1
|
Ren Y, Zheng J, Cao Y, Zhu Y, Ling Z, Zhang Z, Huang M. Diagnostic significance of LncRNA MIAT in periodontitis and the molecular mechanisms influencing periodontal ligament fibroblasts via the miR-204-5p/DKK1 axis. Arch Oral Biol 2024; 168:106066. [PMID: 39190957 DOI: 10.1016/j.archoralbio.2024.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE This study investigated the clinical importance of long noncoding RNA myocardial infarction-associated transcript (MIAT) in periodontitis and its impact on the functional regulation of human periodontal ligament fibroblasts (hPDLFs). METHODS Ninety-eight periodontitis patients and 74 healthy controls were enrolled. In vitro cellular models were created using Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) to stimulate hPDLFs. Real-time quantitative polymerase chain reaction was used to measure mRNA levels of MIAT and osteogenic factors. Inflammation factor concentration was assessed using an enzyme-linked immunosorbent assay. Cell viability and apoptosis were examined by cell counting kit -8 and flow cytometry assay. The targeting relationship was verified by the dual-luciferase reporter and RNA Immunoprecipitation assay. RESULTS Highly expressed MIAT and Dicckopf-1 (DDK1), and lowly expressed miR-204-5p were found in the gingival crevicular fluid of periodontitis patients and Pg-LPS induced hPDLFs. MIAT has a sensitivity of 76.53 % and a specificity of 86.49 % for identifying patients with periodontitis among healthy individuals. MIAT acts as a sponge for miR-204-5p and upregulates DDK1 mRNA expression. Silencing of MIAT diminished the promotion of apoptosis and inflammation in hPDLFs by Pg-LPS and enhanced osteogenic differentiation. However, a miR-204-5p inhibitor significantly reversed the effect of silenced MIAT. CONCLUSIONS MIAT may act as a promising biomarker for periodontitis. It modulates apoptosis, inflammation, and osteogenic differentiation of PDLFs by focusing on the miR-204-5p/DKK1 axis, indicating its potential as a new therapeutic target for treating periodontitis.
Collapse
Affiliation(s)
- Yu Ren
- Department of stomatology, Dental Well Institute of Temporomandibular Joint Research, Chengdu, China; LESHAN Vocational and Technical College, Leshan, China
| | - Jiwen Zheng
- LESHAN Vocational and Technical College, Leshan, China; Department of stomatology, Leshan Weiduo Dental, Leshan, China
| | - Yang Cao
- Department of stomatology, Leshan Jiajiang Weiduo Dental, Leshan, China
| | - Yu Zhu
- Department of stomatology, Leshan Weiduo Dental, Leshan, China
| | - Zhuo Ling
- Department of stomatology, Dental Well Institute of Temporomandibular Joint Research, Chengdu, China
| | - Zhiqiang Zhang
- Department of stomatology, Dental Well Institute of Temporomandibular Joint Research, Chengdu, China
| | - Mingke Huang
- LESHAN Vocational and Technical College, Leshan, China; Department of stomatology, Leshan Weiduo Dental, Leshan, China.
| |
Collapse
|
2
|
Liu Y, Wu Y, He S. Clinical value of microRNA-130a as a marker of acute liver failure and its involvement in disease development. Hum Immunol 2024; 85:111173. [PMID: 39566434 DOI: 10.1016/j.humimm.2024.111173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
OBJECTIVE This study was to investigate the clinical value of microRNA (miR)-130a in acute liver failure (ALF). METHODS ALF patients (n = 120, ALF group) and 106 healthy subjects (control group) were enrolled. Serum was collected to detect alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) by automatic biochemical analyzer, and miR-130a by real-time fluorescence quantitative PCR. According to the Child-Pugh score, ALF patients could be divided into grades A, B, and C, and levels of ALT, AST, TBIL, and miR-130a in each grade were observed. Pearson correlation coefficient method was employed to analyze the correlation between miR-130a and Child-Pugh scores and liver function indices. ALF patients were divided into high-low miR-130a expression groups, and poor prognoses were observed. The influence of miR-130a on prognosis was analyzed by Kaplan-Meier curve, and the prognostic value of miR-130a was analyzed by the ROC curve. RESULTS miR-130a, ALT, AST, and TBIL were increased in the ALF group. miR-130a, ALT, AST, and TBIL increased with the increase of the Child-Pugh grade. miR-130a levels were positively correlated with ALT, AST, and TBIL levels. The incidence of poor prognoses was 58.33% in the miR-130a high expression group and 30% in the miR-130a low expression group. The prognosis of the miR-130a low expression group was better than that of the miR-130a high expression group, and miR-130a had predictive value for the prognosis of ALF patients. CONCLUSION miR-130a is increased in ALF, and it has high value for both diagnosis and prognosis in ALF patients, and patients with high levels of miR-130a have a poor prognosis.
Collapse
Affiliation(s)
- Yanguo Liu
- Department of Hepatobiliary and Pancreatic Surgery, East Hospital of Yantai Mountain Hospital, Yantai 264000, Shandong Province, China
| | - Yanfang Wu
- Department of Hepatobiliary and Pancreatic Surgery, East Hospital of Yantai Mountain Hospital, Yantai 264000, Shandong Province, China
| | - Shujie He
- Department of Hepatobiliary and Pancreatic Surgery, East Hospital of Yantai Mountain Hospital, Yantai 264000, Shandong Province, China.
| |
Collapse
|
3
|
Stefańska K, Volponi AA, Kulus M, Waśko J, Farzaneh M, Grzelak J, Azizidoost S, Mozdziak P, Bukowska D, Antosik P, Zabel M, Podhorska-Okołów M, Dzięgiel P, Szcześniak M, Woszczyk M, Kempisty B. Dental pulp stem cells - A basic research and future application in regenerative medicine. Biomed Pharmacother 2024; 178:116990. [PMID: 39024839 DOI: 10.1016/j.biopha.2024.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Dental pulp is a valuable and accessible source of stem cells (DPSCs) with characteristics similar to mesenchymal stem cells. DPSCs can regenerate a range of tissues and their potential for clinical application in regenerative medicine is promising. DPSCs have been found to express low levels of Class II HLA-DR (MHC) molecules, making them potential candidates for allogeneic transplantation without matching the donor's tissue. Research on the correlation between non-coding RNAs (ncRNAs) and human dental pulp stem cells (DPSCs) provides promising insights into the use of these cells in clinical settings for a wide range of medical conditions. It is possible to use a number of ncRNAs in order to restore the functional role of downregulated ncRNAs that are correlated with osteoblastogenesis, or to suppress the functional role of overexpressed ncRNAs associated with osteoclast differentiation in some cases.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Cellivia 3 S.A., Poznan 60-529, Poland; Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan 60-781, Poland.
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, London WC2R 2LS, UK.
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | | | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Joanna Grzelak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra 65-046, Poland.
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Marta Szcześniak
- Department of Diagnostics, Poznan University of Medical Sciences, Bukowska 70, Poznań 60-812, Poland; Department of Maxillofacial Surgery, Poznan University of Medical Sciences, Przybyszewskiego 49, Poznań 60-355, Poland.
| | | | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland; Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Zhang L, Sheng M, Cao H, Zhang L, Shao W. Decoding the role of long non-coding RNAs in periodontitis: A comprehensive review. Biomed Pharmacother 2023; 166:115357. [PMID: 37619483 DOI: 10.1016/j.biopha.2023.115357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Periodontitis is an inflammatory disease characterized by the pathological loss of alveolar bone and the adjacent periodontal ligament. It is considered a disease that imposes a substantial health burden, with an incidence rate of 20-50%. The etiology of periodontitis is multifactorial, with genetic factors accounting for approximately half of severe cases. Studies have revealed that long non-coding RNAs (lncRNAs) play a pivotal role in periodontitis pathogenesis. Accumulating evidence suggests that lncRNAs have distinct regulatory mechanisms, enabling them to control numerous vital processes in periodontal cells, including osteogenic differentiation, inflammation, proliferation, apoptosis, and autophagy. In this review, we summarize the diverse roles of lncRNAs in the pathogenesis of periodontitis, shedding light on the underlying mechanisms of disease development. By highlighting the potential of lncRNAs as biomarkers and therapeutic targets, this review offers a new perspective on the diagnosis and treatment of periodontitis, paving the way for further investigation into the field of lncRNA-based therapeutics.
Collapse
Affiliation(s)
- Lizhi Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China; First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Mengfei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Huake Cao
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| | - Wei Shao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China; Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
5
|
lncRNAs dysregulation in monocytes from primary antiphospholipid syndrome patients: a bioinformatic and an experimental proof-of-concept approach. Mol Biol Rep 2023; 50:937-941. [PMID: 36367661 DOI: 10.1007/s11033-022-08080-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Antiphospholipid syndrome (APS) is the main cause of acquired thrombophilia where peripheral circulating cells such as monocytes have a key role. Currently, several studies have linked long non-coding RNAs (lncRNAs) in different inflammatory and autoimmune processes, including lupus. However, the role of lncRNAs in antiphospholipid syndrome is unknown, therefore, we aimed to select and measure expression levels of three lncRNAs based on its abundance in monocytes from APS patients. METHODS Selection of lncRNAs candidates were carried out based on its abundance in monocytes and their relationship with Perez-Sanchez miRNA signature by using miRNet 2.0 bioinformatic tool, then lncRNAs expression levels was measured in monocytes by RT-qPCR. RESULTS This is the first study to report that lncRNAs: FGD5-AS1, OIP5-AS1 and GAS5 are promising candidates for play a role on APS monocytes and they are expressed differently between patients and controls. CONCLUSIONS OIP5-AS1, FGD5-AS1 and GAS5 are downregulated on monocytes from APS patients.
Collapse
|
6
|
Genome- and Transcriptome-Wide Association Studies Identify Susceptibility Genes and Pathways for Periodontitis. Cells 2022; 12:cells12010070. [PMID: 36611863 PMCID: PMC9818314 DOI: 10.3390/cells12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Several genes associated with periodontitis have been identified through genome-wide association studies (GWAS); however, known genes only explain a minority of the estimated heritability. We aimed to explore more susceptibility genes and the underlying mechanisms of periodontitis. Firstly, a genome-wide meta-analysis of 38,532 patients and 316,185 healthy controls was performed. Then, cross- and single-tissue transcriptome-wide association studies (TWAS) were conducted based on GWAS summary statistics and the Genotype-Tissue Expression (GTEx) project. Risk genes were evaluated to determine if they were differentially expressed in periodontitis sites compared with unaffected sites using public datasets. Finally, gene co-expression network analysis was conducted to identify the functional biology of the susceptible genes. A total of eight single nucleotide polymorphisms (SNPs) within the introns of lncRNA LINC02141 approached genome-wide significance after meta-analysis. EZH1 was identified as a novel susceptibility gene for periodontitis by TWAS and was significantly upregulated in periodontitis-affected gingival tissues. EZH1 co-expression genes were greatly enriched in the cell-substrate junction, focal adhesion and other important pathways. Our findings may offer a fundamental clue for comprehending the genetic mechanisms of periodontitis.
Collapse
|
7
|
Wu F, An Y, Zhou L, Zhao Y, Chen L, Wang J, Wu G. Whole-transcriptome sequencing and ceRNA interaction network of temporomandibular joint osteoarthritis. Front Genet 2022; 13:962574. [PMID: 36276964 PMCID: PMC9581126 DOI: 10.3389/fgene.2022.962574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2023] Open
Abstract
Purpose: The aim of this study was to conduct a comprehensive transcriptomic analysis to explore the potential biological functions of noncoding RNA (ncRNAs) in temporomandibular joint osteoarthritis (TMJOA). Methods: Whole transcriptome sequencing was performed to identify differentially expressed genes (DEGs) profiles between the TMJOA and normal groups. The functions and pathways of the DEGs were analyzed using Metascape, and a competitive endogenous RNA (ceRNA) network was constructed using Cytoscape software. Results: A total of 137 DEmRNAs, 65 DEmiRNAs, 132 DElncRNAs, and 29 DEcircRNAs were identified between the TMJOA and normal groups. Functional annotation of the DEmRNAs revealed that immune response and apoptosis are closely related to TMJOA and also suggested key signaling pathways related to TMJOA, including chronic depression and PPAR signaling pathways. We identified vital mRNAs, including Klrk1, Adipoq, Cryab, and Hspa1b. Notably, Adipoq expression in cartilage was significantly upregulated in TMJOA compared with normal groups (10-fold, p < 0.001). According to the functional analysis of DEmRNAs regulated by the ceRNA network, we found that ncRNAs are involved in the regulation of autophagy and apoptosis. In addition, significantly DEncRNAs (lncRNA-COX7A1, lncRNA-CHTOP, lncRNA-UFM1, ciRNA166 and circRNA1531) were verified, and among these, circRNA1531 (14.5-fold, p < 0.001) and lncRNA-CHTOP (14.8-fold, p < 0.001) were the most significantly downregulated ncRNAs. Conclusion: This study showed the potential of lncRNAs, circRNAs, miRNAs, and mRNAs may as clinical biomarkers and provides transcriptomic insights into their functional roles in TMJOA. This study identified the transcriptomic signatures of mRNAs associated with immunity and apoptosis and the signatures of ncRNAs associated with autophagy and apoptosis and provides insight into ncRNAs in TMJOA.
Collapse
Affiliation(s)
- Fan Wu
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
- Department of Implantology, School of Stomatology, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Libo Zhou
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Yuqing Zhao
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, China
| | - Jing Wang
- Department of Implantology, School of Stomatology, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Gaoyi Wu
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| |
Collapse
|
8
|
Huang P, Jia L. MicroRNA-28-5p as a potential diagnostic biomarker for chronic periodontitis and its role in cell proliferation and inflammatory response. J Dent Sci 2022; 17:1501-1509. [PMID: 36299340 PMCID: PMC9588829 DOI: 10.1016/j.jds.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Indexed: 11/28/2022] Open
Abstract
Background/purpose Recent studies have pointed to the crucial role of microRNAs (miRNAs) in chronic periodontitis (CP). This study investigated the regulation and potential mechanisms of miR-28-5p in CP patients and lipopolysaccharide (LPS)-induced periodontal ligament cells (PDLCs). Materials and methods 76 CP patients and 71 periodontally healthy subjects were included. RT-qPCR was employed to examine miR-28-5p and sphingosine kinase −1 (SPHK1) in subjects’ gingival sulcus fluid and PDLCs. The diagnostic performance was evaluated by measuring the area under the curve (AUC) of the receiver operating characteristic (ROC) analysis. Pearson correlation coefficient (r) was adopted to explore the statistical relation between indicators. PDLCs proliferation and inflammation factors were determined by CCK-8 and ELISA assay. The direct target gene was validated by a dual-luciferase reporter assay. Results miR-28-5p was lowly expressed in CP patients and LPS-induced PDLCs (P < 0.05). AUC for miR-28-5p was 0.937, which had certain diagnostic value. Additionally, miR-28-5p was negatively correlated with periodontal clinical indicators and inflammatory factors. Cell proliferation of PDLCs was inhibited and inflammation was promoted under LPS induction, however, elevated miR-28-5p diminished the effect of LPS (P < 0.05). SPHK1 acts as a miR-28-5p target and the elevation of SPHK1 caused by LPS treatment was inhibited by the increased miR-28-5p. Conclusion Present study revealed that miR-28-5p could be served as a potential diagnostic biomarker for CP. And miR-28-5p may participate in CP progression by targeting SPHK1 to regulate the proliferation and inflammation of PDLCs. This study may offer insights into CP treatment and diagnosis.
Collapse
Affiliation(s)
| | - Linghui Jia
- Corresponding author. Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian, 350002, China. Fax: 86 0591 83700838.
| |
Collapse
|