1
|
Gueiderikh A, Faivre JC, Golfier C, Escande A, Thureau S. Efficacy of innovative systemic treatments in combination with radiotherapy for bone metastases: a GEMO (the European Study Group of Bone Metastases) state of the art. Cancer Metastasis Rev 2025; 44:28. [PMID: 39875680 DOI: 10.1007/s10555-024-10236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
The management of bone metastases (BoM) requires a multidisciplinary approach to prevent complications, necessitating updated knowledge in light of the rapid advancements in systemic treatments and surgical, interventional radiology or radiation techniques. This review aims to discuss efficacy of new systemic treatments on BoM, the benefits of radiotherapy adjunction, and the optimal methods for combining them. Preliminary evidence suggesting reduced efficacy of immune checkpoint inhibitors (ICI), and several multi-kinase inhibitors regarding BoM may encourage early use of radiotherapy (RT). Systemic treatment efficacy modulation by RT and ablative RT strategies are explored. Concerns for increased side effects for several kinase inhibitors and double ICI in combination with RT imply suspending those systemic treatments during RT. Various timing strategies to combine prostate hormone therapies and RT are developed. Emerging internal vectorized radiotherapy molecules necessitate developing new combination strategies with RT. Further prospective data collection and comparative trials should be encouraged.
Collapse
Affiliation(s)
- Anna Gueiderikh
- Département de Radiothérapie, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
| | - Jean-Christophe Faivre
- Radiation Oncology Department, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, 54519, France
| | - Constance Golfier
- Radiation Oncology Department, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, 54519, France
| | - Alexandre Escande
- Service de Radiothérapie, Centre Léonard de Vinci, Dechy, France
- Laboratoire CRIStAL, UMR 9186, Université de Lille, Lille, France
- Faculté de Médecine H.Warembourg, Université de Lille, Lille, France
| | - Sébastien Thureau
- Département de Radiothérapie et de Physique Médicale, Centre Henri Becquerel Rouen QuantiF, LITIS EA4108 Université Rouen, Rouen, France.
| |
Collapse
|
2
|
Jackett KN, Browne AT, Aber ER, Clements M, Kaplan RN. How the bone microenvironment shapes the pre-metastatic niche and metastasis. NATURE CANCER 2024; 5:1800-1814. [PMID: 39672975 DOI: 10.1038/s43018-024-00854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/04/2024] [Indexed: 12/15/2024]
Abstract
The bone is a frequent metastatic site, with changes in the mineralized bone and the bone marrow milieu that can also prime other sites for metastasis by educating progenitor cells to support metastatic spread. Stromal and immune populations cooperatively maintain the organizationally complex bone niches and are dysregulated in the presence of a distant primary tumor and metastatic disease. Interrogating the bone niches that facilitate metastatic spread using innovative technologies holds the potential to aid in preventing metastasis in and mediated by the bone. Here, we review recent advances in bone niche biology and its adaptations in the context of cancer.
Collapse
Affiliation(s)
- Kailey N Jackett
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice T Browne
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Etan R Aber
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miranda Clements
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
El Zarif T, Semaan K, Xie W, Eid M, Zarba M, Issa W, Zhang T, Nguyen CB, Alva A, Fahey CC, Beckermann KE, Karam JA, Campbell MT, Procopio G, Stellato M, Buti S, Zemankova A, Melichar B, Massari F, Mollica V, Venugopal B, Ebrahimi H, de Velasco G, Gurney HP, De Giorgi U, Parikh O, Winquist E, Master V, Garcia AR, Cutuli HJ, Ferguson TR, Gross-Goupil M, Baca SC, Pal SK, Braun DA, McKay RR, Heng DYC, Choueiri TK. First-line Systemic Therapy Following Adjuvant Immunotherapy in Renal Cell Carcinoma: An International Multicenter Study. Eur Urol 2024; 86:503-512. [PMID: 39147674 DOI: 10.1016/j.eururo.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND OBJECTIVE Adjuvant pembrolizumab significantly improved overall survival (OS) in renal cell carcinoma (RCC), but real-world data on sequential treatment are scarce. We sought to evaluate the clinical outcomes of first-line (1L) systemic therapy following adjuvant immune oncology (IO)-based regimens. METHODS A retrospective study including patients with recurrent RCC following adjuvant IO across 29 international institutions was conducted. The primary endpoint was progression-free survival (PFS) on 1L systemic therapy estimated using the Kaplan-Meier method. Preplanned subanalyses of clinical outcomes by type of 1L systemic therapy, recurrence timing, and International Metastatic RCC Database Consortium (IMDC) risk groups were performed. Treatment-related adverse events leading to treatment discontinuation, dose reduction, or corticosteroid use were assessed. KEY FINDINGS AND LIMITATIONS A total of 94 patients were included. Most received adjuvant pembrolizumab (n = 37, 39%), atezolizumab (n = 28, 30%), or nivolumab + ipilimumab (n = 15, 16%). The cohort included 49 (52%) patients who had recurrence within 3 mo of the last adjuvant IO dose, whereas 45 (48%) recurred beyond 3 mo. Bone metastases were significantly higher in tumors recurring at <3 mo (10/49, 20%) than those recurring at >3 mo (1/45, 2.2%; p = 0.008). Most patients received 1L vascular endothelial growth factor-targeted therapy (VEGF-TT; n = 37, 39%), IO + VEGF-TT (n = 26, 28%), or IO + IO (n = 12, 13%). The remaining underwent local therapy. The median follow-up for the 1L systemic therapy cohort was 15 mo. The 18-mo PFS and OS rates were 45% (95% confidence interval [CI]: 34-60) and 85% (95% CI: 75-95), respectively. Treatment-related adverse events occurred in 32 (42%) patients and included skin toxicity (n = 7, 9.2%), fatigue (n = 6, 7.9%), and diarrhea/colitis (n = 4, 5.3%). Limitations included selecting patients from large academic centers and the short follow-up period. CONCLUSIONS AND CLINICAL IMPLICATIONS A subset of patients with recurrent RCC following adjuvant IO respond to systemic therapies, including VEGF-TT and IO-based regimens. Notably, patients with favorable-risk disease may derive more benefit from VEGF-TT than from IO therapies in this setting. Future approaches utilizing radiographic tools and biomarker-based liquid biopsies are warranted to detect occult metastatic disease and identify candidate patients for adjuvant IO therapy. PATIENT SUMMARY Adjuvant pembrolizumab significantly improved overall survival in renal cell carcinoma (RCC). There are limited data on clinical outcomes after the recurrence of RCC tumors following adjuvant immunotherapy. In this study, we find that patients respond to subsequent systemic therapies across different treatment options.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/secondary
- Carcinoma, Renal Cell/mortality
- Male
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/pathology
- Kidney Neoplasms/mortality
- Female
- Retrospective Studies
- Middle Aged
- Aged
- Chemotherapy, Adjuvant
- Immunotherapy/methods
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Neoplasm Recurrence, Local
- Treatment Outcome
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Progression-Free Survival
Collapse
Affiliation(s)
- Talal El Zarif
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Karl Semaan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wanling Xie
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marc Eid
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martin Zarba
- Tom Baker Cancer Centre, University of Calgary, Calgary, Canada
| | - Wadih Issa
- Department of Internal Medicine, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tian Zhang
- Department of Internal Medicine, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Charles B Nguyen
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ajjai Alva
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Catherine C Fahey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kathryn E Beckermann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jose A Karam
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew T Campbell
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giuseppe Procopio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Marco Stellato
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Anezka Zemankova
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Balaji Venugopal
- Beatson West of Scotland Cancer Centre, Glasgow, UK; University of Glasgow, Glasgow, UK
| | - Hedyeh Ebrahimi
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | | | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Omi Parikh
- Royal Preston Hospital-Lancashire Teaching Hospitals National Health Service Foundation Trust, Preston, UK
| | - Eric Winquist
- The Verspeeten Family Cancer Centre at London Health Sciences Centre, London, Ontario, Canada
| | - Viraj Master
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | | | - Thomas Robert Ferguson
- Department of Medical Oncology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Marine Gross-Goupil
- Department of Medical Oncology, University Hospital of Bordeaux, Bordeaux, France
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sumanta K Pal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - David A Braun
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Rana R McKay
- Department of Medical Oncology, UC San Diego, La Jolla, CA, USA
| | - Daniel Y C Heng
- Tom Baker Cancer Centre, University of Calgary, Calgary, Canada
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
4
|
Hamza FN, Mohammad KS. Immunotherapy in the Battle Against Bone Metastases: Mechanisms and Emerging Treatments. Pharmaceuticals (Basel) 2024; 17:1591. [PMID: 39770433 PMCID: PMC11679356 DOI: 10.3390/ph17121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
Bone metastases are a prevalent complication in advanced cancers, particularly in breast, prostate, and lung cancers, and are associated with severe skeletal-related events (SREs), including fractures, spinal cord compression, and debilitating pain. Conventional bone-targeted treatments like bisphosphonates and RANKL inhibitors (denosumab) reduce osteoclast-mediated bone resorption but do not directly impact tumor progression within the bone. This review focuses on examining the growing potential of immunotherapy in targeting the unique challenges posed by bone metastases. Even though immune checkpoint inhibitors (ICIs) have significantly changed cancer treatment, their impact on bone metastases appears limited because of the bone microenvironment's immunosuppressive traits, which include high levels of transforming growth factor-beta (TGFβ) and the immune-suppressing cells, such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). This review underscores the investigation of combined therapeutic approaches that might ease these difficulties, such as the synergy of immune checkpoint inhibitors with agents aimed at bones (denosumab, bisphosphonates), chemotherapy, and radiotherapy, as well as the combination of immune checkpoint inhibitors with different immunotherapeutic methods, including CAR T-cell therapy. This review provides a comprehensive analysis of preclinical studies and clinical trials that show the synergistic potential of these combination approaches, which aim to both enhance immune responses and mitigate bone destruction. By offering an in-depth exploration of how these strategies can be tailored to the bone microenvironment, this review underscores the need for personalized treatment approaches. The findings emphasize the urgent need for further research into overcoming immune evasion in bone metastases, with the goal of improving patient survival and quality of life.
Collapse
Affiliation(s)
- Fatheia N. Hamza
- Department of Biochemistry, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Khalid Said Mohammad
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
5
|
Zhu Y, She J, Sun R, Yan X, Huang X, Wang P, Li B, Sun X, Wang C, Jiang K. Impact of bone metastasis on prognosis in non-small cell lung cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Front Immunol 2024; 15:1493773. [PMID: 39575263 PMCID: PMC11578953 DOI: 10.3389/fimmu.2024.1493773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Background Lung cancer is a leading cause of cancer-related deaths globally, with non-small cell lung cancer (NSCLC) accounting for approximately 85% of cases. While immune checkpoint inhibitors (ICIs) have transformed treatment for advanced NSCLC, the role of bone metastasis in modulating ICI efficacy remains unclear. Bone metastasis, occurring in 30-40% of advanced NSCLC cases, is associated with worse outcomes. However, how this affects the therapeutic benefit of ICIs has not been fully elucidated, highlighting a critical knowledge gap in optimizing treatment for this patient population. Methods A comprehensive literature search across multiple databases, including PubMed, Embase, and Cochrane, identified 13 studies with a total of 3,681 patients, of whom 37.6% had bone metastasis. Overall survival (OS) and progression-free survival (PFS) were compared between NSCLC patients with and without bone metastasis. Data were analyzed using a random-effects model to account for study heterogeneity. Results The meta-analysis demonstrated that bone metastasis significantly worsened overall survival (OS) and progression-free survival (PFS) in NSCLC patients treated with ICIs. Specifically, bone metastasis was associated with a 45% increased risk of death (HR: 1.45, 95% CI: 1.30-1.62, p < 0.001) and a 40% increased risk of disease progression (HR: 1.40, 95% CI: 1.25-1.58, p < 0.001). No statistically significant impact on PFS was observed. (HR: 1.28, 95% CI: 0.77-2.10, p = 0.34). High heterogeneity was observed in some subgroup analyses (I² = 72%), indicating variability in the results. Conclusion Bone metastasis is a significant negative prognostic factor for NSCLC patients treated with ICIs, associated with a higher risk of mortality and disease progression. These results underscore the importance of tailored treatment approaches for NSCLC patients with bone metastasis and call for further research to optimize therapy outcomes in this group.
Collapse
Affiliation(s)
- Yonghua Zhu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingyao She
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rong Sun
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - XinXin Yan
- Department of Geriatric I, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Xinyao Huang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Peijuan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiangdong Sun
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | | | - Kai Jiang
- Department of Radiation Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Peng Z, Huang W, Xiao Z, Wang J, Zhu Y, Zhang F, Lan D, He F. Immunotherapy in the Fight Against Bone Metastases: A Review of Recent Developments and Challenges. Curr Treat Options Oncol 2024; 25:1374-1389. [PMID: 39436492 PMCID: PMC11541271 DOI: 10.1007/s11864-024-01256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 10/23/2024]
Abstract
OPINION STATEMENT Bone metastasis, a frequent and detrimental complication of advanced cancers, often triggers bone deterioration events that severely compromise patient quality of life and prognosis. The past few years have witnessed the emergence and continuous advancements in immunotherapy, ushering in innovative therapeutic prospects for bone metastasis. These advancements include not only the use of immune checkpoint inhibitors (ICIs), both as standalone and combined treatments, but also the investigation of novel targets within immune cells residing in bone metastases. These breakthroughs have instilled fresh optimism for effectively managing patients with bone metastasis. This article endeavors to present an exhaustive review of the recent progress made across a spectrum of immunotherapeutic strategies and targeted therapies specifically designed for individuals battling bone metastasis from malignant tumors. By doing so, it seeks to offer insights that can inform clinical practices and guide further medical research in this domain.
Collapse
Affiliation(s)
- Zhonghui Peng
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Huang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Ziyu Xiao
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Jinge Wang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yongzhe Zhu
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Fudou Zhang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Dongqiang Lan
- Department of Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| | - Fengjiao He
- Department of Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China.
| |
Collapse
|
7
|
Tang J, Gu Z, Yang Z, Ma L, Liu Q, Shi J, Niu N, Wang Y. Bibliometric analysis of bone metastases from lung cancer research from 2004 to 2023. Front Oncol 2024; 14:1439209. [PMID: 39165682 PMCID: PMC11333251 DOI: 10.3389/fonc.2024.1439209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Background Bone metastases of lung cancer (BMLC) severely diminish patients' quality of life due to bone-related events, and the lack of clear guidelines globally regarding medical and surgical treatment significantly reduces patient survival. While knowledge about BMLC has grown exponentially over the past two decades, a comprehensive and objective bibliometric analysis remains absent. Methods A comprehensive bibliometric analysis was conducted on relevant literature on BMLC extracted from the Web of Science database from 2004 to 2023 by Biblioshiny, VOSviewer, Scimago Graphica, CiteSpace, and Microsoft Office Excel Professional Plus 2016 software. 936 papers related to BMLC were extracted from the Web of Science Core Collection (WoSCC). The number of publications, countries, institutions, global collaborations, authors, journals, keywords, thematic trends, and cited references were then visualized. Finally, the research status and development direction in the last 20 years were analyzed. Results This study included a total of 936 papers on BMLC from 2004 to 2023. There has been a steady increase in global publications each year, peaking in 2021. China had the highest number of publications, followed by Japan and the United States. Additionally, China had the most citations with an H-index of 35, while the US followed with an H-index of 34, highlighting their significant contributions to the field. "Frontiers in Oncology" had the highest number of publications. CiteSpace analysis identified "lung cancer," "bone metastasis," and "survival" as the top high-frequency keywords, encapsulating the core research focus. Keyword clustering analysis revealed six main clusters representing the primary research directions. Burst analysis of keywords showed that "skeletal complications" had the highest burst intensity from 2005 to 2013, while recent research trends include "immunotherapy" and "denosumab," with bursts from 2021 to 2023. Trend topic analysis indicated that "non-small cell lung cancer," "immunotherapy," and "immune checkpoint inhibitors" represent the cutting-edge research directions in this field. Conclusion This article reveals the current status and trend of research on BMLC, which is increasing worldwide. China and the United States have contributed the most, but international cooperative research on BMLC should be strengthened. The pathogenesis, early prevention, and individualized treatment of BMLC need to be strengthened for further study, and immunotherapy is the next hotspot of lung cancer bone metastasis research.
Collapse
Affiliation(s)
- Jing Tang
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhangui Gu
- Department of Orthopedic, General Hospital of Ningxia Medical University, Yinchuan, China
- First Clinical Medical College, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zongqiang Yang
- Department of Orthopedic, General Hospital of Ningxia Medical University, Yinchuan, China
- First Clinical Medical College, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Long Ma
- First Clinical Medical College, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qiang Liu
- First Clinical Medical College, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jiandang Shi
- Department of Orthopedic, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ningkui Niu
- Department of Orthopedic, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yanyang Wang
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Aazzane O, Fathi S, Charkaoui M, Acharki A, Sahraoui S, Benchakroun N, Fellah H, Karkouri M. Immunotherapy and PD-L1 Tumor Expression in Moroccan Non-Small Cell Lung Cancer Patients with Various Metastasis. Asian Pac J Cancer Prev 2024; 25:2841-2852. [PMID: 39205582 PMCID: PMC11495451 DOI: 10.31557/apjcp.2024.25.8.2841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 09/04/2024] Open
Abstract
INRODUCTION The question of whether tumor expression of PD-L1 and the presence of distant metastasis could influence the efficacy of immunotherapy represents a major challenge and needs to be further elucidated. The aim of this study is to evaluate the predictive significance of tumor expression of PD-L1 as well as the number and site of metastasis in non-small cell lung cancer (NSCLC) among Moroccan patients treated with immunotherapy. MATERIAL AND METHODS Between January 2019 and February 2023, we recruited Moroccan patients with metastatic NSCLC. All were treated with immunotherapy, either as monotherapy or in combination with chemotherapy. Immunohistochemistry was used to assess PD-L1 (clone 22C3) and ALK (clone D5F3) status. EGFR status was established by qPCR. Tumor PD-L1 expression was classified into 2 levels: TPS <1% (negative expression) and TPS ≥1% (positive expression). Statistical analysis was performed using SPSS Statistics V.21 software. RESULTS The median age of patients (N=40) was 67 years (39- 92 years) and the sex ratio was 9. Disease dissemination revealed that 22.5% (N=9) of patients had a metastatic burden ≥ 3 (MB≥3). As for the sites of metastasis, the results showed that 20% (N=8), 10% (N=4), 42.5% (N=17), 22.5% (N=9), 27.5% (N=11), 45% (N=18) and 27.5% (N=11) of patients had developed lymph node, liver, bone, brain, pleural, contralateral lung and adrenal metastasis respectively. Positive PD-L1 expression was significantly associated with shorter overall survival (OS = 17.19 vs. 28.85 months, p=0.01). High metastatic burden (MB ≥ 3) was associated with lower objective response rate (ORR), shorter progression-free survival (PFS), and reduced OS, respectively (ORR = 0 vs. 58.06%, p=0.002; PFS = 10.23 vs. 25.27 months, p=0.001; and OS = 11.60 vs. 27.91 months, p=0.003). Only the presence of osseous metastasis was significantly associated with lower ORR, shorter PFS, and OS compared to other metastatic locations (ORR = 5.88 vs. 73.9%, p=0.000; PFS = 10.72 vs. 31.33 months, p=0.000; and OS = 11.39 vs. 36.17 months, p=0.000). Finally, the presence of hepatic metastasis was significantly associated with shorter PFS (10.75 months) compared to those without hepatic metastasis (22.53 months) (p=0.046). Finally, the results of the multivariate analysis revealed that the presence of bone metastasis was strongly correlated with a significant decrease in progression-free survival (p=0.001) as well as overall survival (p=0.002). CONCLUSION Our results suggest that tumor expression of PD-L1 and metastatic burden should play a significant role in predicting the response to immunotherapy. Furthermore, it is important to note that the presence of osseous and hepatic metastasis could negatively influence the clinical outcomes of immunotherapy.
Collapse
Affiliation(s)
- Oussama Aazzane
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco.
- Pathology Department, Ibn Rochd University Hospital, Casablanca, Morocco.
- Immunology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco.
| | - Sofia Fathi
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco.
- Pathology Department, Ibn Rochd University Hospital, Casablanca, Morocco.
| | - Meryeme Charkaoui
- Mohammed VI Cancer Treatment Center, Ibn Rochd University Hospital, Casablanca, Morocco.
| | | | - Souha Sahraoui
- Mohammed VI Cancer Treatment Center, Ibn Rochd University Hospital, Casablanca, Morocco.
| | - Nadia Benchakroun
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco.
- Mohammed VI Cancer Treatment Center, Ibn Rochd University Hospital, Casablanca, Morocco.
| | - Hassan Fellah
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco.
- Immunology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco.
| | - Mehdi Karkouri
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco.
- Pathology Department, Ibn Rochd University Hospital, Casablanca, Morocco.
| |
Collapse
|
9
|
Monteran L, Ershaid N, Scharff Y, Zoabi Y, Sanalla T, Ding Y, Pavlovsky A, Zait Y, Langer M, Caller T, Eldar-Boock A, Avivi C, Sonnenblick A, Satchi-Fainaro R, Barshack I, Shomron N, Zhang XHF, Erez N. Combining TIGIT Blockade with MDSC Inhibition Hinders Breast Cancer Bone Metastasis by Activating Antitumor Immunity. Cancer Discov 2024; 14:1252-1275. [PMID: 38427556 DOI: 10.1158/2159-8290.cd-23-0762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
Bone is the most common site of breast cancer metastasis. Bone metastasis is incurable and is associated with severe morbidity. Utilizing an immunocompetent mouse model of spontaneous breast cancer bone metastasis, we profiled the immune transcriptome of bone metastatic lesions and peripheral bone marrow at distinct metastatic stages, revealing dynamic changes during the metastatic process. We show that cross-talk between granulocytes and T cells is central to shaping an immunosuppressive microenvironment. Specifically, we identified the PD-1 and TIGIT signaling axes and the proinflammatory cytokine IL1β as central players in the interactions between granulocytes and T cells. Targeting these pathways in vivo resulted in attenuated bone metastasis and improved survival, by reactivating antitumor immunity. Analysis of patient samples revealed that TIGIT and IL1β are prominent in human bone metastasis. Our findings suggest that cotargeting immunosuppressive granulocytes and dysfunctional T cells may be a promising novel therapeutic strategy to inhibit bone metastasis. Significance: Temporal transcriptome profiling of the immune microenvironment in breast cancer bone metastasis revealed key communication pathways between dysfunctional T cells and myeloid derived suppressor cells. Cotargeting of TIGIT and IL1β inhibited bone metastasis and improved survival. Validation in patient data implicated these targets as a novel promising approach to treat human bone metastasis.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nour Ershaid
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ye'ela Scharff
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yazeed Zoabi
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamer Sanalla
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yunfeng Ding
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Anna Pavlovsky
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marva Langer
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Caller
- Tamman Cardiovascular Research Institute, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sonnenblick
- Oncology Division, Tel Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Chen Y, Chen XS, He RQ, Huang ZG, Lu HP, Huang H, Yang DP, Tang ZQ, Yang X, Zhang HJ, Qv N, Kong JL, Chen G. What enlightenment has the development of lung cancer bone metastasis brought in the last 22 years. World J Clin Oncol 2024; 15:765-782. [PMID: 38946828 PMCID: PMC11212609 DOI: 10.5306/wjco.v15.i6.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Lung cancer bone metastasis (LCBM) is a disease with a poor prognosis, high risk and large patient population. Although considerable scientific output has accumulated on LCBM, problems have emerged, such as confusing research structures. AIM To organize the research frontiers and body of knowledge of the studies on LCBM from the last 22 years according to their basic research and translation, clinical treatment, and clinical diagnosis to provide a reference for the development of new LCBM clinical and basic research. METHODS We used tools, including R, VOSviewer and CiteSpace software, to measure and visualize the keywords and other metrics of 1903 articles from the Web of Science Core Collection. We also performed enrichment and protein-protein interaction analyses of gene expression datasets from LCBM cases worldwide. RESULTS Research on LCBM has received extensive attention from scholars worldwide over the last 20 years. Targeted therapies and immunotherapies have evolved into the mainstream basic and clinical research directions. The basic aspects of drug resistance mechanisms and parathyroid hormone-related protein may provide new ideas for mechanistic study and improvements in LCBM prognosis. The produced molecular map showed that ribosomes and focal adhesion are possible pathways that promote LCBM occurrence. CONCLUSION Novel therapies for LCBM face animal testing and drug resistance issues. Future focus should centre on advancing clinical therapies and researching drug resistance mechanisms and ribosome-related pathways.
Collapse
Affiliation(s)
- Yi Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Song Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hui-Ping Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hong Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Da-Ping Yang
- Department of Pathology, Guigang People’s Hospital of Guangxi/The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537100, Guangxi Zhuang Autonomous Region, China
| | - Zhong-Qing Tang
- Department of Pathology, Wuzhou Gongren Hospital/The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou 543000, Guangxi Zhuang Autonomous Region, China
| | - Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Han-Jie Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ning Qv
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jin-Liang Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
11
|
Iuliani M, Simonetti S, Cristofani L, Cavaliere S, Cortellini A, Russano M, Vincenzi B, Tonini G, Santini D, Pantano F. Circulating receptor activator of nuclear factor kappa-B ligand (RANKL) levels predict response to immune checkpoint inhibitors in advanced non-small cell lung cancer (NSCLC). J Immunother Cancer 2024; 12:e009432. [PMID: 38908859 PMCID: PMC11328619 DOI: 10.1136/jitc-2024-009432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Receptor activator of nuclear factor kappa-B ligand (RANKL) can directly promote tumor growth and indirectly support tumor immune evasion by altering the tumor microenvironment and immune cell responses. This study aimed to assess the prognostic significance of soluble RANKL in patients with advanced non-small cell lung cancer (NSCLC) receiving programmed cell death 1 (PD1)/programmed death-ligand 1 (PDL1) checkpoint inhibitor therapy. METHODS Plasma RANKL levels were measured in 100 patients with advanced NSCLC without bone metastases undergoing monotherapy with PD1/PDL1 checkpoint inhibitors. To establish the optimal cut-off value, we used the Cutoff Finder package in R. Survival curves for four distinct patient groups, according to their RANKL and PDL1 levels (high or low), were generated using the Kaplan-Meier method and compared with the log-rank test. The Cox regression model calculated HRs and 95% CIs for overall survival (OS) and progression-free survival (PFS). RESULTS The optimal RANKL cut-off was established at 280.4 pg/mL, categorizing patients into groups with high or low RANKL levels. A significant association was observed between increased RANKL concentrations and decreased survival rates at 24 months, only within the subgroup expressing high levels of PDL1 (p=0.002). Additionally, low RANKL levels in conjunction with elevated PDL1 expression correlated with improved PFS (median 22 months, 95% CI 6.70 to 50 vs median 4 months, 95% CI 3.0 to 7.30, p=0.009) and OS (median 26 months, 95% CI 20 to not reached vs median 7 months, 95% CI 6 to 13, p=0.003), indicating RANKL's potential as an indicator of adverse prognosis in these patients. Multivariate analysis identified RANKL as an independent negative prognostic factor for both PFS and OS, regardless of other clinicopathological features. CONCLUSION These results highlight the prognostic and predictive value of RANKL specifically in patients with high PDL1 expression.
Collapse
Affiliation(s)
- Michele Iuliani
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Sonia Simonetti
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | | | - Silvia Cavaliere
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Alessio Cortellini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Marco Russano
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Bruno Vincenzi
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Giuseppe Tonini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Daniele Santini
- UOC Oncologia Medica A, Policlinico Umberto 1, Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Francesco Pantano
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
12
|
Abbott AG, Meyers DE, Elmi-Assadzadeh G, Stukalin I, Marro A, Puloski SKT, Morris DG, Cheung WY, Monument MJ. Effectiveness of immune checkpoint inhibitor therapy on bone metastases in non-small-cell lung cancer. Front Immunol 2024; 15:1379056. [PMID: 38957472 PMCID: PMC11217176 DOI: 10.3389/fimmu.2024.1379056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Background Bone metastases (BoMs) are prevalent in patients with metastatic non-small-cell lung cancer (NSCLC) however, there are limited data detailing how BoMs respond to immune checkpoint inhibitors (ICIs). The purpose of this study was to compare the imaging response to ICIs of BoMs against visceral metastases and to evaluate the effect of BoMs on survival. Materials and methods A retrospective, multicentre cohort study was conducted in patients with NSCLC treated with nivolumab or pembrolizumab in Alberta, Canada from 2015 to 2020. The primary endpoint was the real-world organ specific progression free survival (osPFS) of bone versus visceral metastases. Visceral metastases were categorized as adrenal, brain, liver, lung, lymph node, or other intra-abdominal lesions. The secondary outcome was overall survival (OS) amongst patients with and without BoMs. Results A total of 573 patients were included of which all patients had visceral metastases and 243 patients (42.4%) had BoMs. High PD-L1 expression was identified in 268 patients (46.8%). No significant difference in osPFS was observed between bone, liver, and intra-abdominal metastases (p=0.20 and p=0.76, respectively), with all showing shorter osPFS than other disease sites. There was no difference in the osPFS of extra-thoracic sites of disease in patients with high PD-L1 expression. There was significant discordance between visceral disease response and bone disease response to ICI (p=0.047). The presence of BoMs was an independent poor prognostic factor for OS (HR 1.26, 95%CI: 1.05-1.53, p=0.01). Conclusion Metastatic bone, liver, and intra-abdominal lesions demonstrated inferior clinical responses to ICI relative to other sites of disease. Additionally, the presence of bone and liver metastases were independent poor prognostic factors for overall survival. This real-world data suggests that BoMs respond poorly to ICI and may require treatment adjuncts for disease control.
Collapse
Affiliation(s)
- Annalise G. Abbott
- Section of Orthopaedic Surgery, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Daniel E. Meyers
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | | | - Igor Stukalin
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Alessandro Marro
- Departmenmt of Radiology, University of Calgary, Calgary, AB, Canada
| | - Shannon K. T. Puloski
- Section of Orthopaedic Surgery, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone & Joint Institute, University of Calgary, Calgary, AB, Canada
| | - Don G. Morris
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Winson Y. Cheung
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Michael J. Monument
- Section of Orthopaedic Surgery, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone & Joint Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Elaasser B, Arakil N, Mohammad KS. Bridging the Gap in Understanding Bone Metastasis: A Multifaceted Perspective. Int J Mol Sci 2024; 25:2846. [PMID: 38474093 PMCID: PMC10932255 DOI: 10.3390/ijms25052846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The treatment of patients with advanced cancer poses clinical problems due to the complications that arise as the disease progresses. Bone metastases are a common problem that cancer patients may face, and currently, there are no effective drugs to treat these individuals. Prostate, breast, and lung cancers often spread to the bone, causing significant and disabling health conditions. The bone is a highly active and dynamic tissue and is considered a favorable environment for the growth of cancer. The role of osteoblasts and osteoclasts in the process of bone remodeling and the way in which their interactions change during the progression of metastasis is critical to understanding the pathophysiology of this disease. These interactions create a self-perpetuating loop that stimulates the growth of metastatic cells in the bone. The metabolic reprogramming of both cancer cells and cells in the bone microenvironment has serious implications for the development and progression of metastasis. Insight into the process of bone remodeling and the systemic elements that regulate this process, as well as the cellular changes that occur during the progression of bone metastases, is critical to the discovery of a cure for this disease. It is crucial to explore different therapeutic options that focus specifically on malignancy in the bone microenvironment in order to effectively treat this disease. This review will focus on the bone remodeling process and the effects of metabolic disorders as well as systemic factors like hormones and cytokines on the development of bone metastases. We will also examine the various therapeutic alternatives available today and the upcoming advances in novel treatments.
Collapse
Affiliation(s)
| | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (B.E.); (N.A.)
| |
Collapse
|
14
|
Zhang R, Wang F, You Z, Deng D, He J, Yan W, Quan J, Wang J, Yan S. Approved immune checkpoint inhibitors in hepatocellular carcinoma: a large-scale meta-analysis and systematic review. J Cancer Res Clin Oncol 2024; 150:82. [PMID: 38319412 PMCID: PMC10847200 DOI: 10.1007/s00432-023-05539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/20/2023] [Indexed: 02/07/2024]
Abstract
A meta-analysis was performed to assess the benefits and safety profile of approved immune checkpoint inhibitors in hepatocellular carcinoma patients. Eligible studies were searched from Cochrane, Embase, and PubMed databases based on a well-established strategy. Following the exclusion of ineligible studies, 12 studies were included in this meta-analysis. Compared with control group, immune checkpoint inhibitors were associated with improved ORR (OR 3.03, 95% CI 2.26-4.05, P < 0.00001), SD (OR 0.77, 95% CI 0.62-0.95, P = 0.02), OS (HR 0.75, 95% CI 0.68-0.83, P < 0.00001), and PFS (HR 0.74, 95% CI 0.63-0.87, P < 0.0003). However, no significant differences were observed in DCR (OR 1.33, 95% CI 0.97-1.81, P = 0.07), PD (OR 0.90, 95% CI 0.67-1.21, P = 0.48), and all caused any-grade adverse events (OR 1.22, 95% CI 0.62-2.39, P = 0. 57), all caused ≥ grade 3 adverse events (OR 1.10, 95% CI 0.97-1.25, P = 0.14), treatment-related any-grade adverse events (OR 1.13, 95% CI 0.55-2.32, P = 0.73), and treatment-related ≥ grade 3 events (OR 0.82, 95% CI 0.34-1.97, P = 0.65) between the two groups. After subgroup analysis conducted, patients in the immune checkpoint inhibitor group compared with targeted drug group showed significant improvements in OS (HR 0.74, 95% CI 0.66-0.84, P < 0.00001) and PFS (HR 0.75, 95% CI 0.61-0.91, P = 0.004). Immune checkpoint inhibitors have demonstrated peculiar benefits in the treatment of HCC with an acceptable safety profile. Compared to targeted drugs, immune checkpoint inhibitors still offer advantages in the treatment of hepatocellular carcinoma. However, there is still considerable room for further improvement.
Collapse
Affiliation(s)
- Ruyi Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou, 550001, China
- Center for Eugenics Research, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Fang Wang
- Center for Eugenics Research, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Zhiyu You
- Department of Clinical Laboratory, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou, 550001, China
| | - Dongyang Deng
- Center for Eugenics Research, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Jiangyan He
- Center for Eugenics Research, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Wentao Yan
- Department of Clinical Laboratory, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou, 550001, China
| | - Jian Quan
- Department of Clinical Laboratory, Anshun Hospital of Guizhou Aviation Industry Group, Guizhou, 561099, China
| | - Jing Wang
- Department of Orthopedic, Kunming Hospital of Chinese Medicine, Kunming, 650051, China
| | - Shujuan Yan
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Tianhe District, No.9 Jinsui Road, Zhujiang New Town, Guangzhou, 510623, People's Republic of China.
- Department of Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, the Affiliated Hospital of Guizhou University, Guiyang, 550000, Guizhou Province, China.
| |
Collapse
|
15
|
Hiraga T, Nishida D, Horibe K. Primary tumor-induced immunity suppresses bone metastases of breast cancer in syngeneic immunocompetent mouse models. Bone 2024; 178:116944. [PMID: 37863157 DOI: 10.1016/j.bone.2023.116944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The immune system plays a crucial role in cancer development and progression. More than a century ago, mouse models showed that primary tumors suppressed the growth of newly implanted secondary tumors. This phenomenon, in which tumor-primed T cells mediate the rejection of tumor growth at a distant site, is known as concomitant tumor immunity. Here, we investigated the role of concomitant immunity in the development of breast cancer bone metastases using newly developed syngeneic immunocompetent mouse models. The presence of primary breast tumors developed by tumor cell injection into the mammary fat pads (MFPs) significantly reduced bone metastases of mouse breast cancer 4T1 and EMT6 cells induced by cell injection through the caudal artery (CA). Similar results were obtained when primary tumors were surgically resected prior to CA injection of tumor cells. In contrast, no inhibition was found when MFP and CA injections were performed using different cell combinations. Immunohistochemical studies revealed that the number of CD8+ T cells in bone metastases of 4T1 and EMT6 cells was significantly increased in the presence of primary tumors. The primary tumor-induced inhibition of bone metastases was not reproduced in T cell-deficient athymic nude mice. Furthermore, depletion of CD8+ T cells using an anti-CD8α antibody also abolished the primary tumor-induced inhibition of bone metastases. Taken together, these results suggest that immune cell priming by orthotopic breast tumors inhibits the development of breast cancer bone metastases, which is predominantly mediated by CD8+ cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan.
| | - Daisuke Nishida
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Kanji Horibe
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
16
|
Liu S, Wang Z, Wei Q, Duan X, Liu Y, Wu M, Ding J. Biomaterials-enhanced bioactive agents to efficiently block spinal metastases of cancers. J Control Release 2023; 363:721-732. [PMID: 37741462 DOI: 10.1016/j.jconrel.2023.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
The spine is the most common site of bone metastases, as 20%-40% of cancer patients suffer from spinal metastases. Treatments for spinal metastases are scarce and palliative, primarily aiming at relieving bone pain and preserving neurological function. The bioactive agents-mediated therapies are the most effective modalities for treating spinal metastases because they achieve systematic and specific tumor regression. However, the clinical applications of some bioactive agents are limited due to the lack of targeting capabilities, severe side effects, and vulnerability of drug resistance. Fortunately, advanced biomaterials have been developed as excipients to enhance these treatments, including chemotherapy, phototherapy, magnetic hyperthermia therapy, and combination therapy, by improving tumor targeting and enabling sustaining and stimuli-responsive release of various therapeutic agents. Herein, the review summarizes the development of biomaterials-mediated bioactive agents for enhanced treatments of spinal metastases and predicts future research trends.
Collapse
Affiliation(s)
- Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, PR China
| | - Qi Wei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China; Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, PR China
| | - Xuefeng Duan
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Yang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, 388 Yuhangtang Road, Hangzhou 310058, PR China.
| |
Collapse
|
17
|
Serra M, Rubes D, Schinelli S, Paolillo M. Small Molecules against Metastatic Tumors: Concrete Perspectives and Shattered Dreams. Cancers (Basel) 2023; 15:4173. [PMID: 37627201 PMCID: PMC10453213 DOI: 10.3390/cancers15164173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis is the main cause of anti-cancer therapy failure, leading to unfavorable prognosis for patients. The true challenge to increase cancer patient life expectancy by making cancer a chronic disease with periodic but manageable relapses relies on the development of efficient therapeutic strategies specifically directed against key targets in the metastatic process. Traditional chemotherapy with classical alkylating agents, microtubule inhibitors, and antimetabolites has demonstrated its limited efficacy against metastatic cells due to their capacity to select chemo-resistant cell populations that undergo epithelial-to-mesenchymal transition (EMT), thus promoting the colonization of distant sites that, in turn, sustain the initial metastatic process. This scenario has prompted efforts aimed at discovering a wide variety of small molecules and biologics as potential anti-metastatic drugs directed against more specific targets known to be involved in the various stages of metastasis. In this short review, we give an overview of the most recent advances related to important families of antimetastatic small molecules: intracellular tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, KRAS inhibitors, and integrin antagonists. Although the majority of these small molecules are not yet approved and not available in the drug market, any information related to their stage of development could represent a precious and valuable tool to identify new targets in the endless fight against metastasis.
Collapse
Affiliation(s)
- Massimo Serra
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.R.); (S.S.); (M.P.)
| | | | | | | |
Collapse
|
18
|
Kähkönen TE, Halleen JM, MacRitchie G, Andersson RM, Bernoulli J. Insights into immuno-oncology drug development landscape with focus on bone metastasis. Front Immunol 2023; 14:1121878. [PMID: 37475868 PMCID: PMC10355372 DOI: 10.3389/fimmu.2023.1121878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Bone is among the main sites of metastasis in breast, prostate and other major cancers. Bone metastases remain incurable causing high mortality, severe skeletal-related effects and decreased quality of life. Despite the success of immunotherapies in oncology, no immunotherapies are approved for bone metastasis and no clear benefit has been observed with approved immunotherapies in treatment of bone metastatic disease. Therefore, it is crucial to consider unique features of tumor microenvironment in bone metastasis when developing novel therapies. The vicious cycle of bone metastasis, referring to crosstalk between tumor and bone cells that enables the tumor cells to grow in the bone microenvironment, is a well-established concept. Very recently, a novel osteoimmuno-oncology (OIO) concept was introduced to the scientific community. OIO emphasizes the significance of interactions between tumor, immune and bone cells in promoting tumor growth in bone metastasis, and it can be used to reveal the most promising targets for bone metastasis. In order to provide an insight into the current immuno-oncology drug development landscape, we used 1stOncology database, a cancer drug development resource to identify novel immunotherapies in preclinical or clinical development for breast and prostate cancer bone metastasis. Based on the database search, 24 immunotherapies were identified in preclinical or clinical development that included evaluation of effects on bone metastasis. This review provides an insight to novel immuno-oncology drug development in the context of bone metastasis. Bone metastases can be approached using different modalities, and tumor microenvironment in bone provides many potential targets for bone metastasis. Noting current increasing interest in the field of OIO, more therapeutic opportunities that primarily target bone metastasis are expected in the future.
Collapse
Affiliation(s)
| | | | | | | | - Jenni Bernoulli
- University of Turku, Institute of Biomedicine, Turku, Finland
| |
Collapse
|
19
|
Chen Y, Guo ZN, He RQ, Huang ZG, Luo JY, Tang W, Huang SN, Chen G. How has the field of metastatic breast cancer in bones evolved over the past 22 years? J Bone Oncol 2023; 40:100480. [PMID: 37251089 PMCID: PMC10209145 DOI: 10.1016/j.jbo.2023.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/19/2023] [Accepted: 04/08/2023] [Indexed: 05/31/2023] Open
Abstract
Background Although knowledge on metastatic breast cancer in bones (MBCB) has increased rapidly over the past 22 years, a comprehensive and objective bibliometric analysis is still lacking. Materials and methods We used R, VOSviewer, and Citespace software to conduct a bibliometric analysis of 5,497 papers on MBCB from the Web of Science Core Collection (WOSCC) using author, institution, country/region, citation, and keyword indicators. Results A general strong sense of scholarly collaboration was noted in the MBCB field at the author, research institution, and country/region levels. We discovered some outstanding authors and highly productive institutions, but with less collaboration with other academic groups. Unbalanced and uncoordinated developments were observed among countries/regions in the field of MBCB research. We also found that by using various indicators and applying different analysis methods to them, we were able to broadly identify primary clinical practices, relevant clinical experiments, and directions for bioinformatics regarding MBCB, changes over the past 22 years, and current challenges in the field. The development of knowledge on MBCB is progressing greatly; however, MBCB is still incurable. Conclusion This study is the first to use bibliometrics to provide an overall analysis of the scientific output of MBCB studies. Palliative therapies for MBCB are mostly in a mature state. However, research on the molecular mechanisms and immune response to tumors related to the development of treatments to cure MBCB remains relatively immature. Therefore, further research should be undertaken in this area.
Collapse
Affiliation(s)
- Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Zhen-Ning Guo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Jia-Yuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Wei Tang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, No. 71 Hedi Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, No. 71 Hedi Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| |
Collapse
|
20
|
Tomaciello M, Conte M, Montinaro FR, Sabatini A, Cunicella G, Di Giammarco F, Tini P, Gravina GL, Cortesi E, Minniti G, De Vincentis G, Frantellizzi V, Marampon F. Abscopal Effect on Bone Metastases from Solid Tumors: A Systematic Review and Retrospective Analysis of Challenge within a Challenge. Biomedicines 2023; 11:biomedicines11041157. [PMID: 37189775 DOI: 10.3390/biomedicines11041157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Abscopal effect (AE) describes the ability of radiotherapy (RT) to induce immune-mediated responses in nonirradiated distant metastasis. Bone represents the third most frequent site of metastasis and an immunologically favorable environment for the proliferation of cancer cells. We revised the literature, searching documented cases of AE involving bone metastases (BMs) and evaluated the incidence of AE involving BMs in patients requiring palliative RT on BMs or non-BMs treated at our department. METHODS Articles published in the PubMed/MEDLINE database were selected using the following search criteria: ((abscopal effect)) AND ((metastases)). Patients with BMs, who underwent performed bone scintigraphy before and at least 2-3 months after RT, were selected and screened between January 2015 and July 2022. AE was defined as an objective response according to the scan bone index for at least one nonirradiated metastasis at a distance > 10 cm from the irradiated lesion. The primary endpoint was the rate of AE on BMs. RESULTS Ten cases experiencing AE of BMs were identified from the literature and eight among our patients. CONCLUSIONS The analysis performed here suggests the use of hypofractionated radiotherapy as the only triggering factor for AE of BMs through the activation of the immune response.
Collapse
Affiliation(s)
- Miriam Tomaciello
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Radiotherapy, Sapienza University of Rome, 00161 Rome, Italy
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Nuclear Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Francesca Romana Montinaro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Radiotherapy, Sapienza University of Rome, 00161 Rome, Italy
| | - Arianna Sabatini
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Oncology, Sapienza University of Rome, 00161 Rome, Italy
| | - Giorgia Cunicella
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Radiotherapy, Sapienza University of Rome, 00161 Rome, Italy
| | - Federico Di Giammarco
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Radiotherapy, Sapienza University of Rome, 00161 Rome, Italy
| | - Paolo Tini
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Enrico Cortesi
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Oncology, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Radiotherapy, Sapienza University of Rome, 00161 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Nuclear Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Nuclear Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Radiotherapy, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
21
|
Lamouline A, Bersini S, Moretti M. In vitro models of breast cancer bone metastasis: analyzing drug resistance through the lens of the microenvironment. Front Oncol 2023; 13:1135401. [PMID: 37182144 PMCID: PMC10168004 DOI: 10.3389/fonc.2023.1135401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Even though breast cancers usually have a good outcome compared to other tumors, the cancer can progress and create metastases in different parts of the organism, the bone being a predilection locus. These metastases are usually the cause of death, as they are mostly resistant to treatments. This resistance can be caused by intrinsic properties of the tumor, such as its heterogeneity, but it can also be due to the protective role of the microenvironment. By activating signaling pathways protecting cancer cells when exposed to chemotherapy, contributing to their ability to reach dormancy, or even reducing the amount of drug able to reach the metastases, among other mechanisms, the specificities of the bone tissue are being investigated as important players of drug resistance. To this date, most mechanisms of this resistance are yet to be discovered, and many researchers are implementing in vitro models to study the interaction between the tumor cells and their microenvironment. Here, we will review what is known about breast cancer drug resistance in bone metastasis due to the microenvironment and we will use those observations to highlight which features in vitro models should include to properly recapitulate these biological aspects in vitro. We will also detail which elements advanced in vitro models should implement in order to better recapitulate in vivo physiopathology and drug resistance.
Collapse
Affiliation(s)
- Anaïs Lamouline
- Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Simone Bersini
- Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Matteo Moretti
- Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
22
|
Danziger N, Sokol ES, Graf RP, Hiemenz MC, Maule J, Parimi V, Palmieri C, Pusztai L, Ross JS, Huang RSP. Variable Landscape of PD-L1 Expression in Breast Carcinoma as Detected by the DAKO 22C3 Immunohistochemistry Assay. Oncologist 2023; 28:319-326. [PMID: 36866462 PMCID: PMC10078903 DOI: 10.1093/oncolo/oyad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/09/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND In 2020, pembrolizumab was approved as a therapy for triple-negative breast cancer (TNBC) with the companion diagnostic DAKO 22C3 programmed death ligand-1 (PD-L1) immunohistochemistry assay. The study aimed to determine the landscape of PD-L1 expression as detected by the DAKO 22C3 PD-L1 assay in breast cancer subtypes and compare the clinicopathologic and genomic characteristics of PD-L1 positive and negative TNBC. METHODS PD-L1 expression using the DAKO 22C3 antibody was scored using a combined positive score (CPS) and positive status was defined as CPS ≥10. Comprehensive genomic profiling was performed using the FoundationOne CDx assay. RESULTS Of the 396 BC patients stained with DAKO 22C3, the majority were HR+/HER2- and TNBC (42% and 36%, respectively). Median PD-L1 expression and frequency of CPS ≥10 was highest in TNBC cases (median: 7.5, 50% CPS ≥10) and lowest in the HR+/HER2- group (median: 1.0, 15.5% CPS ≥10) (P < .0001). A comparison of PD-L1 positive and PD-L1 negative TNBC demonstrated no significant differences in clinicopathologic or genomic characteristics. TNBC tissue samples from the breast did have an observed enrichment for PD-L1 positivity compared to TNBC tissue samples from a metastatic site (57% vs. 44%), but this was not statistically significant (P = .1766). In the HR+/HER2- group, genomic alterations in TP53, CREBBP, and CCNE1 were more prevalent and genomic loss of heterozygosity was higher in the PD-L1(+) group compared to the PD-L1(-) group. CONCLUSIONS The subtypes of breast cancer have distinct patterns of PD-L1 expression, supporting that further research of immunotherapies may include specific evaluation of optimum cutoffs for non-TNBC patients. In TNBC, PD-L1 positivity is not associated with other clinicopathologic or genomic features and should be integrated into future studies of immunotherapy efficacy.
Collapse
Affiliation(s)
| | | | - Ryon P Graf
- Foundation Medicine, Inc., Cambridge, MA, USA
| | | | - Jake Maule
- Foundation Medicine, Inc., Cambridge, MA, USA
| | | | - Carlo Palmieri
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Lajos Pusztai
- The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, UK
| | - Jeffrey S Ross
- Foundation Medicine, Inc., Cambridge, MA, USA
- Departments of Pathology and Urology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | | |
Collapse
|
23
|
Ihle CL, Wright-Hobart SJ, Owens P. Therapeutics targeting the metastatic breast cancer bone microenvironment. Pharmacol Ther 2022; 239:108280. [DOI: 10.1016/j.pharmthera.2022.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
|
24
|
Lian Q, Liu C, Chen F, Wang B, Wang M, Qiao S, Guan Z, Jiang S, Wang Z. Orthopedic therapeutic surgery for bone metastasis of liver cancer: Clinical efficacy and prognostic factors. Front Surg 2022; 9:957674. [DOI: 10.3389/fsurg.2022.957674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
ObjectivesIn this study, the objectives were to investigate the clinical efficacy of orthopedic therapeutic surgery (OTS) in patients with bone metastasis of liver cancer and explore the prognostic factors.MethodsThe electronic medical records of patients with bone metastasis of liver cancer in the Third Affiliated Hospital of Naval Medical University from September 2016 to August 2021 were retrospectively collected. A total of 53 patients were included. Patients were assigned to the OTS (n = 35) or the control group (n = 18) based on receiving orthopedic therapeutic surgery or conservative treatment. The pre/posttreatment Karnofsky Performance Status scale (KPS) and numeric rating scale (NRS) scores were compared. Univariate and multivariate Cox regression analyses were used to explore the prognostic factors affecting survival after bone metastasis. Logistic regression analyses were adopted to discover potential factors that contributed to greater KPS score improvement.ResultsThe axial bone accounted for 69.8% of all bone metastases. The proportion of multiple bone metastases was 52.8%. After surgery, the median KPS score of the OTS group increased from 60 to 80 (p < 0.001), and the median increase in the OTS group was higher than that of the control group (p = 0.033). The median NRS score of the OTS group declined from 6 to 2 after surgery (p < 0.001), and the median decline in the OTS group was higher (p = 0.001). The median survival was 10 months in the OTS group vs. 6 months in the control group (p < 0.001). Higher pretreatment KPS scores, undergoing liver primary lesion surgery, and undergoing orthopedic therapeutic surgery were protective factors of survival. Undergoing orthopedic therapeutic surgery greatly improved the KPS score.ConclusionsOrthopedic therapeutic surgery for bone metastasis of liver cancer provides benefits to the quality of life. Patients who have their primary liver lesions removed, undergo orthopedic therapeutic surgery, and have a better physical condition before treatment tend to have longer survival.
Collapse
|
25
|
Wang B, Bai J, Tian B, Chen H, Yang Q, Chen Y, Xu J, Zhang Y, Dai H, Ma Q, Fei Z, Wang H, Xu F, Zhou X, Wang C. Genetically Engineered Hematopoietic Stem Cells Deliver TGF-β Inhibitor to Enhance Bone Metastases Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201451. [PMID: 35948516 PMCID: PMC9534984 DOI: 10.1002/advs.202201451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Owing to the immune microenvironment of bones and low selectivity of the drug, patients with bone metastases often respond poorly to immunotherapy. In this study, programmed cell death protein 1 (PD1)-expressing hematopoietic stem cells (HSCs) are genetically engineered for bone-targeted delivery of the transforming growth factor beta (TGF-β) small-molecule inhibitor SB-505124 (SB@HSCs-PD-1). Intriguingly, compared to anti-PD-L1 monoclonal antibodies, as "living drugs", HSCs-PD-1 not only show great targeting ability to the bone marrow, but are also able to reduplicate themselves within the bone marrow niche and continuously express PD-1 molecules. The SB released from HSCs-PD-1 competitively bound to TGF-β receptors on CD4+ T cells and facilitate CD4+ T cell differentiation to helper T (TH )1 and TH 2 cells, thereby reprogramming the local immunosuppressive milieu of the bone marrow. Additionally, HSCs-PD-1 can block programmed death-ligand 1 on tumor and myeloid cells, resulting in reinvigorated anti-tumor immunity of T cells. In conclusion, in the present study, an alternative cell engineering strategy is delineated for immune checkpoint blockade therapy, to target bone metastasis using HSCs as a platform, which shows great promise in the treatment of bone metastases.
Collapse
Affiliation(s)
- Beilei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Jinyu Bai
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsu215004China
| | - Bo Tian
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsu215004China
| | - Hao Chen
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsu215004China
| | - Qianyu Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Yitong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Yue Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Qingle Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Ziying Fei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Heng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Fang Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Xiaozhong Zhou
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsu215004China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| |
Collapse
|
26
|
An Integrative Multi-Omics Analysis Based on Nomogram for Predicting Prostate Cancer Bone Metastasis Incidence. Genet Res (Camb) 2022; 2022:8213723. [PMID: 36245556 PMCID: PMC9537037 DOI: 10.1155/2022/8213723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background The most common site of prostate cancer metastasis is bone tissue with many recent studies having conducted genomic and clinical research regarding bone metastatic prostate cancer. However, further work is needed to better define those patients that are at an elevated risk of such metastasis. Methods SEER and TCGA databases were searched to develop a nomogram for predicting prostate cancer bone metastasis. Results Herein, we leveraged the Surveillance, Epidemiology, and End Results (SEER) database to construct a predictive nomogram capable of readily and accurately predicted the odds of bone metastasis in prostate cancer patients. This nomogram was utilized to assign patients with prostate cancer included in The Cancer Genome Atlas (TCGA) to cohorts at a high or low risk of bone metastasis (HRBM and LRBM, respectively). Comparisons of these LRBM and HRBM cohorts revealed marked differences in mutational landscapes between these patient cohorts, with increased frequencies of gene fusions, somatic copy number variations (CNVs), and single nucleotide variations (SNVs), particularly in the P53 gene, being evident in the HRBM cohort. We additionally identified lncRNAs, miRNAs, and mRNAs that were differentially expressed between these two patient cohorts and used them to construct a competing endogenous RNA (ceRNA) network. Moreover, three weighted gene co-expression network analysis (WGCNA) modules were constructed from the results of these analyses, with KIF14, MYH7, and COL10A1 being identified as hub genes within these modules. We further found immune response activity levels in the HRBM cohort to be elevated relative to that in the LRBM cohort, with single sample gene enrichment analysis (ssGSEA) scores for the immune checkpoint signature being increased in HRBM patient samples relative to those from LRBM patients. Conclusion We successfully developed a nomogram capable of readily detecting patients with prostate cancer at an elevated risk of bone metastasis.
Collapse
|
27
|
Litak J, Czyżewski W, Szymoniuk M, Sakwa L, Pasierb B, Litak J, Hoffman Z, Kamieniak P, Roliński J. Biological and Clinical Aspects of Metastatic Spinal Tumors. Cancers (Basel) 2022; 14:cancers14194599. [PMID: 36230523 PMCID: PMC9559304 DOI: 10.3390/cancers14194599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Spine metastases are a common life-threatening complication of advanced-stage malignancies and often result in poor prognosis. Symptomatic spine metastases develop in the course of about 10% of malignant neoplasms. Therefore, it is essential for contemporary medicine to understand metastatic processes in order to find appropriate, targeted therapeutic options. Our literature review aimed to describe the up-to-date knowledge about the molecular pathways and biomarkers engaged in the spine’s metastatic processes. Moreover, we described current data regarding bone-targeted treatment, the emerging targeted therapies, radiotherapy, and immunotherapy used for the treatment of spine metastases. We hope that knowledge comprehensively presented in our review will contribute to the development of novel drugs targeting specific biomarkers and pathways. The more we learn about the molecular aspects of cancer metastasis, the easier it will be to look for treatment methods that will allow us to precisely kill tumor cells. Abstract Spine metastases are a common life-threatening complication of advanced-stage malignancies and often result in poor prognosis. Symptomatic spine metastases develop in the course of about 10% of malignant neoplasms. Therefore, it is essential for contemporary medicine to understand metastatic processes in order to find appropriate, targeted therapeutic options. Thanks to continuous research, there appears more and more detailed knowledge about cancer and metastasis, but these transformations are extremely complicated, e.g., due to the complexity of reactions, the variety of places where they occur, or the participation of both tumor cells and host cells in these transitions. The right target points in tumor metastasis mechanisms are still being researched; that will help us in the proper diagnosis as well as in finding the right treatment. In this literature review, we described the current knowledge about the molecular pathways and biomarkers engaged in metastatic processes involving the spine. We also presented a current bone-targeted treatment for spine metastases and the emerging therapies targeting the discussed molecular mechanisms.
Collapse
Affiliation(s)
- Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Technologies and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, Lekarska 4, 26-600 Radom, Poland
- Correspondence:
| | - Joanna Litak
- St. John’s Cancer Center in Lublin, Jaczewskiego 7, 20-090 Lublin, Poland
| | - Zofia Hoffman
- Student Scientific Society, Medical University of Lublin, Al. Racławickie 1, 20-059 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| |
Collapse
|
28
|
Cheng K, Wang Y, Chen Y, Zhu J, Qi X, Wang Y, Zou Y, Lu Q, Li Z. Multisite Radiotherapy Combined With Tislelizumab for Metastatic Castration-Resistant Prostate Cancer With Second-Line and Above Therapy Failure: Study Protocol for an Open-Label, Single-Arm, Phase Ib/II Study. Front Oncol 2022; 12:888707. [PMID: 35875078 PMCID: PMC9300836 DOI: 10.3389/fonc.2022.888707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background Tislelizumab combined with radiotherapy as a salvage treatment for patients with end-stage metastatic castration-resistant prostate cancer (mCRPC) is not reported. This study aimed to describe a protocol to evaluate the safety and efficacy of multisite radiotherapy combined with tislelizumab as a salvage therapy for mCRPC in patients who had at least one second-line treatment failure. Methods The study included patients with mCRPC who had at least one lesion suitable for radiotherapy and failed androgen deprivation therapy (ADT), followed by at least one novel second-line endocrine therapy. All patients received tislelizumab monotherapy induction therapy for two cycles, then combined with multisite radiotherapy for one cycle, followed by tislelizumab maintenance therapy, until either disease progressed or the patient developed unacceptable toxicity. Radiation methods and lesions were individually selected according to the specified protocol. Primary endpoints included safety and objective response rate. Secondary endpoints included prostate-specific antigen (PSA) response rate, disease control rate, overall survival, radiographic progression-free survival (rPFS), and biochemical progression-free survival (bPFS). Furthermore, the exploratory endpoints included the identification of the predictive biomarkers and exploration of the correlation between biomarkers and the tumor response to the combined regimen. Discussion This study included three treatment stages to evaluate the efficacy of immunotherapy and the combination of immunotherapy and radiotherapy for patients with mCRPC who have had at least second-line treatment failure. Additionally, radiation-related and immune-related early and late toxicities were determined, respectively. Furthermore, the study also aimed to identify the predictive biomarkers associated with immunotherapy for treating mCRPC. Trial Registration https://www.chictr.org.cn/showproj.aspx?proj=126359, identifier ChiCTR2100046212.
Collapse
Affiliation(s)
- Ke Cheng
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Chen
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjie Zhu
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Xiaohui Qi
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Yachen Wang
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Yanqiu Zou
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Qiuhan Lu
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Zhiping Li
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Zhiping Li,
| |
Collapse
|
29
|
Bone Metastasis and Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer (NSCLC): Microenvironment and Possible Clinical Implications. Int J Mol Sci 2022; 23:ijms23126832. [PMID: 35743275 PMCID: PMC9224636 DOI: 10.3390/ijms23126832] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) develop bone metastasis (BoM) in more than 50% of cases during the course of the disease. This metastatic site can lead to the development of skeletal related events (SREs), such as severe pain, pathological fractures, spinal compression, and hypercalcemia, which reduce the patient’s quality of life. Recently, the treatment of advanced NSCLC has radically changed due to the advent of immunotherapy. Immune checkpoint inhibitors (ICI) alone or in combination with chemotherapy have become the main therapeutic strategy for advanced or metastatic NSCLC without driver gene mutations. Since survival has increased, it has become even more important to treat bone metastasis to prevent SRE. We know that the presence of bone metastasis is a negative prognostic factor. The lower efficacy of immunotherapy treatments in BoM+ patients could be induced by the presence of a particular immunosuppressive tumor and bone microenvironment. This article reviews the most important pre-clinical and clinical scientific evidence on the reasons for this lower sensitivity to immunotherapy and the need to combine bone target therapies (BTT) with immunotherapy to improve patient outcome.
Collapse
|
30
|
Asano Y, Yamamoto N, Demura S, Hayashi K, Takeuchi A, Kato S, Miwa S, Igarashi K, Higuchi T, Yonezawa H, Araki Y, Morinaga S, Saito S, Sone T, Kasahara K, Tsuchiya H. The Therapeutic Effect and Clinical Outcome of Immune Checkpoint Inhibitors on Bone Metastasis in Advanced Non-Small-Cell Lung Cancer. Front Oncol 2022; 12:871675. [PMID: 35433422 PMCID: PMC9010859 DOI: 10.3389/fonc.2022.871675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Introduction In advanced non-small-cell lung cancer (NSCLC), immune checkpoint inhibitors (ICIs) have been reported a better treatment outcome on primary lesions, however, the therapeutic effect on bone metastases has not been clarified. This study investigates the therapeutic effect of ICIs on bone metastases in advanced NSCLC. Methods The data of patients with advanced NSCLC, treated with ICIs from 2016 to 2019 at our hospital, were analyzed. The therapeutic effects of ICIs on primary lung and metastatic bone lesions, concomitant use of bone modifying agents (BMA), treatment outcomes, and frequency of immune-related adverse events (irAEs) and skeletal-related events (SREs) were investigated. Results A total of 29 patients were included (19 men and 10 women; mean age, 64.2 years). Among the ICIs, pembrolizumab was the most used (55.2%), and concomitant use of BMA was prevalent in 21 patients (zoledronic acid=1, denosumab=20). The therapeutic effect was partial response (PR) in 10.3% (n=3) on primary lung lesions by RECIST 1.1, complete response (CR) in 6.9% (n=2) and PR in 17.2% (n=5) on bone metastatic lesions by MDA criteria. ICIs suppressed the progression of bone metastasis in 21 cases (72.4%). All patients in CR and PR were treated with pembrolizumab and denosumab. SREs and irAEs were developed in 3.4% (n=1) and 20.7% (n=6), respectively. The median survival time after treatment with ICIs was 11.0 months. Concomitant therapy with ICIs and denosumab significantly prolonged the overall survival compared to ICI-only therapy (16.0 months vs. 2.5 months, p<0.01). Conclusions This study showed that treatment with ICIs may successfully suppress the progression of bone metastasis in advanced NSCLC. Pembrolizumab with denosumab had the highest therapeutic effect on both primary lung lesions and bone metastases. Systemic treatment with this combination and conservative treatment of bone metastasis could be one of the options in the treatment of advanced NSCLC.
Collapse
Affiliation(s)
- Yohei Asano
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Satoru Demura
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Akihiko Takeuchi
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- *Correspondence: Akihiko Takeuchi,
| | - Satoshi Kato
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takashi Higuchi
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hirotaka Yonezawa
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yoshihiro Araki
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Sei Morinaga
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shiro Saito
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takashi Sone
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Kazuo Kasahara
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
31
|
A Tailored Approach for Appendicular Impending and Pathologic Fractures in Solid Cancer Metastases. Cancers (Basel) 2022; 14:cancers14040893. [PMID: 35205641 PMCID: PMC8870648 DOI: 10.3390/cancers14040893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Patients with bone metastases often suffer with complications, such as bone fractures, which have a substantial negative impact on clinical outcomes. To optimize clinical results, a tailored approach should be defined for managing impending or pathologic fractures in each individual case. The ability to control systemic disease, the extent, location and nature of bone metastases, and the biology of the underlying tumor, are the main factors that will define the strategy to follow. Abstract Advances in medical and surgical treatment have played a major role in increasing the survival rates of cancer patients with metastatic bone disease. The clinical course of patients with bone metastases is often impaired by bone complications, such as bone fractures, which have a substantial negative impact on clinical outcomes. To optimize clinical results and prevent a detrimental impact on patients’ health, a tailored approach should be defined for any given patient. The optimal management of impending or pathologic fractures is unknown and relies on a multidisciplinary approach to tailor clinical decisions to each individual patient. The ability to control systemic disease, the extent, location and nature of bone metastases, and the biology of the underlying tumor, are the main factors that will define the strategy to follow. The present review covers the most recent data regarding impending and pathologic fractures in patients with bone metastases, and discusses the medical and surgical management of patients presenting with metastatic bone disease in different clinical settings.
Collapse
|