1
|
Chen F, Zhang T, Xiao P, Shao L, Zhang X, Wang L, Ren X, Qin C, Jiao Y. Occurrence and health risk of pesticide residues in Chinese herbal medicines from Shandong Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25940-25951. [PMID: 38491238 DOI: 10.1007/s11356-024-32693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Pesticide residue was one of the stress factors affecting quality and safety of Chinese herbal medicines (CHMs). The present study was designed to investigate the occurrence and dietary exposure of 70 pesticide residues in 307 samples of CHMs, including 104 American ginseng, 100 Ganoderma lucidum (G. lucidum), and 103 Dendrobium officinale (D. officinale) in Shandong Province, China. The study revealed that a total of 29 pesticides were detected in the majority (92.5%) of samples, and the pesticide residues of 85 (27.7%) samples exceeded the maximum residue levels (MRLs). Particularly, the maximum concentration of chlorpyrifos was 23.8 mg kg-1, almost 50 times of the MRLs in food in GB 2763-2021, while there's no standard restrictions specified in CHMs in China. The chronic, acute, and cumulative risk assessment results indicated that risk exposure of the three types of CHMs were unlikely to pose a health risk to consumers. However, more attention should be paid to the multiple residues with the presence of four or more pesticides in one sample and high over-standard rate of pesticides. The pesticide users and the government should pay more attention to the pesticides used in CHMs and regularly monitor the presence of these compounds. The study recommended the MRLs of these pesticides in CHMs should be established and perfected by the relevant departments in China.
Collapse
Affiliation(s)
- Fangfang Chen
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Tianliang Zhang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Peirui Xiao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Lijun Shao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Xinxin Zhang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Lin Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiaofei Ren
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Chuan Qin
- School of Public Health, Shandong University, Jinan, People's Republic of China
| | - Yanni Jiao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China.
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
2
|
Wang Y, Meng Z, Su C, Fan S, Li Y, Liu H, Zhang X, Chen P, Geng Y, Li Q. Rapid Screening of 352 Pesticide Residues in Chrysanthemum Flower by Gas Chromatography Coupled to Quadrupole-Orbitrap Mass Spectrometry with Sin-QuEChERS Nanocolumn Extraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:7684432. [PMID: 35757318 PMCID: PMC9217587 DOI: 10.1155/2022/7684432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
To analyze pesticide residues, GC coupled with quadrupole-Orbitrap MS (GC-Orbitrap-MS) has become a powerful tool because of its unique characteristics of accurate mass full-spectrum acquisition, high resolution, fast acquisition rates, and overcoming matrix interference. This paper presents an efficiency evaluation of GC-Orbitrap-MS for identification and quantitation in the 352 pesticide residues analysis of chrysanthemum flowers in full-scan mode. A streamlined pretreatment approach using one-step extraction and dilution was used, which provided high-throughput processing and excellent recovery. The samples were extracted using acetonitrile. The extracted solution was purified by a Sin-QuEChERS Nano column to suppress the matrix in chrysanthemum flowers and determined by GC-Orbitrap-MS. The calibration curves for the 352 pesticides obtained by GC-Orbitrap-MS were linear in the range of 0.5-200 μg·kg-1, with the correlation coefficients higher than 0.99. The limits of detection (LODs) and the limits of quantification (LOQs) for the 352 pesticide residues were 0.3-3.0 μg·kg-1 and 1.0-10.0 μg·kg-1, respectively. The average recoveries in chrysanthemum flower at three levels were 95.2%, 88.6%, and 95.7%, respectively, with relative standard deviations (RSDs) of 7.1%, 7.5%, and 7.2%, respectively. Lastly, the validated method and retrospective analysis was applied to a total of 200 chrysanthemum flower samples bought in local pharmacies. The proposed method can simultaneously detect multipesticide residues with a good performance in qualitative and quantitative detection.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pharmacology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei, China
| | - Zhijuan Meng
- Hebei Food Inspection and Research Institute, Key Laboratory of Food Safety of Hebei Province, Shijiazhuang, 050091 Hebei, China
| | - Chunyan Su
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei, China
| | - Sufang Fan
- Hebei Food Inspection and Research Institute, Key Laboratory of Food Safety of Hebei Province, Shijiazhuang, 050091 Hebei, China
| | - Yan Li
- Hebei Food Inspection and Research Institute, Key Laboratory of Food Safety of Hebei Province, Shijiazhuang, 050091 Hebei, China
| | - Haiye Liu
- Department of Pharmacology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei, China
| | - Xuan Zhang
- Department of Pharmacology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei, China
| | - Pingping Chen
- Department of Pharmacology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei, China
| | - Yunyun Geng
- Department of Pharmacology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei, China
| | - Qiang Li
- Hebei Food Inspection and Research Institute, Key Laboratory of Food Safety of Hebei Province, Shijiazhuang, 050091 Hebei, China
| |
Collapse
|
3
|
Detection and Risk Assessments of Multi-Pesticides in Traditional Chinese Medicine Chuanxiong Rhizoma by LC/MS-MS and GC/MS-MS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030622. [PMID: 35163887 PMCID: PMC8840347 DOI: 10.3390/molecules27030622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 11/18/2022]
Abstract
With the internationalization of traditional Chinese medicines (TCMs) and the increasing use of herbal medicines around the world, there are concerns over their safety. In recent years, there have been some sporadic reports of pesticide residues in Chuanxiong Rhizoma (CX), although the lack of systematic and comprehensive analyses of pesticide residues and evaluations of toxicological risks in human health has increased the uncertainty of the potential effects of pesticides exposure in humans. This study aimed to clarify the status of pesticide residues and to determine the health risks of pesticide residues in CX. The findings of this study revealed that 99 batches of CX samples contained pesticide residues ranging from 0.05 to 3013.17 μg/kg. Here, 6–22 kinds of pesticides were detected in each sample. Prometryn, carbendazim, dimethomorph, chlorpyrifos, chlorantraniliprole, pyraclostrobin, and paclobutrazol were the most frequently detected pesticides, with detection rates of 68.69–100%. Insecticides and fungicides accounted for 43.23% and 37.84% of the total pesticides detected, respectively. Here, 86.87% of the pesticide content levels were lower than 50 μg/kg, and a small number of samples contained carbofuran, dimethoate, and isofenphos-methyl exceeding the maximum residue levels (MRLs). A risk assessment based on the hazard quotient/hazard index (HQ/HI) approach revealed that the short-term, long-term, and cumulative risks of pesticide residues in CX are well below the levels that may pose a health risk. Worryingly, six banned pesticides (carbofuran, phorate sulfone, phorate-sulfoxide, isofenphos-methyl, terbufos-sulfone, and terbufoxon sulfoxide) were detected. This study has improved our understanding of the potential exposure risk of pesticide multi-residues in CX. The results of the study will have a positive impact on improving the quality and safety of CX and the development of MRLs for pesticide residues.
Collapse
|
4
|
Huang Y, Guo N, Xu C, Xie N, Liang F, Yang S, Lv S. Development and critical evaluation of a novel fluorescent nanosensor based on a molecularly imprinted polymer for the rapid detection of procymidone in ginseng. Analyst 2022; 147:2718-2730. [DOI: 10.1039/d1an02186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effective methods are required to quantify the organochlorine pesticide procymidone due to its potentially harmful effects toward human health and the environment.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Nan Guo
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Chaojian Xu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Ningkang Xie
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Feiyan Liang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Shuo Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| |
Collapse
|