthermore, upregulation of IGKC, IFITM1, CD69, JUND and downregulation of LYZ, GNLY, VCAN, and S100A9 were identified, which were enriched in NK cell-mediated cytotoxicity, antigen processing and presentation, and IL-17 signaling pathway. Among them, IGHM and LYZ were respectively the most significantly upregulated and downregulated genes among all cell clusters of POI. The strength of cell-cell communication differed between the healthy subjects and patients with POI, and multiple signaling pathways were assessed. The TNF pathway was found to be unique in POI with classical monocytes being the major target and source of TNF signaling. Conclusions Dysfunction of cellular immunity is related to idiopathic POI. Monocytes, NK cells, and B cells, and their enriched differential genes may play a role in the development of idiopathic POI. These findings provide novel mechanistic insight for understanding the pathogenesis of POI.
Collapse
Affiliation(s)
- Caihong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Dong Yu
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Yue Mei
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Shanrong Liu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Huijing Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qianqian Sun
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiong Lu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jingjing Hu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hang Gu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Li F, Wang Y, Xu M, Hu N, Miao J, Zhao Y, Wang L. Single-nucleus RNA Sequencing reveals the mechanism of cigarette smoke exposure on diminished ovarian reserve in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114093. [PMID: 36116238 DOI: 10.1016/j.ecoenv.2022.114093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The systematic toxicological mechanism of cigarette smoke (CS) on ovarian reserve has not been extensively investigated. Female 8-week-old C57BL/6 mice at peak fertility were exposed to CS or indoor air only for 30 days (100 mice per group) and the effects of CS on ovarian reserve were assessed using Single-Nucleus RNA Sequencing (snRNA-seq). In addition, further biochemical experiments, including immunohistochemical staining, ELISA, immunofluorescence staining, transmission electron microscopy, cell counting kit-8 assay, flow cytometry analysis, senescence-associated β-galactosidase staining, and western blotting, were accomplished to confirm the snRNA-seq results. We identified nine main cell types in adult ovaries and the cell-type-specific differentially expressed genes (DEGs) induced by CS exposure. Western blot results verified that down-regulation of antioxidant genes (Gpx1 and Wnt10b) and the steroid biosynthesis gene (Fdx1) occurred in both ovarian tissue and human granulosa cell-like tumor cell line (KGN cells) after CS exposure. Five percent cigarette smoke extract (CSE) effectively stimulated the production of reactive oxygen species (ROS), DNA damage, cellular senescence and markedly inhibited KGN cell proliferation by inducing G1-phase cell cycle arrest. Moreover, down-regulation of Gja1, Lama1 and the Ferroptosis indicator (Gpx4) in granulosa cells plays a significant role in ultrastructural changes in the ovary induced by CS exposure. These observations suggest that CS exposure impaired ovarian follicle reserve might be caused by REDOX imbalance in granulosa cells. The current study systematically determined the damage caused by CS in mouse ovaries and provides a theoretical basis for early clinical prediction, diagnosis and intervention of CS exposure-associated primary ovarian insufficiency (POI), and is of great significance in improving female reproductive health.
Collapse
Affiliation(s)
- Fang Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Mengting Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Nengyin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Jianing Miao
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Yanhui Zhao
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Lili Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China.
| |
Collapse
|
8
|
Deng Z, Chen G, Shi Y, Lin Y, Ou J, Zhu H, Wu J, Li G, Lv L. Curcumin and its nano-formulations: Defining triple-negative breast cancer targets through network pharmacology, molecular docking, and experimental verification. Front Pharmacol 2022; 13:920514. [PMID: 36003508 PMCID: PMC9393234 DOI: 10.3389/fphar.2022.920514] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 02/03/2023] Open
Abstract
Background: Curcumin (CUR) displays the capability of suppressing the proliferation and metastasis of various cancer cells. However, the effects and underline mechanisms of CUR to treat triple-negative breast cancer (TNBC) have not been systematically elucidated with an appropriate method. Methods: In the present research, a combination method of network pharmacology, molecular docking, and in vitro bio-experiment was used to investigate the pharmacological actions and underline mechanisms of CUR against TNBC. First, common targets of CUR and TNBC were screened via Venny 2.1.0 after potential CUR-related targets and targets of TNBC were got from several public databases. Then, the Gene Ontology (GO) function and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed on the Metascape website, and the network of compound-targets-pathways was constructed via Cytoscape software. Moreover, the network of protein-protein interaction was constructed by the STRING database to screen potential targets. Moreover, molecular docking was applied to affirm the interaction of CUR with the screened top 10 potential targets. Finally, in vitro experiments were used to further verify the effects and mechanisms of CUR and its nano-formulation (CUR-NPs) against TNBC. Results: Forty potential targets of CUR against TNBC were obtained. STAT3, AKT1, TNF, PTGS2, MMP9, EGFR, PPARG, NFE2L2, EP300, and GSK3B were identified as the top 10 targets of CUR against TNBC. In vitro experiment verified that CUR and CUR-NPs could not only restrain the invasion, migration, and proliferation of MDA-MB-231 cells but also induce their apoptosis. In addition, molecular docking demonstrated that CUR could bind spontaneously with the screened top 10 targeted proteins, and a real-time PCR experiment demonstrated that both CUR and CUR-NPs could downregulate the genetic expression levels of the 10 targets. Moreover, according to the CUR-targets-pathways network, PI3K-Akt, EGFR tyrosine kinase inhibitor resistance, JAK-STAT, Foxo, and HIF-1 signaling pathways were identified as the important pathways of CUR effects on TNBC. Among them, the inhibiting effects of CUR and CUR-NPs on the JAK-STAT signaling pathway were further verified by the western blot analysis. Conclusion: Taken together, the present research demonstrates that CUR and CUR-NPs have pharmacological effects against TNBC via a multi-target and multi-pathway manner.
Collapse
Affiliation(s)
- Zhicheng Deng
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Shenshan Central Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Guanghui Chen
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yonghui Shi
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Lin
- Department of Pharmacy, Zengcheng District People’s Hospital of Guangzhou, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiebin Ou
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hua Zhu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Li Lv, ; Guocheng Li, ; Junyan Wu,
| | - Guocheng Li
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Shenshan Central Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
- *Correspondence: Li Lv, ; Guocheng Li, ; Junyan Wu,
| | - Li Lv
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Li Lv, ; Guocheng Li, ; Junyan Wu,
| |
Collapse
|
9
|
Zhang QL, Lei YL, Deng Y, Ma RL, Ding XS, Xue W, Sun AJ. Treatment Progress in Diminished Ovarian Reserve: Western and Chinese Medicine. Chin J Integr Med 2022; 29:361-367. [PMID: 35015221 DOI: 10.1007/s11655-021-3353-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 11/03/2022]
Abstract
Diminished ovarian reserve (DOR), generally defined as a decreased number or quality of oocytes, has a significant impact on quality of life and fertility in women. In recent years, the incidence of DOR has been increasing and the ages of patients are younger. The search for an effective DOR treatment has emerged as one of the preeminent research topics in reproductive health. An effective DOR therapy would improve ovarian function, fertility, and quality of life in patients. In this review we evaluated DOR treatment progress both in Western medicine and Chinese medicine, and elucidated the characteristics of each treatment.
Collapse
Affiliation(s)
- Qiao-Li Zhang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Ya-Ling Lei
- Department of Encephalopathy, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, 710000, China
| | - Yan Deng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Rui-Lin Ma
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xue-Song Ding
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wei Xue
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ai-Jun Sun
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
10
|
Chen Y, Chai X, Zhao Y, Yang X, Zhong C, Feng Y. Investigation of the Mechanism of Zishen Yutai Pills on Polycystic Ovary Syndrome: A Network Pharmacology and Molecular Docking Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6843828. [PMID: 34956381 PMCID: PMC8702313 DOI: 10.1155/2021/6843828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/30/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Zishen Yutai Pills (ZSYTP) is a prescription based on traditional Chinese medicine used to treat kidney-deficient pattern in traditional Chinese medicine. It is also widely used clinically for the treatment of polycystic ovary syndrome (PCOS) with positive results. This study aims to explore the potential pharmacological mechanism of ZSYTP for the treatment of PCOS by a network pharmacology approach. METHODS Compounds were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine and TCM Database@ Taiwan, and the corresponding targets were retrieved from PubChem, Swiss Target Prediction, STITCH, and DrugBank. Meanwhile, PCOS targets were retrieved from the GeneCards database, the Online Mendelian Inheritance in Man database, National Center for Biotechnology Information Database, and DrugBank. Subsequently, multiple network construction and gene enrichment analyses were conducted with Cytoscape 3.8.2 software. Based on the previous results in the study, molecular docking simulations were done. RESULTS 205 active compounds and 478 ZSYTP target genes were obtained after screening by ADME consideration. 1881 disease-related targets were obtained after removing duplicates. 148 intersection target genes between drug and disease targets were isolated. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes analysis highlighted multiple gene functions and different signaling pathways to treat PCOS. Further molecular docking demonstrated the practicality of in vivo action of ZSYTP to a certain extent. CONCLUSIONS It is possible that the pharmacological effect of ZSYTP on PCOS is linked to the hypoxia-inducible factor 1 (HIF-1) signaling pathway, improving insulin resistance, the variation on gene expression such as RNA splicing, and regulation of mRNA metabolic process. This study paves the way for further research investigating its mechanisms.
Collapse
Affiliation(s)
- Yingyin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinyi Chai
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ying Zhao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinqian Yang
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Caiting Zhong
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yihui Feng
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|