1
|
Humenik F, Vdoviaková K, Krešáková L, Danko J, Giretová M, Medvecký Ľ, Lengyel P, Babík J. The Combination of Chitosan-Based Biomaterial and Cellular Therapy for Successful Treatment of Diabetic Foot-Pilot Study. Int J Mol Sci 2024; 25:8388. [PMID: 39125958 PMCID: PMC11313444 DOI: 10.3390/ijms25158388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetic foot ulceration is one of the most common complications in patients treated for diabetes mellitus. The presented pilot study describes the successful treatment of diabetic ulceration of the heel with ongoing osteomyelitis in a 39-year-old patient after using a combination of modified chitosan-based biomaterial in combination with autologous mesenchymal stem cells isolated from bone marrow and dermal fibroblasts. The isolated population of bone marrow mesenchymal stem cells fulfilled all of the attributes given by the International Society for Stem Cell Research, such as fibroblast-like morphology, the high expression of positive surface markers (CD29: 99.1 ± 0.4%; CD44: 99.8 ± 0.2% and CD90: 98.0 ± 0.6%) and the ability to undergo multilineage differentiation. Likewise, the population of dermal fibroblasts showed high positivity for the widely accepted markers collagen I, collagen III and vimentin, which was confirmed by immunocytochemical staining. Moreover, we were able to describe newly formed blood vessels shown by angio CT and almost complete closure of the skin defect after 8 months of the treatment.
Collapse
Affiliation(s)
- Filip Humenik
- Department of Morphological Sciences, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (K.V.); (L.K.); (J.D.)
| | - Katarína Vdoviaková
- Department of Morphological Sciences, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (K.V.); (L.K.); (J.D.)
| | - Lenka Krešáková
- Department of Morphological Sciences, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (K.V.); (L.K.); (J.D.)
| | - Ján Danko
- Department of Morphological Sciences, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (K.V.); (L.K.); (J.D.)
| | - Mária Giretová
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, 040 01 Košice, Slovakia; (M.G.); (Ľ.M.)
| | - Ľubomír Medvecký
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, 040 01 Košice, Slovakia; (M.G.); (Ľ.M.)
| | - Peter Lengyel
- Clinic of Burns and Reconstructive Medicine, AGEL Hospital, 040 15 Košice-Šaca, Slovakia; (P.L.); (J.B.)
| | - Ján Babík
- Clinic of Burns and Reconstructive Medicine, AGEL Hospital, 040 15 Košice-Šaca, Slovakia; (P.L.); (J.B.)
| |
Collapse
|
2
|
Kang Y, Na J, Karima G, Amirthalingam S, Hwang NS, Kim HD. Mesenchymal Stem Cell Spheroids: A Promising Tool for Vascularized Tissue Regeneration. Tissue Eng Regen Med 2024; 21:673-693. [PMID: 38578424 PMCID: PMC11187036 DOI: 10.1007/s13770-024-00636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are undifferentiated cells that can differentiate into specific cell lineages when exposed to the right conditions. The ability of MSCs to differentiate into particular cells is considered very important in biological research and clinical applications. MSC spheroids are clusters of MSCs cultured in three dimensions, which play an important role in enhancing the proliferation and differentiation of MSCs. MSCs can also participate in vascular formation by differentiating into endothelial cells and secreting paracrine factors. Vascularization ability is essential in impaired tissue repair and function recovery. Therefore, the vascularization ability of MSCs, which enhances angiogenesis and accelerates tissue healing has made MSCs a promising tool for tissue regeneration. However, MSC spheroids are a relatively new research field, and more research is needed to understand their full potential. METHODS In this review, we highlight the importance of MSC spheroids' vascularization ability in tissue engineering and regenerative medicine while providing the current status of studies on the MSC spheroids' vascularization and suggesting potential future research directions for MSC spheroids. RESULTS Studies both in vivo and in vitro have demonstrated MSC spheroids' capacity to develop into endothelial cells and stimulate vasculogenesis. CONCLUSION MSC spheroids show potential to enhance vascularization ability in tissue regeneration. Yet, further research is required to comprehensively understand the relationship between MSC spheroids and vascularization mechanisms.
Collapse
Affiliation(s)
- Yoonjoo Kang
- Department of IT Convergence (Brain Korea Plus 21), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Jinwoo Na
- Department of Polymer Science and Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, 27469, Republic of Korea
| | - Gul Karima
- Department of Polymer Science and Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, 27469, Republic of Korea
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwan D Kim
- Department of IT Convergence (Brain Korea Plus 21), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
- Department of Polymer Science and Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, 27469, Republic of Korea.
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
3
|
Radu M, Brănișteanu DC, Pirvulescu RA, Dumitrescu OM, Ionescu MA, Zemba M. Exploring Stem-Cell-Based Therapies for Retinal Regeneration. Life (Basel) 2024; 14:668. [PMID: 38929652 PMCID: PMC11204673 DOI: 10.3390/life14060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating prevalence of retinal diseases-notably, age-related macular degeneration and hereditary retinal disorders-poses an intimidating challenge to ophthalmic medicine, often culminating in irreversible vision loss. Current treatments are limited and often fail to address the underlying loss of retinal cells. This paper explores the potential of stem-cell-based therapies as a promising avenue for retinal regeneration. We review the latest advancements in stem cell technology, focusing on embryonic stem cells (ESCs), pluripotent stem cells (PSCs), and mesenchymal stem cells (MSCs), and their ability to differentiate into retinal cell types. We discuss the challenges in stem cell transplantation, such as immune rejection, integration into the host retina, and functional recovery. Previous and ongoing clinical trials are examined to highlight the therapeutic efficacy and safety of these novel treatments. Additionally, we address the ethical considerations and regulatory frameworks governing stem cell research. Our analysis suggests that while stem-cell-based therapies offer a groundbreaking approach to treating retinal diseases, further research is needed to ensure long-term safety and to optimize therapeutic outcomes. This review summarizes the clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration, such as age-related macular degeneration, retinitis pigmentosa, and Stargardt's disease.
Collapse
Affiliation(s)
- Madalina Radu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | | | - Ruxandra Angela Pirvulescu
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Ophthalmology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Otilia Maria Dumitrescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihai Alexandru Ionescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihail Zemba
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
4
|
Kumar R, Mishra N, Tran T, Kumar M, Vijayaraghavalu S, Gurusamy N. Emerging Strategies in Mesenchymal Stem Cell-Based Cardiovascular Therapeutics. Cells 2024; 13:855. [PMID: 38786076 PMCID: PMC11120430 DOI: 10.3390/cells13100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cardiovascular diseases continue to challenge global health, demanding innovative therapeutic solutions. This review delves into the transformative role of mesenchymal stem cells (MSCs) in advancing cardiovascular therapeutics. Beginning with a historical perspective, we trace the development of stem cell research related to cardiovascular diseases, highlighting foundational therapeutic approaches and the evolution of cell-based treatments. Recognizing the inherent challenges of MSC-based cardiovascular therapeutics, which range from understanding the pro-reparative activity of MSCs to tailoring patient-specific treatments, we emphasize the need to refine the pro-regenerative capacity of these cells. Crucially, our focus then shifts to the strategies of the fourth generation of cell-based therapies: leveraging the secretomic prowess of MSCs, particularly the role of extracellular vesicles; integrating biocompatible scaffolds and artificial sheets to amplify MSCs' potential; adopting three-dimensional ex vivo propagation tailored to specific tissue niches; harnessing the promise of genetic modifications for targeted tissue repair; and institutionalizing good manufacturing practice protocols to ensure therapeutic safety and efficacy. We conclude with reflections on these advancements, envisaging a future landscape redefined by MSCs in cardiovascular regeneration. This review offers both a consolidation of our current understanding and a view toward imminent therapeutic horizons.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Nitin Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Talan Tran
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328-2018, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | | | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
5
|
Mahmoud M, Abdel-Rasheed M, Galal ER, El-Awady RR. Factors Defining Human Adipose Stem/Stromal Cell Immunomodulation in Vitro. Stem Cell Rev Rep 2024; 20:175-205. [PMID: 37962697 PMCID: PMC10799834 DOI: 10.1007/s12015-023-10654-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Human adipose tissue-derived stem/stromal cells (hASCs) are adult multipotent mesenchymal stem/stromal cells with immunomodulatory capacities. Here, we present up-to-date knowledge on the impact of different experimental and donor-related factors on hASC immunoregulatory functions in vitro. The experimental determinants include the immunological status of hASCs relative to target immune cells, contact vs. contactless interaction, and oxygen tension. Factors such as the ratio of hASCs to immune cells, the cellular context, the immune cell activation status, and coculture duration are also discussed. Conditioning of hASCs with different approaches before interaction with immune cells, hASC culture in xenogenic or xenofree culture medium, hASC culture in two-dimension vs. three-dimension with biomaterials, and the hASC passage number are among the experimental parameters that greatly may impact the hASC immunosuppressive potential in vitro, thus, they are also considered. Moreover, the influence of donor-related characteristics such as age, sex, and health status on hASC immunomodulation in vitro is reviewed. By analysis of the literature studies, most of the indicated determinants have been investigated in broad non-standardized ranges, so the results are not univocal. Clear conclusions cannot be drawn for the fine-tuned scenarios of many important factors to set a standard hASC immunopotency assay. Such variability needs to be carefully considered in further standardized research. Importantly, field experts' opinions may help to make it clearer.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Eman Reda Galal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab R El-Awady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Rovere M, Reverberi D, Arnaldi P, Palamà MEF, Gentili C. Spheroid size influences cellular senescence and angiogenic potential of mesenchymal stromal cell-derived soluble factors and extracellular vesicles. Front Bioeng Biotechnol 2023; 11:1297644. [PMID: 38162179 PMCID: PMC10756914 DOI: 10.3389/fbioe.2023.1297644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: The secretome of mesenchymal stromal cells (MSCs) serves as an innovative tool employed in the regenerative medicine approach. In this particular context, three-dimensional (3D) culture systems are widely utilized to better replicate in vivo conditions and facilitate prolonged cell maintenance during culture. The use of spheroids enables the preservation of the classical phenotypical characteristics of MSCs. However, the distinct microenvironment within the spheroid may impact the secretome, thereby enhancing the angiogenic properties of adult MSCs that typically possess a reduced angiogenic potential compared to MSCs derived from perinatal tissues due to the hypoxia created in the internal region of the spheroid. Methods: In this study, large spheroids (2,600 cells, ∼300 μm diameter) and small spheroids (1,000 cells, ∼200 μm diameter) were used to examine the role of spheroid diameter in the generation of nutrients and oxygen gradients, cellular senescence, and the angiogenic potential of secreted factors and extracellular vesicles (EVs). Results: In this study, we demonstrate that large spheroids showed increased senescence and a secretome enriched in pro-angiogenic factors, as well as pro-inflammatory and anti-angiogenic cytokines, while small spheroids exhibited decreased senescence and a secretome enriched in pro-angiogenic molecules. We also demonstrated that 3D culture led to a higher secretion of EVs with classical phenotypic characteristics. Soluble factors and EVs from small spheroids exhibited higher angiogenic potential in a human umbilical vein endothelial cell (HUVEC) angiogenic assay. Discussion: These findings highlighted the necessity of choosing the appropriate culture system for obtaining soluble factors and EVs for specific therapeutic applications.
Collapse
Affiliation(s)
- Matteo Rovere
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Pietro Arnaldi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Chiara Gentili
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
7
|
Huang W, Xia D, Bi W, Lai X, Yu B, Chen W. Advances in stem cell therapy for peritoneal fibrosis: from mechanisms to therapeutics. Stem Cell Res Ther 2023; 14:293. [PMID: 37817212 PMCID: PMC10566108 DOI: 10.1186/s13287-023-03520-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Peritoneal fibrosis (PF) is a pathophysiological condition caused by a variety of pathogenic factors. The most important features of PF are mesothelial-mesenchymal transition and accumulation of activated (myo-)fibroblasts, which hinder effective treatment; thus, it is critical to identify other practical approaches. Recently, stem cell (SC) therapy has been indicated to be a potential strategy for this disease. Increasing evidence suggests that many kinds of SCs alleviate PF mainly by differentiating into mesothelial cells; secreting cytokines and extracellular vesicles; or modulating immune cells, particularly macrophages. However, there are relatively few articles summarizing research in this direction. In this review, we summarize the risk factors for PF and discuss the therapeutic roles of SCs from different sources. In addition, we outline effective approaches and potential mechanisms of SC therapy for PF. We hope that our review of articles in this area will provide further inspiration for research on the use of SCs in PF treatment.
Collapse
Affiliation(s)
- Weiyan Huang
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Demeng Xia
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wendi Bi
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xueli Lai
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Center for Stem Cell and Medicine, Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
8
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Yen BL, Hsieh CC, Hsu PJ, Chang CC, Wang LT, Yen ML. Three-Dimensional Spheroid Culture of Human Mesenchymal Stem Cells: Offering Therapeutic Advantages and In Vitro Glimpses of the In Vivo State. Stem Cells Transl Med 2023; 12:235-244. [PMID: 37184894 PMCID: PMC10184701 DOI: 10.1093/stcltm/szad011] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/06/2023] [Indexed: 05/16/2023] Open
Abstract
As invaluable as the standard 2-dimensional (2D) monolayer in vitro cell culture system has been, there is increasing evidence that 3-dimensional (3D) non-adherent conditions are more relevant to the in vivo condition. While one of the criteria for human mesenchymal stem cells (MSCs) has been in vitro plastic adherence, such 2D culture conditions are not representative of in vivo cell-cell and cell-extracellular matrix (ECM) interactions, which may be especially important for this progenitor/stem cell of skeletal and connective tissues. The 3D spheroid, a multicellular aggregate formed under non-adherent 3D in vitro conditions, may be particularly suited as an in vitro method to better understand MSC physiological processes, since expression of ECM and other adhesion proteins are upregulated in such a cell culture system. First used in embryonic stem cell in vitro culture to recapitulate in vivo developmental processes, 3D spheroid culture has grown in popularity as an in vitro method to mimic the 3-dimensionality of the native niche for MSCs within tissues/organs. In this review, we discuss the relevance of the 3D spheroid culture for understanding MSC biology, summarize the biological outcomes reported in the literature based on such this culture condition, as well as contemplate limitations and future considerations in this rapidly evolving and exciting area.
Collapse
Affiliation(s)
- B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Chen-Chan Hsieh
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Chia-Chi Chang
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Li-Tzu Wang
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| |
Collapse
|
10
|
Gaitán-Salvatella I, González-Alva P, Montesinos JJ, Alvarez-Perez MA. In Vitro Bone Differentiation of 3D Microsphere from Dental Pulp-Mesenchymal Stem Cells. Bioengineering (Basel) 2023; 10:bioengineering10050571. [PMID: 37237641 DOI: 10.3390/bioengineering10050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Bone defects lead to the structural loss of normal architecture, and those in the field of bone tissue engineering are searching for new alternatives to aid bone regeneration. Dental pulp-mesenchymal stem cells (DP-MSC) could provide a promising alternative to repair bone defects, principally due to their multipotency and capacity to fabricate three-dimensional (3D) spheroids. The present study aimed to characterize the 3D DP-MSC microsphere and the osteogenic differentiation capacity potential cultured by a magnetic levitation system. To achieve this, the 3D DP-MSC microsphere was grown for 7, 14, and 21 days in an osteoinductive medium and compared to 3D human fetal osteoblast (hFOB) microspheres by examining the morphology, proliferation, osteogenesis, and colonization onto PLA fiber spun membrane. Our results showed good cell viability for both 3D microspheres with an average diameter of 350 μm. The osteogenesis examination of the 3D DP-MSC microsphere revealed the lineage commitment, such as the hFOB microsphere, as evidenced by ALP activity, the calcium content, and the expression of osteoblastic markers. Finally, the evaluation of the surface colonization exhibited similar patterns of cell-spreading over the fibrillar membrane. Our study demonstrated the feasibility of forming a 3D DP-MSC microsphere structure and the cell-behavior response as a strategy for the applications of bone tissue guiding.
Collapse
Affiliation(s)
- Iñigo Gaitán-Salvatella
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), POST, Mexico City 06720, Mexico
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
11
|
Valiulienė G, Zentelytė A, Beržanskytė E, Navakauskienė R. Effect of 3D Spheroid Culturing on NF-κB Signaling Pathway and Neurogenic Potential in Human Amniotic Fluid Stem Cells. Int J Mol Sci 2023; 24:ijms24043584. [PMID: 36834995 PMCID: PMC9963588 DOI: 10.3390/ijms24043584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Human amniotic fluid stem cells (hAFSCs) are known for their advantageous properties when compared to somatic stem cells from other sources. Recently hAFSCs have gained attention for their neurogenic potential and secretory profile. However, hAFSCs in three-dimensional (3D) cultures remain poorly investigated. Therefore, we aimed to evaluate cellular properties, neural differentiation, and gene and protein expression in 3D spheroid cultures of hAFSCs in comparison to traditional two-dimensional (2D) monolayer cultures. For this purpose, hAFSCs were obtained from amniotic fluid of healthy pregnancies and cultivated in vitro, either in 2D, or 3D under untreated or neuro-differentiated conditions. We observed upregulated expression of pluripotency genes OCT4, NANOG, and MSI1 as well as augmentation in gene expression of NF-κB-TNFα pathway genes (NFKB2, RELA and TNFR2), associated miRNAs (miR103a-5p, miR199a-3p and miR223-3p), and NF-κB p65 protein levels in untreated hAFSC 3D cultures. Additionally, MS analysis of the 3D hAFSCs secretome revealed protein upregulation of IGFs signaling the cascade and downregulation of extracellular matrix proteins, whereas neural differentiation of hAFSC spheroids increased the expression of SOX2, miR223-3p, and MSI1. Summarizing, our study provides novel insights into how 3D culture affects neurogenic potential and signaling pathways of hAFSCs, especially NF-κB, although further studies are needed to elucidate the benefits of 3D cultures more thoroughly.
Collapse
|
12
|
Brembilla NC, Vuagnat H, Boehncke WH, Krause KH, Preynat-Seauve O. Adipose-Derived Stromal Cells for Chronic Wounds: Scientific Evidence and Roadmap Toward Clinical Practice. Stem Cells Transl Med 2022; 12:17-25. [PMID: 36571216 PMCID: PMC9887085 DOI: 10.1093/stcltm/szac081] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/16/2022] [Indexed: 12/27/2022] Open
Abstract
Chronic wounds, ie, non-healing ulcers, have a prevalence of ~1% in the general population. Chronic wounds strongly affect the quality of life and generate considerable medical costs. A fraction of chronic wounds will heal within months of appropriate treatment; however, a significant fraction of patients will develop therapy-refractory chronic wounds, leading to chronic pain, infection, and amputation. Given the paucity of therapeutic options for refractory wounds, cell therapy and in particular the use of adipose-derived stromal cells (ASC) has emerged as a promising concept. ASC can be used as autologous or allogeneic cells. They can be delivered in suspension or in 3D cultures within scaffolds. ASC can be used without further processing (stromal vascular fraction of the adipose tissue) or can be expanded in vitro. ASC-derived non-cellular components, such as conditioned media or exosomes, have also been investigated. Many in vitro and preclinical studies in animals have demonstrated the ASC efficacy on wounds. ASC efficiency appears to occurs mainly through their regenerative secretome. Hitherto, the majority of clinical trials focused mainly on safety issues. However more recently, a small number of randomized, well-controlled trials provided first convincing evidences for a clinical efficacy of ASC-based chronic wound therapies in humans. This brief review summarizes the current knowledge on the mechanism of action, delivery and efficacy of ASC in chronic wound therapy. It also discusses the scientific and pharmaceutical challenges to be solved before ASC-based wound therapy enters clinical reality.
Collapse
Affiliation(s)
- Nicolo C Brembilla
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| | - Hubert Vuagnat
- Program for Wounds and Wound Healing, Care Directorate, Geneva University Hospitals, Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Laboratory of Therapy and Stem Cells, Geneva University Hospitals, Geneva, Switzerland
| | - Olivier Preynat-Seauve
- Corresponding author: Olivier Preynat-Seauve, PATIM, 1 rue Michel Servet CH-1211 Geneva 4, Switzerland. Tel: +41223794139;
| |
Collapse
|
13
|
Fuentes P, Torres MJ, Arancibia R, Aulestia F, Vergara M, Carrión F, Osses N, Altamirano C. Dynamic Culture of Mesenchymal Stromal/Stem Cell Spheroids and Secretion of Paracrine Factors. Front Bioeng Biotechnol 2022; 10:916229. [PMID: 36046670 PMCID: PMC9421039 DOI: 10.3389/fbioe.2022.916229] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, conditioned medium (CM) obtained from the culture of mesenchymal stromal/stem cells (MSCs) has been shown to effectively promote tissue repair and modulate the immune response in vitro and in different animal models, with potential for application in regenerative medicine. Using CM offers multiple advantages over the implantation of MSCs themselves: 1) simpler storage, transport, and preservation requirements, 2) avoidance of the inherent risks of cell transplantation, and 3) potential application as a ready-to-go biologic product. For these reasons, a large amount of MSCs research has focused on the characterization of the obtained CM, including soluble trophic factors and vesicles, preconditioning strategies for enhancing paracrine secretion, such as hypoxia, a three-dimensional (3D) environment, and biochemical stimuli, and potential clinical applications. In vitro preconditioning strategies can increase the viability, proliferation, and paracrine properties of MSCs and therefore improve the therapeutic potential of the cells and their derived products. Specifically, dynamic cultivation conditions, such as fluid flow and 3D aggregate culture, substantially impact cellular behaviour. Increased levels of growth factors and cytokines were observed in 3D cultures of MSC grown on orbital or rotatory shaking platforms, in stirred systems, such as spinner flasks or stirred tank reactors, and in microgravity bioreactors. However, only a few studies have established dynamic culture conditions and protocols for 3D aggregate cultivation of MSCs as a scalable and reproducible strategy for CM production. This review summarizes significant advances into the upstream processing, mainly the dynamic generation and cultivation of MSC aggregates, for de CM manufacture and focuses on the standardization of the soluble factor production.
Collapse
Affiliation(s)
- Paloma Fuentes
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María José Torres
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Rodrigo Arancibia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Francisco Aulestia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Mauricio Vergara
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Flavio Carrión
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Nelson Osses
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- CREAS, Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
- *Correspondence: Claudia Altamirano,
| |
Collapse
|
14
|
Hazrati A, Malekpour K, Soudi S, Hashemi SM. Mesenchymal stromal/stem cells spheroid culture effect on the therapeutic efficacy of these cells and their exosomes: A new strategy to overcome cell therapy limitations. Biomed Pharmacother 2022; 152:113211. [PMID: 35696942 DOI: 10.1016/j.biopha.2022.113211] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cell therapy is one of the new treatment methods in which mesenchymal stem/stromal cell (MSCs) transplantation is one of the cells widely used in this field. The results of MSCs application in the clinic prove their therapeutic efficacy. For this reason, many clinical trials have been designed based on the application of MSCs for various diseases, especially inflammatory disease and regenerative medicine. These cells perform their therapeutic functions through multiple mechanisms, including the differentiative potential, immunomodulatory properties, production of therapeutic exosomes, production of growth factors and cytokines, and anti-apoptotic effects. Exosomes are nanosized extracellular vesicles (EVs) that change target cell functions by transferring different cargos. The therapeutic ability of MSCs-derived exosomes has been demonstrated in many studies. However, some limitations, such as the low production of exosomes by cells and the need for large amounts of them and also their limited therapeutic ability, have encouraged researchers to find methods that increase exosomes' therapeutic potential. One of these methods is the spheroid culture of MSCs. Studies show that the three-dimensional culture (3DCC) of MSCs in the form of multicellular spheroids increases the therapeutic efficacy of these cells in laboratory and animal applications. In addition, the spheroid culture of MSCs leads to enhanced therapeutic properties of their exosomes and production rate. Due to the novelty of the field of using 3DCC MSCs-derived exosomes, examination of their properties and the results of their therapeutic application can increase our view of this field. This review discussed MSCs and their exosomes enhanced properties in spheroid culture.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Tracy EP, Stielberg V, Rowe G, Benson D, Nunes SS, Hoying JB, Murfee WL, LeBlanc AJ. State of the field: cellular and exosomal therapeutic approaches in vascular regeneration. Am J Physiol Heart Circ Physiol 2022; 322:H647-H680. [PMID: 35179976 PMCID: PMC8957327 DOI: 10.1152/ajpheart.00674.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/19/2023]
Abstract
Pathologies of the vasculature including the microvasculature are often complex in nature, leading to loss of physiological homeostatic regulation of patency and adequate perfusion to match tissue metabolic demands. Microvascular dysfunction is a key underlying element in the majority of pathologies of failing organs and tissues. Contributing pathological factors to this dysfunction include oxidative stress, mitochondrial dysfunction, endoplasmic reticular (ER) stress, endothelial dysfunction, loss of angiogenic potential and vascular density, and greater senescence and apoptosis. In many clinical settings, current pharmacologic strategies use a single or narrow targeted approach to address symptoms of pathology rather than a comprehensive and multifaceted approach to address their root cause. To address this, efforts have been heavily focused on cellular therapies and cell-free therapies (e.g., exosomes) that can tackle the multifaceted etiology of vascular and microvascular dysfunction. In this review, we discuss 1) the state of the field in terms of common therapeutic cell population isolation techniques, their unique characteristics, and their advantages and disadvantages, 2) common molecular mechanisms of cell therapies to restore vascularization and/or vascular function, 3) arguments for and against allogeneic versus autologous applications of cell therapies, 4) emerging strategies to optimize and enhance cell therapies through priming and preconditioning, and, finally, 5) emerging strategies to bolster therapeutic effect. Relevant and recent clinical and animal studies using cellular therapies to restore vascular function or pathologic tissue health by way of improved vascularization are highlighted throughout these sections.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Virginia Stielberg
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Daniel Benson
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
| | - James B Hoying
- Advanced Solutions Life Sciences, Manchester, New Hampshire
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Amanda Jo LeBlanc
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
16
|
Inhaled Placental Mesenchymal Stromal Cell Secretome from Two- and Three-Dimensional Cell Cultures Promotes Survival and Regeneration in Acute Lung Injury Model in Mice. Int J Mol Sci 2022; 23:ijms23073417. [PMID: 35408778 PMCID: PMC8998959 DOI: 10.3390/ijms23073417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is a common clinical problem, leading to significant morbidity and mortality, and no effective pharmacotherapy exists. The problem of ARDS causing mortality became more apparent during the COVID-19 pandemic. Biotherapeutic products containing multipotent mesenchymal stromal cell (MMSC) secretome may provide a new therapeutic paradigm for human healthcare due to their immunomodulating and regenerative abilities. The content and regenerative capacity of the secretome depends on cell origin and type of cultivation (two- or three-dimensional (2D/3D)). In this study, we investigated the proteomic profile of the secretome from 2D- and 3D-cultured placental MMSC and lung fibroblasts (LFBs) and the effect of inhalation of freeze-dried secretome on survival, lung inflammation, lung tissue regeneration, fibrin deposition in a lethal ALI model in mice. We found that three inhaled administrations of freeze-dried secretome from 2D- and 3D-cultured placental MMSC and LFB protected mice from death, restored the histological structure of damaged lungs, and decreased fibrin deposition. At the same time, 3D MMSC secretome exhibited a more pronounced trend in lung recovery than 2D MMSC and LFB-derived secretome in some measures. Taking together, these studies show that inhalation of cell secretome may also be considered as a potential therapy for the management of ARDS in patients suffering from severe pneumonia, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, their effectiveness requires further investigation.
Collapse
|
17
|
Zhu M, Hua T, Ouyang T, Qian H, Yu B. Applications of Mesenchymal Stem Cells in Liver Fibrosis: Novel Strategies, Mechanisms, and Clinical Practice. Stem Cells Int 2021; 2021:6546780. [PMID: 34434239 PMCID: PMC8380491 DOI: 10.1155/2021/6546780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/07/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Liver fibrosis is a common result of most chronic liver diseases, and advanced fibrosis often leads to cirrhosis. Currently, there is no effective treatment for liver cirrhosis except liver transplantation. Therefore, it is important to carry out antifibrosis treatment to reverse liver damage in the early stage of liver fibrosis. Mesenchymal stem cells (MSCs) are the most widely used stem cells in the field of regenerative medicine. The preclinical and clinical research results of MSCs in the treatment of liver fibrosis and cirrhosis show that MSC administration is a promising treatment for liver fibrosis and cirrhosis. MSCs reverse liver fibrosis and increase liver function mainly through differentiation into hepatocytes, immune regulation, secretion of cytokines and other nutritional factors, reduction of hepatocyte apoptosis, and promotion of hepatocyte regeneration. Recently, many studies provided a variety of new methods and strategies to improve the effect of MSCs in the treatment of liver fibrosis. In this review, we summarized the current effective methods and strategies and their potential mechanisms of MSCs in the treatment of liver fibrosis, as well as the current research progress in clinical practice. We expect to achieve complete reversal of liver injury with MSC-based therapy in the future.
Collapse
Affiliation(s)
- Mengmei Zhu
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Tianzhen Hua
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Tao Ouyang
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Huofu Qian
- 2Department of Gastroenterology, The Second People's Hospital of Taizhou, China
| | - Bing Yu
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| |
Collapse
|