1
|
Li X, Long J, Yao C, Liu X, Li N, Zhou Y, Li D, Xiong G, Wang K, Hao Y, Chen K, Zhou Z, Ji A, Luo P, Cai T. The role of BTG2/PI3K/AKT pathway-mediated microglial activation in T-2 toxin-induced neurotoxicity. Toxicol Lett 2024; 400:81-92. [PMID: 39147216 DOI: 10.1016/j.toxlet.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/07/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
T-2 toxin is one of the mycotoxins widely distributed in human food and animal feed. Our recent work has shown that microglial activation may contribute to T-2 toxin-induced neurotoxicity. However, the molecular mechanisms involved need to be further clarified. To address this, we employed high-throughput transcriptome sequencing and found altered B cell translocation gene 2 (BTG2) expression levels in microglia following T-2 toxin treatment. It has been shown that altered BTG2 expression is involved in a range of neurological pathologies, but whether it's involved in the regulation of microglial activation is unclear. The aim of this study was to investigate the role of BTG2 in T-2 toxin-induced microglial activation. The results of animal experiments showed that T-2 toxin caused neurobehavioral disorders and promoted the expression of microglial BTG2 and pro-inflammatory activation of microglia in hippocampus and cortical, while microglial inhibitor minocycline inhibited these changes. The results of in vitro experiments showed that T-2 toxin enhanced BTG2 expression and pro-inflammatory microglial activation, and inhibited BTG2 expression weakened T-2 toxin-induced microglial activation. Moreover, T-2 toxin activated PI3K/AKT and its downstream NF-κB signaling pathway, which could be reversed after knock-down of BTG2 expression. Meanwhile, the PI3K inhibitor LY294002 also blocked this process. Therefore, BTG2 may be involved in T-2 toxin's ability to cause microglial activation through PI3K/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Xiukuan Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jinyun Long
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaoling Liu
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Na Li
- Chongqing Yongchuan District Center for Disease Control and Prevention, Chongqing 402160, China
| | - Yumeng Zhou
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dawei Li
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Guiyuan Xiong
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Kexue Wang
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ailing Ji
- Department of Preventive Medicine, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China.
| | - Tongjian Cai
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
2
|
Min S, Zhang L, Zhang L, Liu F, Liu M. LncRNA MIR100HG affects the proliferation and metastasis of lung cancer cells through mediating the microRNA-5590-3p/DCBLD2 axis. Immun Inflamm Dis 2024; 12:e1223. [PMID: 38602284 PMCID: PMC11007817 DOI: 10.1002/iid3.1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVE The aim of this paper is to investigate the effect of long noncoding RNA (lncRNA) MIR100HG on the proliferation and metastasis of lung cancer cells by mediating the microRNA (miR)-5590-3p/DCBLD2 axis. METHODS RNA levels of MIR100HG, miR-5590-3p, and DCBLD2 in lung cancer tissues and cells were detected by quantitative reverse-transcription polymerase chain reaction, and protein level was assessed by Western blot. Effects of MIR100HG or miR-5590-3p on proliferation, migration, and invasion of lung cancer cells were detected by Cell Counting Kit-8, colony formation, and Transwell assays. Luciferase reporter assay and RNA-immunoprecipitation assay confirmed the target relationship between miR-5590-3p and MIR100HG or DCBLD2. RESULTS MIR100HG and DCBLD2 were highly expressed, while miR-5590-3p was lowly expressed in lung cancer tissues and cells. Silencing MIR100HG or upregulating miR-5590-3p impeded lung cancer cell proliferation, migration, and invasion. MIR100HG could up-regulate DCBLD2 by sponging miR-5590-3p. Downregulation of miR-5590-3p partly overturned the suppressive effect of silencing MIR100HG on lung cancer cell proliferation and metastasis, and overexpression of DCBLD2 also reversed the effect of overexpression of miR-5590-3p on lung cancer cell proliferation and metastasis. CONCLUSION LncRNA MIR100HG promotes lung cancer progression by targeting and negatively regulating DCBLD2 through binding with miR-5590-3p.
Collapse
Affiliation(s)
- Shengping Min
- Department of Microbiology and Parasitology, School of Basic Medical SciencesAnhui Medical UniversityHefeiAnhuiChina
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Linxiang Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Fangfang Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Miao Liu
- Department of Microbiology and Parasitology, School of Basic Medical SciencesAnhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
3
|
Long C, Song Y, Pan Y, Wu C. Identification of molecular subtypes and a risk model based on inflammation-related genes in patients with low grade glioma. Heliyon 2023; 9:e22429. [PMID: 38046156 PMCID: PMC10686866 DOI: 10.1016/j.heliyon.2023.e22429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Lower grade gliomas (LGGs) exhibit invasiveness and heterogeneity as distinguishing features. The outcome of patients with LGG differs greatly. Recently, more and more studies have suggested that infiltrating inflammation cells and inflammation-related genes (IRGs) play an essential role in tumorigenesis, prognosis, and treatment responses. Nevertheless, the role of IRGs in LGG remains unclear. In The Cancer Genome Atlas (TCGA) cohort, we conducted a thorough examination of the predictive significance of IRGs and identified 245 IRGs that correlated with the clinical prognosis of individuals diagnosed with LGG. Based on unsupervised cluster analysis, we identified two inflammation-associated molecular clusters, which presented different tumor immune microenvironments, tumorigenesis scores, and tumor stemness indices. Furthermore, a prognostic risk model including ten prognostic IRGs (ADRB2, CD274, CXCL12, IL12B, NFE2L2, PRF1, SFTPC, TBX21, TNFRSF11B, and TTR) was constructed. The survival analysis indicated that the IRGs risk model independently predicted the prognosis of patients with LGG, which was validated in an independent LGG cohort. Moreover, the risk model significantly correlated with the infiltrative level of immune cells, tumor mutation burden, expression of HLA and immune checkpoint genes, tumorigenesis scores, and tumor stemness indices in LGG. Additionally, we found that our risk model could predict the chemotherapy response of some drugs in patients with LGG. This study may enhance the advancement of personalized therapy and improve outcomes of LGG.
Collapse
Affiliation(s)
- Cheng Long
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ya Song
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yimin Pan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Changwu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
4
|
Ye F, Liang Y, Wang Y, Le Yang R, Luo D, Li Y, Jin Y, Han D, Chen B, Zhao W, Wang L, Chen X, Ma T, Kong X, Yang Q. Cancer-associated fibroblasts facilitate breast cancer progression through exosomal circTBPL1-mediated intercellular communication. Cell Death Dis 2023; 14:471. [PMID: 37495592 PMCID: PMC10372047 DOI: 10.1038/s41419-023-05986-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Breast cancer is the major common malignancy worldwide among women. Previous studies reported that cancer-associated fibroblasts (CAFs) showed pivotal roles in regulating tumor progression via exosome-mediated cellular communication. However, the detailed mechanism underlying the exosomal circRNA from CAFs in breast cancer progression remains ambiguous. Here, exosomal circRNA profiling of breast cancer-derived CAFs and normal fibroblasts (NFs) was detected by high-throughput sequencing, and upregulated circTBPL1 expression was identified in CAF exosomes. The exosomal circTBPL1 from CAFs could be transferred to breast cancer cells and promoted cell proliferation, migration, and invasion. Consistently, circTBPL1 knockdown in CAFs attenuated their tumor-promoting ability. Further exploration identified miR-653-5p as an inhibitory target of circTBPL1, and ectopic expression of miR-653-5p could partially reverse the malignant phenotypes induced by circTBPL1 overexpression in breast cancer. Additionally, TPBG was selected as a downstream target gene, and circTBPL1 could protect TPBG from miR-653-5p-mediated degradation, leading to enhanced breast cancer progression. Significantly, the accelerated tumor progression triggered by exosomal circTBPL1 from CAFs was confirmed in xenograft models. Taken together, these results revealed that exosomal circTBPL1 derived from CAFs contributed to cancer progression via miR-653-5p/TPBG pathway, indicating the potential of exosomal circTBPL1 as a biomarker and novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Fangzhou Ye
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yajie Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Robert Le Yang
- Shandong Experimental High School, 250001, Jinan, Shandong, P. R. China
| | - Dan Luo
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Yuhan Jin
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Tingting Ma
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Xiaoli Kong
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, P. R. China.
- Research Institute of Breast Cancer, Shandong University, 250012, Jinan, Shandong, P. R. China.
| |
Collapse
|
5
|
Yang W, Wei C, Cheng J, Ding R, Li Y, Wang Y, Yang Y, Wang J. BTG2 and SerpinB5, a novel gene pair to evaluate the prognosis of lung adenocarcinoma. Front Immunol 2023; 14:1098700. [PMID: 37006240 PMCID: PMC10064863 DOI: 10.3389/fimmu.2023.1098700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionLung adenocarcinoma (LUAD), as the most frequent pathological subtype of non−small cell lung cancer, is often characterized by poor prognosis and low 5-year survival rate. Exploriton of new biomarkers and accurate molecular mechanisms for effectively predicting the prognosis of LUAD patients is still necessary. Presently, BTG2 and SerpinB5, which play important roles in tumors, are studied as a gene pair for the first time with the aim of exploring whether they can be used as potential prognostic markers.MethodsUsing the bioinformatics method to explore whether BTG2 and SerpinB5 can become independent prognostic factors, and explore their clinical application value and whether they can be used as immunotherapeutic markers. In addition, we also verify the conclusions obtained from external datasets, molecular docking, and SqRT-PCR.ResultsThe results show that compared with normal lung tissue, BTG2 expression level was down-regulated and SerpinB5 was up-regulated in LUAD. Additionally, Kaplan–Meier survival analysis demonstrate that the prognosis of low expression level of BTG2 was poor, and that of high expression level of SerpinB5 was poor, suggesting that both of them can be used as independent prognostic factors. Moreover, the prognosis models of the two genes were constructed respectively in this study, and their prediction effect was verified by external data. Besides, ESTIMATE algorithm reveals the relationship between this gene pair and the immune microenvironment. Furthermore, patients with a high expression level of BTG2 and a low expression level of SerpinB5 have higher immunophenoscore for CTLA-4 and PD-1 inhibitors than patients with a low expression level of BTG2 and a high expression level of SerpinB5, indicating that such patients have a more obvious effect of immunotherapy.DiscussionCollectively, all the results demonstrate that BTG2 and SerpinB5 might serve as potential prognostic biomarkers and novel therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Ran Ding
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yonghua Wang
- College of Life Sciences, Northwest University, Shaanxi, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Yinfeng Yang, ; Jinghui Wang,
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Yinfeng Yang, ; Jinghui Wang,
| |
Collapse
|
6
|
Larrieux A, Sanjuán R. Cellular resistance to an oncolytic virus is driven by chronic activation of innate immunity. iScience 2022; 26:105749. [PMID: 36590165 PMCID: PMC9794979 DOI: 10.1016/j.isci.2022.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of cellular resistances to oncolytic viruses is an underexplored process that could compromise the efficacy of cancer virotherapy. Here, we isolated and characterized B16 mouse melanoma cells that evolved resistance to an oncolytic vesicular stomatitis virus (VSV-D51). RNA-seq revealed that resistance was associated to broad changes in gene expression, which typically involved chronic upregulation of interferon-stimulated genes. Innate immunity activation was maintained in the absence of the virus or other infection signals, and conferred cross-resistance to wild-type VSV and the unrelated Sindbis virus. Furthermore, we identified differentially expressed genes with no obvious role in antiviral immunity, such as Mnda, Psmb8 and Btn2a2, suggesting novel functions for these genes. Transcriptomic changes associated to VSV resistance were similar among B16 clones and in some clones derived from the mouse colon carcinoma cell line CT26, suggesting that oncolytic virus resistance involves certain conserved mechanisms and is therefore a potentially predictable process.
Collapse
Affiliation(s)
- Alejandra Larrieux
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, València 46980, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, València 46980, Spain,Corresponding author
| |
Collapse
|
7
|
Yang Q, Jin L, Ding Q, Hu W, Zou H, Xiao M, Chen K, Yu Y, Shang J, Huang X, Zhu Y. Novel Therapeutic Mechanism of Adipose-Derived Mesenchymal Stem Cells in Osteoarthritis via Upregulation of BTG2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9252319. [PMID: 36299602 PMCID: PMC9590117 DOI: 10.1155/2022/9252319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a debilitating and degenerative joint disease, which is characterized by progressive destruction of articular cartilage. Mesenchymal stem cells (MSCs) have been implicated in the treatment of OA. However, the function of adipose-derived MSCs (AD-MSCs) in OA and its underlying mechanism remain obscure. AIM We aimed to explore the function of AD-MSCs in OA and investigate its potential regulatory mechanism. METHODS A guinea pig model of OA was constructed. AD-MSCs injected into the articular cavity of OA guinea pigs were viewed by in vivo bioluminescence imaging. The effect of AD-MSCs on the gonarthritis of OA guinea pigs was evaluated through both macroscopic and microscopic detections. The detailed molecular mechanism was predicted by GEO databases and bioinformatics tools and then verified via mechanism experiments, including ChIP assay, DNA pulldown assay, and luciferase reporter assay. RESULTS AD-MSCs had a significant positive therapeutic effect on the gonarthritis of the OA model, and the overall effects of it was better than that of sodium hyaluronate (SH). B-cell translocation gene 2 (BTG2) was significantly downregulated in the articular cartilage of the OA guinea pigs. Furthermore, BTG2 was positively regulated by Krüppel-like factor 4 (KLF4) in AD-MSCs at the transcriptional level. AD-MSCs performed an effect on KLF4 expression at the transcriptional levels. CONCLUSION AD-MSCs suppresses OA progression through KLF4-induced transcriptional activation of BTG2. Our findings revealed an AD-MSCs-dominated therapeutic method for OA.
Collapse
Affiliation(s)
- Qinyan Yang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
- Department of Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, China
| | - Li Jin
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - HaiBo Zou
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
- Department of Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, China
| | - Mingming Xiao
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Keyuan Chen
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Jin Shang
- Department of Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, China
| | - Xiaolun Huang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
- Department of Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
8
|
Li F, Wan B, Li XQ. Expression Profile and Prognostic Values of CDH Family Members in Lung Adenocarcinoma. DISEASE MARKERS 2022; 2022:9644466. [PMID: 35242247 PMCID: PMC8886772 DOI: 10.1155/2022/9644466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Many studies have confirmed that the classical cadherin (CDH) gene family may be involved in the development and progression of various tumors. However, the comprehensive assays of CDH family members in lung adenocarcinoma (LUAD) were rarely reported. In this study, our group analyzed TCGA datasets and identified 18 dysregulated CDH members in LUAD specimens. Several CDH members exhibited an increased level in LUAD specimens, such as CDH1, CDH2, CDH3, CDH4, CDH5, CDH15, CDH16, CDH17, CDH18, CDH24, and CDH26. However, some others exhibited decreased levels in LUAD specimens. Correlation analysis revealed that most CDH members were negatively regulated by the methylation of CDH genes, leading to their low expression in LUAD tissues. Survival assays identified 16 survival-related CDH members in LUAD patients. More importantly, we further performed multivariate analysis to determine the prognostic value of the above CDH family members and found that the expression levels of CDH17, CDH19, and CDH24 were an independent prognostic biomarker of the LUAD outcome. Finally, the results of functional enrichments revealed that CDH members participated in several tumor-related pathways. Collectively, our findings suggest that CDH Family members functioned as oncogenes or antioncogenes in LUAD and may be a potential biomarker for this malignancy.
Collapse
Affiliation(s)
- Feng Li
- Department of Oncology, The Chongqing Hospital of Traditional Chinese Medicine, Jiangbei District, Chongqing, China
| | - Bin Wan
- Physical Examination Center, The Chongqing Hospital of Traditional Chinese Medicine, Jiangbei District, Chongqing, China
| | - Xiao-qing Li
- Department of Oncology, The Chongqing Hospital of Traditional Chinese Medicine, Jiangbei District, Chongqing, China
| |
Collapse
|
9
|
Wang H, Liu J, Gao J, Yan W, Rehan VK. Perinatal Exposure to Nicotine Alters Sperm RNA Profiles in Rats. Front Endocrinol (Lausanne) 2022; 13:893863. [PMID: 35600600 PMCID: PMC9114732 DOI: 10.3389/fendo.2022.893863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 01/31/2023] Open
Abstract
Perinatal exposure to smoking has been associated with childhood asthma, one of the most common pediatric conditions affecting millions of children globally. Of great interest, this disease phenotype appears heritable as it can persist across multiple generations even in the absence of persistent exposure to smoking in subsequent generations. Although the molecular mechanisms underlying childhood asthma induced by perinatal exposure to smoking or nicotine remain elusive, an epigenetic mechanism has been proposed, which is supported by the data from our earlier analyses on germline DNA methylation (5mC) and histone marks (H3 and H4 acetylation). To further investigate the potential epigenetic inheritance of childhood asthma induced by perinatal nicotine exposure, we profiled both large and small RNAs in the sperm of F1 male rats. Our data revealed that perinatal exposure to nicotine leads to alterations in the profiles of sperm-borne RNAs, including mRNAs and small RNAs, and that rosiglitazone, a PPARγ agonist, can attenuate the effect of nicotine and reverse the sperm-borne RNA profiles of F1 male rats to close to placebo control levels.
Collapse
Affiliation(s)
- Hetan Wang
- Department of Medical Genetics, China Medical University, Shenyang, China
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jie Liu
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jianjun Gao
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan, ; Virender K. Rehan,
| | - Virender K. Rehan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan, ; Virender K. Rehan,
| |
Collapse
|