1
|
Xu Z, Wang L, Liu H, Tian X, Wang Y, Xu H, Chen S, Chen M, Hu P, Huang C. Analysis of Herbal Constituents and In Vivo Pharmacokinetics of Gegen-Huangqi Decoction in Rat Plasma Using HPLC-Q-TOF-MS/MS and HPLC-QQQ-MS/MS. Biomed Chromatogr 2025; 39:e6046. [PMID: 39575659 DOI: 10.1002/bmc.6046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 12/30/2024]
Abstract
The traditional Chinese medicine (TCM) formula, gegen-huangqi (GH) decoction, has been employed for over 200 years, notably for its therapeutic effects in treating conditions such as atherosclerosis and diabetes mellitus. Despite its long-standing use, comprehensive studies on the chemical constituents of GH and their in vivo pharmacokinetics (PK) remain limited. This study aimed to profile the bioactive compounds present in GH decoction and to explore their PK characteristics using HPLC-Q-TOF-MS/MS. Furthermore, a robust and validated analytical method was developed and applied to assess the PK of 11 plasma compounds using HPLC-QQQ-MS/MS. In total, 79 components were identified within the GH decoction. Pharmacokinetic analysis revealed distinct absorption and elimination profiles for compounds such as puerarin, daidzin, genistin, calycosin-7-O-β-D-glucoside, and ononin, which exhibited profiles of quick absorption and excretion. Conversely, compounds such as daidzein, formononetin, genistein, astragaloside II, astragaloside IV, and calycosin showed more complex in vivo metabolic patterns, leading to multipeak concentration-time curves. All compounds, except astragalosides II and IV, were found to undergo significant hepatic clearance. These findings provide valuable insights into the pharmacokinetic behavior of GH decoction, which lays the foundation for further quality control, pharmacological exploration, and potential clinical application of this traditional remedy.
Collapse
Affiliation(s)
- Zhou Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linwei Wang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Huan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yangyang Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haibo Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shuoji Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingcang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Pei Hu
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Zhang Y, Zhang JX, Xiao LX, Zheng JT, Qu XT, Liu Y, Meng J, Liu CS. The synergistic effect of Huangqi Gegen decoction on thrombosis relates to the astragalus polysaccharide-improved oral delivery of puerarin. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118622. [PMID: 39053719 DOI: 10.1016/j.jep.2024.118622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Huangqi Gegen decoction (HGD), which comprises Astragali Radix (AR) and Puerariae Radix (PR), is widely used to treat thrombosis in China. However, the mechanism underlying its synergistic effect in thrombosis treatment remains unclear. AIM OF THE STUDY Following PR administration, low plasma exposure was reported for its primary ingredients. In this regard, this study examined the effect of AR on PR's antithrombotic efficacy with respect to the impact of Astragalus Polysaccharide (APS) on the oral delivery of Puerarin (PUE). MATERIALS AND METHODS To evaluate the synergistic effect of HGD, a thrombus mice model was established via intraperitoneal injection of carrageenan. After treatment, histopathological observations were made, and the proportion of thrombus length in the tail, as well as the plasma APTT, PT, INR, and FIB levels, were detected. Molecular docking was employed to assess the PR ingredients that could inhibit the HMGB1/NF-κB/NLRP3 pathway. The Pharmacokinetics of PR ingredients in rats were also compared between the PR and HGD groups. Moreover, the effect of APS on the solubility, intestinal absorption, and pharmacokinetics of PUE was evaluated. Furthermore, the impact of APS on the antithrombotic efficacy of PUE was assessed. RESULTS In mice, AR enhanced the antithrombotic effect of PR. This improved PR effect was associated with isoflavones-induced downregulation of the HMGB1/NF-κB/NLRP3 pathway. The synergistic effect resulting from the compatibility of HGD components was primarily achieved by improving the plasma exposure of PR isoflavones. Specifically, APS enhanced PUE's water solubility through the formation of self-assembly Nanoparticles, increasing its intestinal absorption and oral bioavailability, which, in turn, suppressed the HMGB1/NF-κB/NLRP3 pathway, thus improving its antithrombotic effect. CONCLUSIONS Our findings revealed that APS improved PUE's plasma exposure, enhancing its inhibitory effect on the HMGB1/NF-κB/NLRP3 pathway. This mechanism presents a key aspect of the synergistic effect of HGD compatibility in thrombosis treatment.
Collapse
Affiliation(s)
- Yi Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Jia-Xuan Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, PR China.
| | - Liang-Xing Xiao
- Puai Medical College, Shaoyang University, Shaoyang, 422000, PR China; Foshan Yitai Medical Supplies Co., Ltd, Foshan, 528200, PR China.
| | - Jin-Ting Zheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Xuan-Tong Qu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, PR China.
| | - Jian Meng
- Puai Medical College, Shaoyang University, Shaoyang, 422000, PR China.
| | - Chang-Shun Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, PR China.
| |
Collapse
|
3
|
Yang S, Zhang Y, Zheng C. β-Sitosterol Mitigates Apoptosis, Oxidative Stress and Inflammatory Response by Inactivating TLR4/NF-кB Pathway in Cell Models of Diabetic Nephropathy. Cell Biochem Biophys 2024:10.1007/s12013-024-01559-4. [PMID: 39424766 DOI: 10.1007/s12013-024-01559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
Podocyte injury plays a pivotal role in the pathogenesis of diabetic nephropathy (DN), leading to proteinuria formation. β-Sitosterol is a natural compound with anti-inflammatory, anti-diabetic, nephroprotective and antioxidant properties. The studyaimed to explore whether and how β-Sitosterol protected podocytes against high glucose (HG)-induced inflammatory andoxidative injury. DN cell models were established by stimulating podocytes or renal tubular epithelial cells (HK-2) cells with 25 mM glucose. Cell viability and apoptosis were evaluated using cell counting kit-8 assays and flow cytometry analyses. Westernblotting was used to quantify protein levels of genes related to podocyte injury, HK-2 cell damage, inflammation, and TLR4/NF-кB pathway. Contents of oxidative stress biomarkers were evaluated by corresponding commercial kits while proinflammatorycytokine levels were determined by enzyme-linked immunosorbent assay. Immunofluorescence staining was performed todetect intracellular levels of reactive oxygen species (ROS) and Nrf2 nuclear translocation. Experimental results revealed that HG treatment induced podocyte dysfunction by impairing cell viability while accelerating theapoptosis, and the changes were reversed by β-sitosterol treatment. Moreover, β-sitosterol repressed HG-evoked oxidative stressby reducing ROS and malondialdehyde (MDA) levels while increasing activities of antioxidant enzymes. The reduction ofproinflammatory cytokines mediated by β-sitosterol in HG-stimulated podocytes suggested the anti-inflammatory role of β-sitosterol. Additionally, the activation of the TLR4/NF-кB signaling induced by HG was inhibited by β-sitosterol in podocytes.Inactivation of the TLR4 using TAK-242 enhanced the protective effects of β-sitosterol against HG-mediated oxidative stressand inflammation. Similarly, β-sitosterol also protected HK-2 cells from HG-induced oxidative stress, inflammation, andapoptosis. In summary, β-sitosterol exerts anti-inflammatory, anti-oxidative, and anti-apoptotic activities in HG-induced podocytes or HK-2 cells by inhibiting TLR4/NF-кB signaling.
Collapse
Affiliation(s)
| | | | - Chenghong Zheng
- Hubei University of Chinese Medicine, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China.
| |
Collapse
|
4
|
Wang Y, Qin Y, Kang Q, Wang H, Zhou S, Wu Y, Liu Y, Su Y, Guo Y, Xiu M, He J. Therapeutic potential of Astragalus membranaceus-Pueraria lobata decoction for the treatment of chemotherapy bowel injury. FASEB J 2024; 38:e70102. [PMID: 39382026 DOI: 10.1096/fj.202401677r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Intestinal mucositis (IM) is one of the most serious side effects of the chemotherapeutic agent irinotecan (CPT-11). Astragalus membranaceus-Pueraria lobata decoction is from the ancient medical book Zhengzhihuibu, has been reported to be used for the treatment of diabetes and hypertension. However, the beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) remain largely unknown. This study aimed to investigate the efficacy and mechanism of Astragalus membranaceus-Pueraria lobata decoction (AP) in treating CIM. The beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) were detected using Drosophila model, and combination with RT qPCR, transcriptomics. AP supplementation could significantly alleviate the CPT-11-induced body injury in Drosophila, such as increasing the survival rate, recovering the impaired digestion, improving the movement, and repairing the reproduction and developmental processes. Administration of AP remarkably alleviated the IM caused by CPT-11, including inhibiting the excretion, repairing the intestinal atrophy, improving the acid-base homeostasis imbalance, and inhibiting the disruption of intestinal structure. Mechanistic studies revealed that the protective role of AP against CPT-11 induced intestinal injury was regulated mainly by inhibiting immune-related Toll and Imd pathways, and enhancing the antioxidant capacity. Taken together, these results suggest that AP may be a novel agent to relieve CIM.
Collapse
Affiliation(s)
- Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Qin
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qian Kang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Huinan Wang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yifan Wu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Yun Su
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yaqiong Guo
- Second Provincial People's Hospital of Gansu, Lanzhou, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Jianzheng He
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
- Second Provincial People's Hospital of Gansu, Lanzhou, China
- Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
5
|
Zhang ZT, Liang QF, Wang X, Wang RS, Duan TT, Wang SM, Tang D. Protective effects of Huang-Qi-Ge-Gen decoction against diabetic liver injury through regulating PI3K/AKT/Nrf2 pathway and metabolic profiling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117647. [PMID: 38163558 DOI: 10.1016/j.jep.2023.117647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Qi-Ge-Gen decoction (HGD) is a traditional Chinese medicine prescription that has been used for centuries to treat "Xiaoke" (the name of diabetes mellitus in ancient China). However, the ameliorating effects of HGD on diabetic liver injury (DLI) and its mechanisms are not yet fully understood. AIM OF THE STUDY To elucidate the ameliorative effect of HGD on DLI and explore its material basis and potential hepatoprotective mechanism. MATERIALS AND METHODS A diabetic mice model was induced by feeding a high-fat diet and injecting intraperitoneally with streptozotocin (40 mg kg-1) for five days. After the animals were in confirmed diabetic condition, they were given HGD (3 or 12 g kg-1, i. g.) for 14 weeks. The effectiveness of HGD in treating DLI mice was evaluated by monitoring blood glucose and blood lipid levels, liver function, and pathological conditions. Furthermore, UPLC-MS/MS was used to identify the chemical component profile in HGD and absorption components in HGD-treated plasma. Network pharmacology and molecular docking were performed to predict the potential pathway of HGD intervention in DLI. Then, the results of network pharmacology were validated by examining biochemical parameters and using western blotting. Lastly, urine metabolites were analyzed by metabolomics strategy to explore the effect of HGD on the metabolic profile of DLI mice. RESULTS HGD exerted therapeutic potential against the disorders of glucose metabolism and lipid metabolism, liver dysfunction, liver steatosis, and fibrosis in a DLI model mice induced by HFD/STZ. A total of 108 chemical components in HGD and 18 absorption components in HGD-treated plasma were preliminarily identified. Network pharmacology and molecular docking results of the absorbed components in plasma indicated PI3K/AKT as a potential pathway for HGD to intervene in DLI mice. Further experiments verified that HGD markedly reduced liver oxidative stress in DLI mice by modulating the PI3K/AKT/Nrf2 signaling pathway. Moreover, 19 differential metabolites between normal and DLI mice were detected in urine, and seven metabolites could be significantly modulated back by HGD. CONCLUSIONS HGD could ameliorate diabetic liver injury by modulating the PI3K/AKT/Nrf2 signaling pathway and urinary metabolic profile.
Collapse
Affiliation(s)
- Zhi-Tong Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Engineering Research Center for Development and Application of External Drugs in Traditional Chinese Medicine, Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Qing-Feng Liang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xue Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ru-Shang Wang
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, 510530, China
| | - Ting-Ting Duan
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, 510530, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Qiao Y, Yuan Q, Liu Z. Huangqi Gegen decoction ameliorates alcohol-induced cognitive dysfunction via attenuating oxidative stress and enhancing blood-brain barrier integrity in rats through the Keap1-Nrf2/HO-1 signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1331-1339. [PMID: 39229571 PMCID: PMC11366948 DOI: 10.22038/ijbms.2024.77415.16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/06/2024] [Indexed: 09/05/2024]
Abstract
Objectives Chronic alcohol abuse causes cognitive deficits. Huangqi Gegen Decoction (HGD), a traditional Chinese herbal formula comprising Huangqi and Gegen, has been documented for its therapeutic efficacy in the treatment of alcoholic liver injury. However, its potential neuroprotective effects against alcohol-induced brain injury remain unexplored. This study aims to evaluate the neuroprotection of HGD on alcohol-induced cognitive dysfunction and the associated mechanism. Materials and Methods Wistar rats were orally administered 50% ethanol for 10 weeks, followed by treatment with HGD at doses of 16, 32, or 64 mg/kg/day for an additional 6 weeks. The spatial learning and memory abilities of rats were assessed through the Morris Water Maze experiment. The pathological condition in the hippocampus was assessed using H&E and Nissl staining. Tight junction proteins, oxidative stress, and inflammation cytokines were measured by IF, ELISA, PCR, and western blot. The mRNA and protein expression of Keap1, Nrf-2, HO-1, and NQO-1 were tested by PCR and western blot. Results Results showed that HGD effectively mitigated cognitive dysfunction and pathological changes in alcohol-induced rats while enhancing the expression of ZO-1, Occludin, and Claudin-5. Furthermore, HGD effectively mitigated oxidative stress by reducing levels of ROS and MDA, while elevating levels of SOD, CAT, and GSH-PX in brain tissue. Moreover, HGD significantly suppressed microglial activation and down-regulated expressions of IL-1β, IL-6, and TNF-α. Mechanistically, HGD remarkably up-regulated the expression of Nrf-2, HO-1, and NQO-1 while down-regulating Keap1 expression. Conclusion These findings suggest that HGD may be a promising therapeutic agent for alleviating alcohol-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Yang Qiao
- Department of Traditional Chinese Medicine, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Qing Yuan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Liu
- Department of Traditional Chinese Medicine, Baotou Central Hospital, Baotou, Inner Mongolia, China
| |
Collapse
|
7
|
Shi L, Deng Y, Luo D, Li L, Kuang X, Qi A, Fu B. Exploration of the possible mechanisms of Ling Gui Zhu Gan decoction in nephrotic syndrome based on network pharmacology, molecular docking and molecular dynamics simulation. Medicine (Baltimore) 2023; 102:e34446. [PMID: 37478256 PMCID: PMC10662869 DOI: 10.1097/md.0000000000034446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023] Open
Abstract
This study aimed to explore the possible mechanisms of Ling Gui Zhu Gan decoction (LGZGD) in the treatment of nephrotic syndrome (NS) using network pharmacology combined with molecular docking and molecular dynamics simulation. The active ingredients of LGZGD and their targets were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Swiss Target Prediction database. The NS targets were retrieved from Genecards, OMIM and Drugbank databases. Next, the intersecting targets of drug and disease were imported into the String database for protein-protein interaction network analysis, and the core targets were identified through topological analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed in the Metascape platform. Finally, molecular docking and molecular dynamics simulation were performed for further validation. The network analysis showed that 109 active ingredients of LGZGD were associated with 105 targets in NS. The key active ingredients (quercetin, kaempferol, naringenin, licochalcone A, formononetin, beta-sitosterol) and the core targets (IL6, AKT1, TNF, VEGFA, TP53, JUN, IL1B, CASP3, EGFR, and STAT3) were further identified. Enrichment analysis indicated that multiple biological processes and pathways, including AGE-RAGE, PI3K-Akt, JAK-STAT, and HIF-1 signaling pathways, might be regulated by LGZGD in the treatment of NS. Molecular docking and molecular dynamics simulation results further indicated that the key active ingredients of LGZGD could stably bind to the core targets through hydrogen bonding and hydrophobic interaction. This study demonstrates that the active ingredients of LGZGD may regulate multiple targets, biological processes and signaling pathways in NS. Our findings may provide a theoretical basis for further studies on LGZGD in the treatment of NS.
Collapse
Affiliation(s)
- Li Shi
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuanjun Deng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Denggui Luo
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Lei Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xuyi Kuang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Airong Qi
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bo Fu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Taximaimaiti X, Abdulla R, Xin X, Zhao Y, Liu Y, Aisa HA, Deng D, Wu T. Rapid identification of chemical components in Xuelian granule by UHPLC-Q-orbitrap-HRMS based on enzyme activity in vitro. BMC Complement Med Ther 2023; 23:222. [PMID: 37407958 PMCID: PMC10321019 DOI: 10.1186/s12906-023-04025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/04/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Xuelian granule (XL), a traditional Chinese medicine (TCM) formula, has been used for the treatment of diabetic nephropathy for a long time as a hospital preparation. Because the active ingredients in the XL that can help to treat diabetic nephropathy are still unclear, which limits the interpretation for its pharmacological mechanism, further development and subsequent study on the material basis of its efficacy. METHODS In this study, a screening method based on inhibition activity against aldose reductase (AR) was employed for activity-directed chemical analysis of XL using ultra-high performance liquid chromatography combined with quadrupole-orbitrap high resolution mass spectrometry (UHPLC-Q-orbitrap-HRMS) technique. RESULTS A total of 178 compounds, including 46 terpenes, 47 organic acids, 25 flavonoids, 29 phenylethanoid glycosides, and 31 other types, were tentatively identified from XL which might responsible for its AR inhibition activity. CONCLUSION This is the first study for a systematic, rapid, and accurate qualitative analysis of XL. This research provides a scientific and experimental basis for further researches on pharmacodynamics material basis and quality control of XL.
Collapse
Affiliation(s)
- Xiatiguli Taximaimaiti
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rahima Abdulla
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xuelei Xin
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Yuan Zhao
- Urumqi Hospital of Traditional Chinese Medicine, Urumqi, 830000, China
| | - Yi Liu
- Urumqi Hospital of Traditional Chinese Medicine, Urumqi, 830000, China
| | - Haji Akber Aisa
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Deqiang Deng
- Urumqi Hospital of Traditional Chinese Medicine, Urumqi, 830000, China.
| | - Tao Wu
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
9
|
Seo G, Kim K. Exploring the mechanism of action of Hedyotis diffusa Willd on acne using network analysis. Medicine (Baltimore) 2023; 102:e33323. [PMID: 36961163 PMCID: PMC10037416 DOI: 10.1097/md.0000000000033323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
In this study, we used a network pharmacological method to explore the active ingredients of Hedyotis diffusa Willd (HDW) in the treatment of acne and elucidated the physiological mechanisms in the human body in which they are involved. We identified the active compounds of HDW that are expected to act effectively in the human body using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform and extracted potential interacting proteins for each active compound using the Swiss Target Prediction platform. Next, we analyzed the potential mechanisms of action of the protein targets shared by HDW and each standard drug on acne and assessed the possibility of spontaneous occurrence of the binding between proteins and active compounds through the molecular docking process. Seven active compounds were selected according to the oral bioavailability and drug-likeness criteria of the Traditional Chinese Medicine Systems Pharmacology database and analysis platform. Subsequently, 300 protein targets were collected from the Swiss Target Prediction. Using the Search Tool for the Retrieval of Interacting Genes/Proteins database, a protein-protein interaction network was constructed by analyzing the relationship between HDW, acne, and each standard drug. By analyzing the gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway, the "positive regulation of lipid metabolic process" was found to be the most involved pathway shared by HDW, acne, and isotretinoin. An analysis of the protein targets shared by the antibiotic agents with HDW and acne found that "cholesterol storage" in tetracycline, "icosacoid transport" in azithromycin, "steroid hydroxylase activity" in erythromycin, "positive regulation of leukocyte tethering or rolling" in clindamycin, "response to UV-A" in minocycline, "steroid 11-beta-monooxygenase activity" in doxycycline, and "neutrophil-mediated immunity" in trimethoprim were the most involved. Virtual molecular docking analysis showed that all proteins spontaneously bound to their corresponding active compounds. Our analysis suggests that HDW can, directly and indirectly, suppress sebum secretion and exert antiinflammatory effects on acne. Further, HDW may regulate free radicals and suppress apoptosis. Therefore, HDW can be used as an alternative or supplement to standard drugs for acne treatment in patients who cannot use standard treatments due to side effects.
Collapse
Affiliation(s)
- Gwangyeel Seo
- Department of Ophthalmology, Otorhinolaryngology and Dermatology of Korean Medicine, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyuseok Kim
- Department of Ophthalmology, Otolaryngology and Dermatology of Korean Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
10
|
Fan S, Yu X, Li Y, Zhou Z, Ye J, Guo K, Huang K, Ke X. Combining lipidomics and efficacy-oriented compatibility revealed that Qi Ge decoction compatibility improved lipid metabolism in hyperlipidemic rats. Biomed Chromatogr 2023; 37:e5595. [PMID: 36734105 DOI: 10.1002/bmc.5595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
The mechanism underlying traditional Chinese medicine (TCM) compatibility is difficult to understand. This study combined lipidomics and efficacy-oriented compatibility to explore underlying compatibility mechanisms of Qi Ge decoction (QG) for improving lipid metabolism in hyperlipidemic rats. The QG was divided into three groups according to the efficacy group strategy: the Huangqi-Gegen (HG), Chenpi (CP), and QG groups. Hyperlipidemic rats were treated with QG, HG, CP, or atorvastatin for 3 weeks. The mass spectral data of widely targeted lipidomics were used to evaluate lipid changes. Principal component analysis and orthogonal partial least squares discriminant analysis were used to assess the lipidomic differences between the groups. MetaboAnalyst 5.0 was used to explore metabolic pathways. Compared with the model group, serum cholesterol, triglyceride, and hepatic steatosis were significantly reduced by QG, whereas HG and CP had no significant effects on these indexes. Lipidomics showed that QG, HG, and CP back-regulated 60, 11, and 14 lipids, respectively. Compared with HG and CP, QG had more metabolic targets in diglycerides, triglycerides, ceramides, and phosphatidylethanolamines. Pathway analysis indicated that QG mainly regulated glycerophospholipid and glycerolipid metabolism. This study provided a new method of combining lipidomics and efficacy-oriented compatibility for exploring the scientific connotation of TCM compatibility.
Collapse
Affiliation(s)
- Simin Fan
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoqing Yu
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yanfang Li
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zunming Zhou
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jintong Ye
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kaixin Guo
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Keer Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuehong Ke
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Integrated Bioinformatics and Clinical Correlation Analysis of Key Genes, Pathways, and Potential Therapeutic Agents Related to Diabetic Nephropathy. DISEASE MARKERS 2022; 2022:9204201. [PMID: 35637650 PMCID: PMC9148260 DOI: 10.1155/2022/9204201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
Background Diabetic nephropathy (DN) is a common microvascular complication of diabetes and a major cause of end-stage renal disease, resulting in a substantial socioeconomic burden around the world. Some unknown biomarkers, mechanisms, and potential novel agents regarding DN are yet to be identified. Methods GSE30528 and GSE1009 were downloaded as training datasets to identify differentially expressed genes (DEGs) of DN. Common DEGs were selected for further analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs were performed to explore molecular mechanisms and pathways. Protein-protein interaction (PPI) network of DEGs was used to identify the top 10 hub genes of DN. Expression profiles of the hub genes were validated in GSE96804 and GSE47183 datasets. The clinical correlation analyses were conducted to confirm the association between key genes and clinical characteristics in the Nephroseq v5 database. The Drug Gene Interaction Database was used to predict potential targeted drugs. Results 345 and 1228 DEGs were identified in GSE30528 and GSE1009, respectively; and 120 common DEGs were found. The biological process of DEGs was significantly enriched in kidney development. PI3K-Akt signaling pathway, focal adhesion, complement and coagulation cascades were significantly enriched KEGG pathways. The identified top10 hub genes were VEGFA, NPHS1, WT1, TJP1, CTGF, FYN, SYNPO, PODXL, TNNT2, and BMP2. VEGFA, NPHS1, WT1, CTGF, SYNPO, PODXL, and TNNT2 were significantly downregulated in DN. VEGFA, NPHS1, WT1, CTGF, SYNPO, and PODXL were positively correlated with glomerular filtration rate. The targeted drugs or molecular compounds were enalapril, sildenafil, and fenofibrate target for VEGFA; losartan target for NPHS1; halofuginone, deferoxamine, curcumin, and sirolimus target for WT1; and purpurogallin target for TNNT2. Conclusions VEGFA, NPHS1, WT1, CTGF, SYNPO, and PODXL are promising biomarkers for diagnosing and evaluating the progression of DN. The drug-gene interaction analyses provide a list of candidate drugs for the precise treatment of DN.
Collapse
|
12
|
Pei H, Wu S, Zheng L, Wang H, Zhang X. Identification of the active compounds and their mechanisms of medicinal and edible Shanzha based on network pharmacology and molecular docking. J Food Biochem 2021; 46:e14020. [PMID: 34825377 DOI: 10.1111/jfbc.14020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022]
Abstract
Shanzha (Crataegus pinnatifida Bunge), an edible traditional Chinese medicine (TCM), has an effect on dyspepsia. However, the investigations of the pharmacological effects have not been carried out. This study aimed to identify the potential targets and pharmacological mechanisms of Shanzha in the treatment of dyspepsia by network pharmacology and molecular docking. Five active compounds and 13 key targets were obtained by a set of bioinformatics assays. Vitexin 7-glucoside, suchilactone, and 20-hexadecanoylingenol were the main compounds acting on dyspepsia. The key targets were prostaglandin-endoperoxide synthase 2 (PTGS2), serine/threonine-protein kinase mTOR (MTOR), heat shock protein HSP 90-alpha (HSP90AA1), mitogen-activated protein kinase 1 (MAPK1), MAPK3, E3 ubiquitin-protein ligase Mdm2 (MDM2), receptor tyrosine-protein kinase erbB-2 (ERBB2), caspase-3 (CASP3), matrix metalloproteinase-9 (MMP9), estrogen receptor (ESR1), tumor necrosis factor (TNF), phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA), and peroxisome proliferator-activated receptor gamma (PPARG), which played the vital roles in TNF, prostate cancer, thyroid hormone, hepatitis B and estrogen signaling pathway. The molecular mechanisms of Shanzha regulating dyspepsia were mainly related to reduction of inflammatory response, controlling cell proliferation and survival, increasing intestinal moisture, and promoting intestinal motility. PRACTICAL APPLICATIONS: Shanzha has been used as an edible TCM to improve digestion for a long time. However, the ingredients and mechanisms of Shanzha in the treatment of dyspepsia are not clear. In this research, network pharmacological analysis integrated with molecular docking was conducted to investigate the molecular mechanism. The results suggested that the core targets alleviated dyspepsia by reducing the intestinal inflammatory response, increasing intestinal movement, controlling cell physiological activities, and reducing constipation. In summary, this study demonstrated the multiple compounds, targets, and pathways characteristics of Shanzha in the treatment of dyspepsia, which may provide guidance and foundations for further application of edible medicine.
Collapse
Affiliation(s)
- Huimin Pei
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Shaokang Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Lijun Zheng
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Hanxun Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangrong Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
13
|
Zhang L, Xiao Y, Yang R, Wang S, Ma S, Liu J, Xiao W, Wang Y. Systems pharmacology to reveal multi-scale mechanisms of traditional Chinese medicine for gastric cancer. Sci Rep 2021; 11:22149. [PMID: 34773055 PMCID: PMC8589993 DOI: 10.1038/s41598-021-01535-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Because of the complex etiology, the treatment of gastric cancer is a formidable challenge for contemporary medical. The current treatment method focuses on traditional surgical procedures, supplemented by other treatments. Among these other treatments, Traditional Chinese Medicine (TCM) plays an important role. Here, we used the systems pharmacology approach to reveal the potential molecular mechanism of PRGRC on gastric cancer which composes of Pinellia ternata(Thunb.) Breit., Rheum palmatumL., Gentiana scabraBunge, Radix Aucklandiae and Citrus aurantium L. This approach combines pharmacokinetics analysis with pharmacodynamics evaluation for the active compounds screening, targets prediction and pathways assessing. Firstly, through pharmacokinetic evaluation and target prediction models, 83 potential compounds and 184 gastric cancer-related targets were screened out. Then, the results of network analysis suggested that the targets of PRGRC were mainly involved two aspects: apoptosis and inflammation. Finally, we verified the reliability of the above analysis at the cellular level by using naringenin and luteolin with good pharmacokinetic activity as representative compounds. Overall, we found that PRGRC could influence the development of gastric cancer from a multi-scale perspective. This study provided a new direction for analyzing the mechanism of TCM.
Collapse
Affiliation(s)
- Lulu Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China
| | - Yue Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China
| | - Ruijie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China
| | - Siyi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China
| | - ShuangXin Ma
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China
| | - Jianling Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China.
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, 222002, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China.
| |
Collapse
|