1
|
Gui C, Meyer G. Transcriptional evidence for transient regulation of muscle regeneration by brown adipose transplant in the rotator cuff. J Orthop Res 2024; 42:2414-2425. [PMID: 38967130 DOI: 10.1002/jor.25933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Chronic rotator cuff (RC) injuries can lead to a degenerative microenvironment that favors chronic inflammation, fibrosis, and fatty infiltration. Recovery of muscle structure and function will ultimately require a complex network of muscle resident cells, including satellite cells, fibro-adipogenic progenitors (FAPs), and immune cells. Recent work suggests that signaling from adipose tissue and progenitors could modulate regeneration and recovery of function, particularly promyogenic signaling from brown or beige adipose (BAT). In this study, we sought to identify cellular targets of BAT signaling during muscle regeneration using a RC BAT transplantation mouse model. Cardiotoxin injured supraspinatus muscle had improved mass at 7 days postsurgery (dps) when transplanted with exogeneous BAT. Transcriptional analysis revealed transplanted BAT modulates FAP signaling early in regeneration likely via crosstalk with immune cells. However, this conferred no long-term benefit as muscle mass and function were not improved at 28 dps. To eliminate the confounding effects of endogenous BAT, we transplanted BAT in the "BAT-free" uncoupling protein-1 diphtheria toxin fragment A (UCP1-DTA) mouse and here found improved muscle contractile function, but not mass at 28 dps. Interestingly, the transplanted BAT increased fatty infiltration in all experimental groups, implying modulation of FAP adipogenesis during regeneration. Thus, we conclude that transplanted BAT modulates FAP signaling early in regeneration, but does not grant long-term benefits.
Collapse
Affiliation(s)
- Chang Gui
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gretchen Meyer
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Neurology and Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Wan Y, Piao L, Xu S, Meng X, Huang Z, Inoue A, Wang H, Yue X, Jin X, Nan Y, Shi GP, Murohara T, Umegaki H, Kuzuya M, Cheng XW. Cathepsin S activity controls chronic stress-induced muscle atrophy and dysfunction in mice. Cell Mol Life Sci 2023; 80:254. [PMID: 37589754 PMCID: PMC10435624 DOI: 10.1007/s00018-023-04888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Exposure to chronic psychological stress (CPS) is an intractable risk factor for inflammatory and metabolic diseases. Lysosomal cysteinyl cathepsins play an important role in human pathobiology. Given that cathepsin S (CTSS) is upregulated in the stressed vascular and adipose tissues, we investigated whether CTSS participates in chronic stress-induced skeletal muscle mass loss and dysfunction, with a special focus on muscle protein metabolic imbalance and apoptosis. Eight-week-old male wildtype (CTSS+/+) and CTSS-knockout (CTSS-/-) mice were randomly assigned to non-stress and variable-stress groups. CTSS+/+ stressed mice showed significant losses of muscle mass, dysfunction, and fiber area, plus significant mitochondrial damage. In this setting, stressed muscle in CTSS+/+ mice presented harmful alterations in the levels of insulin receptor substrate 2 protein content (IRS-2), phospho-phosphatidylinositol 3-kinase, phospho-protein kinase B, and phospho-mammalian target of rapamycin, forkhead box-1, muscle RING-finger protein-1 protein, mitochondrial biogenesis-related peroxisome proliferator-activated receptor-γ coactivator-α, and apoptosis-related B-cell lymphoma 2 and cleaved caspase-3; these alterations were prevented by CTSS deletion. Pharmacological CTSS inhibition mimics its genetic deficiency-mediated muscle benefits. In C2C12 cells, CTSS silencing prevented stressed serum- and oxidative stress-induced IRS-2 protein reduction, loss of the myotube myosin heavy chain content, and apoptosis accompanied by a rectification of investigated molecular harmful changes; these changes were accelerated by CTSS overexpression. These findings demonstrated that CTSS plays a role in IRS-2-related protein anabolism and catabolism and cell apoptosis in stress-induced muscle wasting, suggesting a novel therapeutic strategy for the control of chronic stress-related muscle disease in mice under our experimental conditions by regulating CTSS activity.
Collapse
Affiliation(s)
- Ying Wan
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.
| | - Shengnan Xu
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
| | - Xiangkun Meng
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Zhe Huang
- Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Aiko Inoue
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4660855, Japan
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
| | - Xueling Yue
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
| | - Xueying Jin
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
| | - Yongshan Nan
- Department of Anesthesiology, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China.
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi-ken, 466-8550, Japan
| | - Hiroyuki Umegaki
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4660855, Japan
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi-ken, 466-8550, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi-ken, 466-8550, Japan
- Meitetsu Hospital, Nagoya, Aichi, 451-8511, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Wan Y, Piao L, Xu S, Inoue A, Meng X, Lei Y, Huang Z, Wang H, Yue X, Shi GP, Kuzuya M, Cheng XW. Cathepsin S deficiency improves muscle mass loss and dysfunction via the modulation of protein metabolism in mice under pathological stress conditions. FASEB J 2023; 37:e23086. [PMID: 37428652 DOI: 10.1096/fj.202300395rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
Cathepsin S (CTSS) is a widely expressed cysteinyl protease that has garnered attention because of its enzymatic and non-enzymatic functions under inflammatory and metabolic pathological conditions. Here, we examined whether CTSS participates in stress-related skeletal muscle mass loss and dysfunction, focusing on protein metabolic imbalance. Eight-week-old male wildtype (CTSS+/+ ) and CTSS-knockout (CTSS-/- ) mice were randomly assigned to non-stress and variable-stress groups for 2 weeks, and then processed for morphological and biochemical studies. Compared with non-stressed mice, stressed CTSS+/+ mice showed significant losses of muscle mass, muscle function, and muscle fiber area. In this setting, the stress-induced harmful changes in the levels of oxidative stress-related (gp91phox and p22phox ,), inflammation-related (SDF-1, CXCR4, IL-1β, TNF-α, MCP-1, ICAM-1, and VCAM-1), mitochondrial biogenesis-related (PPAR-γ and PGC-1α) genes and/or proteins and protein metabolism-related (p-PI3K, p-Akt, p-FoxO3α, MuRF-1, and MAFbx1) proteins; and these alterations were rectified by CTSS deletion. Metabolomic analysis revealed that stressed CTSS-/- mice exhibited a significant improvement in the levels of glutamine metabolism pathway products. Thus, these findings indicated that CTSS can control chronic stress-related skeletal muscle atrophy and dysfunction by modulating protein metabolic imbalance, and thus CTSS was suggested to be a promising new therapeutic target for chronic stress-related muscular diseases.
Collapse
Affiliation(s)
- Ying Wan
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
| | - Limei Piao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
| | - Shengnan Xu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
| | - Aiko Inoue
- Institute of Nano-Life-Systems, Innovation for Future Society, Nagoya University Institutes of Innovation for Future Society, Nagoya, Japan
| | - Xiangkun Meng
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanna Lei
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
| | - Zhe Huang
- Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hailong Wang
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
| | - Xueling Yue
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Masafumi Kuzuya
- Institute of Nano-Life-Systems, Innovation for Future Society, Nagoya University Institutes of Innovation for Future Society, Nagoya, Japan
- Meitetsu Hospital, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
| |
Collapse
|
4
|
Piao L, Huang Z, Inoue A, Kuzuya M, Cheng XW. Human umbilical cord-derived mesenchymal stromal cells ameliorate aging-associated skeletal muscle atrophy and dysfunction by modulating apoptosis and mitochondrial damage in SAMP10 mice. Stem Cell Res Ther 2022; 13:226. [PMID: 35659361 PMCID: PMC9166592 DOI: 10.1186/s13287-022-02895-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Skeletal muscle mass and function losses in aging individuals are associated with quality of life deterioration and disability. Mesenchymal stromal cells exert immunomodulatory and anti-inflammatory effects and could yield beneficial effects in aging-related degenerative disease. Methods and results We investigated the efficacy of umbilical cord-derived mesenchymal stromal cells (UC-MSCs) on sarcopenia-related skeletal muscle atrophy and dysfunction in senescence-accelerated mouse prone 10 (SAMP10) mice. We randomly assigned 24-week-old male SAMP10 mice to a UC-MSC treatment group and control group. At 12 weeks post-injection, the UC-MSC treatment had ameliorated sarcopenia-related muscle changes in performance, morphological structures, and mitochondria biogenesis, and it enhanced the amounts of proteins or mRNAs for myosin heavy chain, phospho-AMP-activated protein kinase, phospho-mammalian target of rapamycin, phospho-extracellular signal-regulated kinase1/2, peroxisome proliferator-activated receptor-γ coactivator, GLUT-4, COX-IV, and hepatocyte growth factor in both gastrocnemius and soleus muscles, and it reduced the levels of proteins or mRNAs for cathepsin K, cleaved caspase-3/-8, tumor necrosis factor-α, monocyte chemoattractant protein-1, and gp91phox mRNAs. The UC-MSC treatment retarded mitochondria damage, cell apoptosis, and macrophage infiltrations, and it enhanced desmin/laminin expression and proliferating and CD34+/Integrin α7+ cells in both types of skeletal muscle of the SAMP10 mice. In vitro, we observed increased levels of HGF, PAX-7, and MoyD mRNAs at the 4th passage of UC-MSCs. Conclusions Our results suggest that UC-MSCs can improve sarcopenia-related skeletal muscle atrophy and dysfunction via anti-apoptosis, anti-inflammatory, and mitochondrial biogenesis mechanisms that might be mediated by an AMPK-PGC1-α axis, indicating that UC-MSCs may provide a promising treatment for sarcopenia/muscle diseases.
Collapse
Affiliation(s)
- Limei Piao
- Department of Human Life Cord Applied Cell Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Aichi-ken, 466-8550, Japan.,Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
| | - Zhe Huang
- Department of Human Life Cord Applied Cell Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Aichi-ken, 466-8550, Japan.
| | - Aiko Inoue
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi-ken, 466-8550, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi-ken, 466-8550, Japan.,Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichi-ken, 466-8550, Japan
| | - Xian Wu Cheng
- Department of Human Life Cord Applied Cell Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Aichi-ken, 466-8550, Japan. .,Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.
| |
Collapse
|