1
|
Jia Z, Li H, Xu K, Li R, Yang S, Chen L, Zhang Q, Li S, Sun X. MAM-mediated mitophagy and endoplasmic reticulum stress: the hidden regulators of ischemic stroke. Front Cell Neurosci 2024; 18:1470144. [PMID: 39640236 PMCID: PMC11617170 DOI: 10.3389/fncel.2024.1470144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemic stroke (IS) is the predominant subtype of stroke and a leading contributor to global mortality. The mitochondrial-associated endoplasmic reticulum membrane (MAM) is a specialized region that facilitates communication between the endoplasmic reticulum and mitochondria, and has been extensively investigated in the context of neurodegenerative diseases. Nevertheless, its precise involvement in IS remains elusive. This literature review elucidates the intricate involvement of MAM in mitophagy and endoplasmic reticulum stress during IS. PINK1, FUNDC1, Beclin1, and Mfn2 are highly concentrated in the MAM and play a crucial role in regulating mitochondrial autophagy. GRP78, IRE1, PERK, and Sig-1R participate in the unfolded protein response (UPR) within the MAM, regulating endoplasmic reticulum stress during IS. Hence, the diverse molecules on MAM operate independently and interact with each other, collectively contributing to the pathogenesis of IS as the covert orchestrator.
Collapse
Affiliation(s)
- Ziyi Jia
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongtao Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ke Xu
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruobing Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Yang
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Long Chen
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qianwen Zhang
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shulin Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Yi C, Yang J, Zhang T, Qin L, Chen D. Identification of Breast Cancer Subtypes Based on Endoplasmic Reticulum Stress-Related Genes and Analysis of Prognosis and Immune Microenvironment in Breast Cancer Patients. Technol Cancer Res Treat 2024; 23:15330338241241484. [PMID: 38725284 PMCID: PMC11085026 DOI: 10.1177/15330338241241484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/02/2024] [Accepted: 03/01/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction: Endoplasmic reticulum stress (ERS) was a response to the accumulation of unfolded proteins and plays a crucial role in the development of tumors, including processes such as tumor cell invasion, metastasis, and immune evasion. However, the specific regulatory mechanisms of ERS in breast cancer (BC) remain unclear. Methods: In this study, we analyzed RNA sequencing data from The Cancer Genome Atlas (TCGA) for breast cancer and identified 8 core genes associated with ERS: ELOVL2, IFNG, MAP2K6, MZB1, PCSK6, PCSK9, IGF2BP1, and POP1. We evaluated their individual expression, independent diagnostic, and prognostic values in breast cancer patients. A multifactorial Cox analysis established a risk prognostic model, validated with an external dataset. Additionally, we conducted a comprehensive assessment of immune infiltration and drug sensitivity for these genes. Results: The results indicate that these eight core genes play a crucial role in regulating the immune microenvironment of breast cancer (BRCA) patients. Meanwhile, an independent diagnostic model based on the expression of these eight genes shows limited independent diagnostic value, and its independent prognostic value is unsatisfactory, with the time ROC AUC values generally below 0.5. According to the results of logistic regression neural networks and risk prognosis models, when these eight genes interact synergistically, they can serve as excellent biomarkers for the diagnosis and prognosis of breast cancer patients. Furthermore, the research findings have been confirmed through qPCR experiments and validation. Conclusion: In conclusion, we explored the mechanisms of ERS in BRCA patients and identified 8 outstanding biomolecular diagnostic markers and prognostic indicators. The research results were double-validated using the GEO database and qPCR.
Collapse
Affiliation(s)
- Chen Yi
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Jun Yang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Ting Zhang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Liu Qin
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Noorgaldi S, Sarkala HB, Enayati A, Khori V, Zengin G, Jahanshahi M. Neuroprotective effect of Potentilla reptans L. root in the rat brain global ischemia/reperfusion model. Arch Pharm (Weinheim) 2023; 356:e2300363. [PMID: 37642540 DOI: 10.1002/ardp.202300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
Stroke is the most common cause of death among neurological diseases. The protective effects of Potentilla reptans L. include antioxidative, anti-inflammatory, and antiapoptotic effects. In this study, the brain protection and beta-amyloid effects of P. reptans root extract were investigated in the rat brain ischemia/reperfusion (IR) model. Forty male Wistar rats were randomly divided into five groups (n = 8), including IR, sham, and three groups receiving P. reptans with concentrations of 0.025, 0.05, and 0.1 (g/kg/b.w.), which were injected daily for 7 days. For the IR model, the common carotid artery was occluded bilaterally for 8 min. All injections were intraperitoneal (IP). The shuttle box test was used to measure passive avoidance memory. Then the brain tissue was extracted for the histological examination of neuron counts and β-amyloid plaques using a morphometric technique, and finally, Statistical Package for the Social Sciences software was used for statistical analysis of the data. Pretreatment with P. reptans improved memory impairment. Also, by examining the tissues of the CA1, CA3, and dentate gyrus areas of the hippocampus, it was observed that the number of plaques in the groups receiving P. reptans extract was reduced compared to the IR group, especially at the concentration of 0.05 g/kg/b.w. Also, P. reptans improved the number of neurons at all concentrations, in which the concentration of 0.05 g/kg/b.w. showed more effective therapeutic results. Taken together, we found that P. reptans root extract has beneficial effects on memory impairment, neuronal loss, and β-amyloid accumulation.
Collapse
Affiliation(s)
- Soraya Noorgaldi
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Anatomy, Faculty of Medicine, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamzeh Badeli Sarkala
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mehrdad Jahanshahi
- Department of Anatomy, Faculty of Medicine, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
Zhang J, Ji C, Zhai X, Ren S, Tong H. Global trends and hotspots in research on acupuncture for stroke: a bibliometric and visualization analysis. Eur J Med Res 2023; 28:359. [PMID: 37735698 PMCID: PMC10512511 DOI: 10.1186/s40001-023-01253-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/29/2023] [Indexed: 09/23/2023] Open
Abstract
Acupuncture has been widely used in stroke and post-stroke rehabilitation (PSR), but there is no literature on the bibliometric analysis of acupuncture for stroke. This study aimed to characterize the global publications and analyze the trends of acupuncture for stroke in the past 40 years. We identified 1157 publications from the Web of Science Core Collection. The number of publications grew slowly in the first three decades from 1980 until it started to grow after 2010, with significant growth in 2011-2012 and 2019-2020. China, the USA, and South Korea are the top three countries in this field, and China has formed good internal cooperative relations. Early studies focused on the clinical efficacy of acupuncture for stroke. In the last five years, more emphasis has been placed on the effectiveness of acupuncture in treating sequelae and complications, combined with neuroimaging studies to explore the mechanisms of brain injury repair and neurological recovery. Acupuncture for stroke has a vast research potential, and researchers from different countries/regions and organizations still need to remove academic barriers to enhance communication and collaboration.
Collapse
Affiliation(s)
- Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chenyang Ji
- Science and Technology College of Jiangxi, University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xu Zhai
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China.
| | - Shuo Ren
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| | - Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Nie Z, Miao H, Li C, Wu F. Electroacupuncture inhibits the expression of HMGB1/RAGE and alleviates injury to the primary motor cortex in rats with cerebral ischemia. Transl Neurosci 2023; 14:20220316. [PMID: 37829255 PMCID: PMC10566473 DOI: 10.1515/tnsci-2022-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Background The high-mobility group box 1 (HMGB1)/receptor for advanced glycation end products (RAGE) signaling pathway holds promise as a potential therapeutic target for ischemic brain injury. The effects of FPS-ZM1 and electroacupuncture (EA) on activation of the HMGB1/RAGE signaling pathway after cerebral ischemia remain uncertain. Methods Middle cerebral artery occlusion (MCAO) model was established. Neurological function was assessed using Longa scores. Nissl staining was used to observe the morphology of neurons. The expression levels of HMGB1 and RAGE were assayed with immunofluorescence staining and western blot. Results The results showed that EA and FPS-ZM1 could reduce the neural function score and neurons cell injury in cerebral ischemia rats by inhibiting the expression of HMGB1 and RAGE in primary motor cortex (M1) region. In addition, EA combined with FPS-ZM1 had a better therapeutic effect. Conclusions The HMGB1/RAGE pathway could be activated after cerebral ischemia. Both EA and FPS-ZM1 improved neurological deficits and attenuated neuronal damage in rats. They had synergistic effects. These interventions were observed to mitigate brain damage by suppressing the activation of HMGB1/RAGE.
Collapse
Affiliation(s)
- Zeyin Nie
- Department of Human Anatomy, Wannan Medical College, No. 22, Wenchang West Road, Wuhu, 241002, Anhui, China
| | - Huachun Miao
- Department of Human Anatomy, Wannan Medical College, No. 22, Wenchang West Road, Wuhu, 241002, Anhui, China
| | - Chenyu Li
- Department of Human Anatomy, Wannan Medical College, No. 22, Wenchang West Road, Wuhu, 241002, Anhui, China
| | - Feng Wu
- Department of Human Anatomy, Wannan Medical College, No. 22, Wenchang West Road, Wuhu, 241002, Anhui, China
| |
Collapse
|
6
|
Yang Y, Deng P, Si Y, Xu H, Zhang J, Sun H. Acupuncture at GV20 and ST36 Improves the Recovery of Behavioral Activity in Rats Subjected to Cerebral Ischemia/Reperfusion Injury. Front Behav Neurosci 2022; 16:909512. [PMID: 35775011 PMCID: PMC9239252 DOI: 10.3389/fnbeh.2022.909512] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Traditional acupuncture and electroacupuncture (EA) have been widely performed to treat ischemic stroke. To provide experimental support for the clinical application of acupuncture to ameliorate post-stroke sequelae, in this study, we investigated the therapeutic effect of acupuncture and EA on CIRI following middle cerebral artery occlusion (MCAO) in rats. The animals were randomly divided into five groups: sham-operated (S), model (M), traditional acupuncture (A) treatment, electroacupuncture (EA) treatment, and drug (D; edaravone) therapies. Neurological behavioral characteristics (neurological deficit score, forelimb muscle strength, sensorimotor function, body symmetry, sucrose consumption, and mood) were examined in all the groups on days 1, 3, 5, and 7 after reperfusion. Expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) were detected by immunohistochemistry. Both acupuncture and EA significantly reduced neurological deficits and improved forelimb muscle strength, sensorimotor function, body symmetry recovery, and neurovascular regeneration in the rats after ischemia/reperfusion injury. The efficacies of both acupuncture and EA were comparable to that of edaravone, a commonly used medicine for stroke in the clinic. Thus, our data suggest that acupuncture and EA therapy at acupoints GV20 and ST36 might represent alternative or complementary treatments to the conventional management of ischemic stroke, providing additional support for the experimental evidence for acupuncture therapy in clinical settings. In summary, EA might provide alternative or complementary treatment strategies for treating patients with apoplexy in the clinic. However, potential mechanisms underlying the role of acupuncture require further investigation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peiying Deng
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yingkui Si
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hong Xu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jianmin Zhang
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Jianmin Zhang,
| | - Hua Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Hua Sun,
| |
Collapse
|
7
|
Transcutaneous Electrical Acupoint Stimulation Ameliorates Cognitive Function through PINK1/Parkin Mediated Mitophagy in VD Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2810794. [PMID: 35692579 PMCID: PMC9187477 DOI: 10.1155/2022/2810794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
In this study, we investigated whether transcutaneous electrical acupoint stimulation (TEAS) could improve cognitive function in VD rats by regulating PINK1/Parkin-mediated mitophagy. VD rat model was prepared by modified 2-vessel occlusion (2-VO) and randomly divided into four groups: Sham group (Sham), Model group (Model), TEAS group (TEAS), and TEAS + 3-MA group (T +3 -MA). In the T +3 -MA group, autophagy inhibitor (3-MA) was injected into the lateral ventricle. After modeling, Y maze (YM), new object recognition test (NORT), Morris water maze (MWM), immunofluorescence, and Western blot were used to observe the effects of TEAS on VD rats. Behavioral experiments revealed that TEAS effectively improved the learning and memory ability of VD rats. Immunofluorescence results showed that TEAS could upregulate LC3 expression. Western blot results showed that TEAS upregulated the expression of PINK1, Parkin, and LC3-II, and downregulated the expression of LC3-I and p62 in VD rats. T +3 -MA group shows the opposite trend to TEAS group. This study demonstrates that TEAS ameliorates cognitive function through PINK1/Parkin-mediated mitophagy in VD rats.
Collapse
|
8
|
Deng P, Wang L, Zhang Q, Chen S, Zhang Y, Xu H, Chen H, Xu Y, He W, Zhang J, Sun H. Therapeutic Potential of a Combination of Electroacupuncture and Human iPSC-Derived Small Extracellular Vesicles for Ischemic Stroke. Cells 2022; 11:820. [PMID: 35269441 PMCID: PMC8909871 DOI: 10.3390/cells11050820] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
This paper aimed to explore the roles of the combination of electroacupuncture (EA) and induced pluripotent stem cell-derived small extracellular vesicles (iPSC-EVs) on mice with ischemic stroke and the underlying mechanisms. A focal cerebral ischemia model was established in C57BL/6 mice through middle cerebral artery occlusion (MCAO). After 3 days, neurological impairment and motor function were examined by performing behavioral tests. The infarct volume and neuronal apoptosis were examined using TTC staining and TUNEL assays. Flow cytometry was performed to assess the proliferation of T lymphocytes. The changes in the interleukin (IL)-33/ST2 axis were evaluated by immunofluorescence and Western blotting. The combination of EA and iPSC-EVs treatment ameliorated neurological impairments and reduced the infarct volume and neuronal apoptosis in MCAO mice. EA plus iPSC-EVs suppressed T helper (Th1) and Th17 responses and promoted the regulatory T cell (Treg) response. In addition, EA plus iPSC-EVs exerted neuroprotective effects by regulating the IL-33/ST2 axis and inhibiting the microglia and astrocyte activation. Taken together, the study shows that EA and iPSC-EVs exerted a synergistic neuroprotective effect in MCAO mice, and this treatment may represent a novel potent therapy for ischemic stroke and damage to other tissues.
Collapse
Affiliation(s)
- Peiying Deng
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (P.D.); (Q.Z.); (S.C.); (Y.Z.); (H.X.)
| | - Liang Wang
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; (L.W.); (H.C.); (Y.X.)
| | - Qiongqiong Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (P.D.); (Q.Z.); (S.C.); (Y.Z.); (H.X.)
| | - Suhui Chen
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (P.D.); (Q.Z.); (S.C.); (Y.Z.); (H.X.)
| | - Yamin Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (P.D.); (Q.Z.); (S.C.); (Y.Z.); (H.X.)
| | - Hong Xu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (P.D.); (Q.Z.); (S.C.); (Y.Z.); (H.X.)
| | - Hui Chen
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; (L.W.); (H.C.); (Y.X.)
| | - Yi Xu
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; (L.W.); (H.C.); (Y.X.)
| | - Wei He
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; (L.W.); (H.C.); (Y.X.)
| | - Jianmin Zhang
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; (L.W.); (H.C.); (Y.X.)
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
- Guidon Pharmaceutics, Beijing 100176, China
| | - Hua Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (P.D.); (Q.Z.); (S.C.); (Y.Z.); (H.X.)
| |
Collapse
|