1
|
Li K, Liu W, Zhao X, Lin W, Zhou W, Zhang Q. LncRNA SNHG3 discriminates rheumatoid arthritis from healthy individuals and regulates inflammatory response and oxidative stress via modulating miR-128-3p. Mod Rheumatol 2024; 34:1153-1161. [PMID: 38722030 DOI: 10.1093/mr/roae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/25/2024] [Indexed: 10/17/2024]
Abstract
OBJECTIVES This study evaluated the expression and significance of SNHG3 in rheumatoid arthritis (RA), aiming to explore a biomarker and regulator for RA. METHODS The expression of SNHG3 in serum and synovial tissue was compared between RA patients and healthy individuals using polymerase chain reaction (PCR). The RA animal models were induced by the Porcine Type II collagen in Wistar rats and validated by the foot volume and arthritis index score. The human fibroblast-like synoviocytes were treated with lipopolysaccharide (LPS) to mimic the injury during RA onset, and the cell growth was assessed by cell counting kit-8 (CCK8) assay. RESULTS SNHG3 was significantly downregulated in the serum and synovial tissue of RA patients compared with healthy individuals. Downregulated SNHG3 could discriminate RA patients from healthy individuals with high sensitivity (0.875) and specificity (0.844). Porcine Type II collagen induced increasing foot volume and arthritis index scores of rats, and SNHG3 was downregulated in RA rats. In LPS-induced human fibroblast-like synoviocytes, SNHG3 negatively regulated miR-128-3p, and the alleviated effect of SNHG3 overexpression on cellular inflammation and oxidative stress was reversed by miR-128-3p upregulation. CONCLUSIONS Serum SNHG3 was considered a potential diagnostic biomarker for RA from healthy individuals. SNHG3 regulated inflammatory response and oxidative stress by negatively modulating miR-128-3p.
Collapse
Affiliation(s)
- Kejun Li
- Department of Orthopaedics, Hangzhou 9th People's Hospital, Hangzhou, Zhejiang, China
| | - Wei Liu
- Comprehensive Orthopedics, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Xueru Zhao
- Department of Joint Surgery, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Weiyi Lin
- Department of Emergency Medicine, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Wenhui Zhou
- Department of Joint Surgery, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Qi Zhang
- Department of Orthopaedics, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
2
|
Peng Y, Long XD. The role of the ceRNA network mediated by lncRNA SNHG3 in the progression of cancer. Discov Oncol 2024; 15:514. [PMID: 39349640 PMCID: PMC11442963 DOI: 10.1007/s12672-024-01184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are a distinct class of RNAs with longer than 200 base pairs that are not translated into proteins. Small Nucleolar RNA Host Gene 3 (SNHG3) is a lncRNA and frequently dysregulated in various human cancers. OBJECTIVE This review provides a comprehensive analysis of current research on lncRNA SNHG3, focusing on its role within the competitive endogenous RNA (ceRNA) network and its implications in cancer. METHODS A systematic literature review was conducted using PubMed up to October 2023. The search strategy included keywords such as "lncRNA SNHG3", "competitive endogenous RNA", "cancer", and related terms. Studies were selected based on relevance to SNHG3's involvement in cancer pathogenesis and progression. RESULTS Disruptions in the ceRNA network involving lncRNA SNHG3 can impair normal cell growth and differentiation, significantly contributing to disease pathogenesis, particularly cancer. This review highlights SNHG3's substantial impact on various cancer processes and its potential as a diagnostic and therapeutic tool for aggressive cancers. CONCLUSION The findings underscore SNHG3's pivotal role in cancer prevention, diagnosis, and treatment, laying a foundation for future research in cancer management. Insights from this review emphasize the necessity for further exploration and development of SNHG3-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ying Peng
- Department of Pathology, the First Affiliated Hospital, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China
| | - Xi-Dai Long
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China.
- Department of Tumor Pathology, Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Guangxi Zhuang Autonomous Region, Baise, 533000, China.
| |
Collapse
|
3
|
Elimam H, Abdel Mageed SS, Hatawsh A, Moussa R, Radwan AF, Elfar N, Alhamshry NAA, Abd-Elmawla MA, Mohammed OA, Zaki MB, Doghish AS. Unraveling the influence of LncRNA in gastric cancer pathogenesis: a comprehensive review focus on signaling pathways interplay. Med Oncol 2024; 41:218. [PMID: 39103705 DOI: 10.1007/s12032-024-02455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Gastric cancers (GCs) are among the most common and fatal malignancies in the world. Despite our increasing understanding of the molecular mechanisms underlying GC, further biomarkers are still needed for more in-depth examination, focused prognosis, and treatment. GC is one among the long non-coding RNAs, or lncRNAs, that have emerged as key regulators of the pathophysiology of cancer. This comprehensive review focuses on the diverse functions of long noncoding RNAs (lncRNAs) in the development of GC and their interactions with important intracellular signaling pathways. LncRNAs affect GC-related carcinogenic signaling cascades including pathways for EGFR, PI3K/AKT/mTOR, p53, Wnt/β-catenin, JAK/STAT, Hedgehog, NF-κB, and hypoxia-inducible factor. Dysregulated long non-coding RNA (lncRNA) expression has been associated with multiple characteristics of cancer, such as extended growth, apoptosis resistance, enhanced invasion and metastasis, angiogenesis, and therapy resistance. For instance, lncRNAs such as HOTAIR, MALAT1, and H19 promote the development of GC via altering these pathways. Beyond their main roles, GC lncRNAs exhibit potential as diagnostic and prognostic biomarkers. The overview discusses CRISPR/Cas9 genome-modifying methods, antisense oligonucleotides, small molecules, and RNA interference as potential therapeutic approaches to regulate the expression of long noncoding RNAs (lncRNAs). An in-depth discussion of the intricate functions that lncRNAs play in the development of the majority of stomach malignancies is provided in this review. It provides the groundwork for future translational research in lncRNA-based whole processes toward GC by highlighting their carcinogenic effects, regulatory roles in significant signaling cascades, and practical scientific uses as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
4
|
Wang T, Song L, Xu Y, Li Y. SNHG3 deficiency restrains spinal cord injury-induced inflammation through sponging miR-139-5p and provides a novel biomarker for disease severity. J Neurosurg Sci 2024; 68:459-467. [PMID: 36082835 DOI: 10.23736/s0390-5616.22.05704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
BACKGROUND MicroRNAs and long non-coding RNAs play pivotal roles in the progression and recovery of spinal cord injury (SCI), which is a serious traumatic disease in central nervous system. The purpose of this study was to investigate the expression and clinical value of SNHG3 in SCI patients and explore the regulatory effects of SNHG3 on SCI-induced inflammatory responses in vitro. METHODS The relationship between SNHG3 and miR-139-5p was confirmed using a dual-luciferase reporter assay. A SCI cell model was constructed in SH-SY5Y cells using hypoxia treatment. SNHG3 and miR-139-5p expression was analyzed using qRT-PCR. Effects of SNHG3 and miR-139-5p on cell model viability and inflammatory cytokines were evaluated by CCK-8 assay and ELISA kits, respectively. ROC curves based on serum SNHG3 and miR-139-5p were constructed to evaluate their diagnostic performance. RESULTS In SCI patients, serum SNHG3 was upregulated, but miR-139-5p was downregulated (P<0.05), and a negative correlation between the two ncRNAs was found. Both SNHG3 and miR-139-5p showed relatively high discrimination abilities for the screening of SCI and complete SCI (CSCI) patients. SNHG3 was positively correlated with inflammatory cytokines, and miR-139-5p showed opposite results in SCI patients. By in-vitro analysis, SNHG3 knockdown enhanced cell viability but inhibited inflammation by increasing miR-139-5p. CONCLUSIONS All the data found that serum upregulated SNHG3 and downregulated miR-139-5p served as biomarkers to diagnose SCI and indicate injury severity. The deficiency of SNHG3 alleviated neuronal injury by restraining inflammatory responses through targeting miR-139-5p. Thus, the SNHG3/miR-139-5p axis may provide novel biomarkers and therapeutic targets for SCI.
Collapse
Affiliation(s)
- Tiecheng Wang
- Department of Neurosurgery, Huantai People's Hospital, Zibo, China
| | - Likun Song
- Department of Neurosurgery, Huantai People's Hospital, Zibo, China
| | - Yehuan Xu
- Department of Neurology, Huantai People's Hospital, Zibo, China
| | - Ye Li
- Department of Trauma Orthopedics, Zibo Central Hospital, Zibo, China -
| |
Collapse
|
5
|
Saeinasab M, Atlasi Y, M Matin M. Functional role of lncRNAs in gastrointestinal malignancies: the peculiar case of small nucleolar RNA host gene family. FEBS J 2024; 291:1353-1385. [PMID: 36282516 DOI: 10.1111/febs.16668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in normal physiology and are often de-regulated in disease states such as cancer. Recently, a class of lncRNAs referred to as the small nucleolar RNA host gene (SNHG) family have emerged as important players in tumourigenesis. Here, we discuss new findings describing the role of SNHGs in gastrointestinal tumours and summarize the three main functions by which these lncRNAs promote carcinogenesis, namely: competing with endogenous RNAs, modulating protein function, and regulating epigenetic marking. Furthermore, we discuss how SNHGs participate in different hallmarks of cancer, and how this class of lncRNAs may serve as potential biomarkers in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| |
Collapse
|
6
|
Liu S, Rong Y, Tang M, Zhao Q, Li C, Gao W, Yang X. The Functions and Mechanisms of Long Non-coding RNA SNHGs in Gastric Cancer. Comb Chem High Throughput Screen 2024; 27:2639-2653. [PMID: 37842903 DOI: 10.2174/0113862073268591230928100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. Despite significant advancements in surgical and adjuvant treatments, patient prognosis remains unsatisfactory. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that lack protein-coding capacity but can engage in the malignant biological behaviors of tumors through various mechanisms. Among them, small nucleolar host genes (SNHGs) represent a subgroup of lncRNAs. Studies have revealed their involvement not only in gastric cancer cell proliferation, invasion, migration, epithelial- mesenchymal transition (EMT), and apoptosis but also in chemotherapy resistance and tumor stemness. This review comprehensively summarizes the biological functions, molecular mechanisms, and clinical significance of SNHGs in gastric cancer. It provides novel insights into potential biomarkers and therapeutic targets for the exploration of gastric cancer.
Collapse
Affiliation(s)
- Songhua Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Yao Rong
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Mingzheng Tang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Qiqi Zhao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Chunyan Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Wenbin Gao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Xiaojun Yang
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
- Gansu key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Gansu Research Center of Prevention and Control Project for Digestive Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Key Laboratory of Gastrointestinal Tumor Diagnosis and Treatment of National Health and Health Commission, Lanzhou, 730000, China
| |
Collapse
|
7
|
Wang XQ, Li LL, Lou P, Zhang Q, Wang Y. Noval ceRNA axis-mediated high expression of TOP2A correlates with poor prognosis and tumor immune infiltration of hepatocellular carcinoma. Transl Cancer Res 2023; 12:3486-3502. [PMID: 38193002 PMCID: PMC10774052 DOI: 10.21037/tcr-23-755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/20/2023] [Indexed: 01/10/2024]
Abstract
Background Hepatocellular carcinoma (HCC) is a highly malignant tumor with limited treatment options, suboptimal efficacy, and poor prognosis, resulting in an economic burden to countries worldwide. TOP2A is a mammalian protein that plays a vital role in DNA replication. Previous studies have shown that upregulation of TOP2A expression is associated with tumorigenesis and progression in various cancers, but the exact mechanism of upregulation remains unclear. Methods We first conducted a pan-cancer analysis using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases to study the oncogenicity of TOP2A through the cBioPortal database. Next, using The Encyclopedia of RNA Interactomes (ENCORI) database, we identified microRNAs (miRNAs) that are associated with the downregulation of TOP2A and investigated potential long non-coding RNAs (lncRNAs) that may act as competing endogenous RNAs (ceRNAs) by binding to candidate miRNAs. We then analyzed immune cell infiltration and immune checkpoints using the TIMER database. Finally, we performed a multivariate regression analysis using lncRNAs and clinical pathological characteristics, constructed a nomogram to predict the prognosis of HCC based on the analysis results, and evaluated its diagnostic efficiency. Results TOP2A was highly expressed in HCC and was associated with poor patient prognosis. TOP2A was subject to post-transcriptional regulation in HCC, with the ceRNA mechanism being a significant pathway. miR-139-5p was an important miRNA that suppressed the upregulation of TOP2A in HCC, and patients with low expression of miR-139-5p had worse overall survival (OS). After screening and analysis, three lncRNAs, AC078846.1, AC124798.1 and SNHG3, were found to inhibit the activity of miR-139-5p through the ceRNA mechanism, and patients with high expression of these three lncRNAs had worse prognosis. In addition, TOP2A was found to be closely related to tumor-infiltrating immune cells (TIICs) and immune checkpoints. A nomogram constructed using the three lncRNAs and selected clinicopathological features showed good predictive value for the prognosis of liver cancer. Conclusions The TOP2A-miR-139-5p-AC078846.1/AC124798.1/SNHG3 axis plays a significant role in the progression of HCC and leads to poor patient outcomes. Additionally, TOP2A influences the development of HCC by affecting TIICs and immune checkpoints. A nomogram constructed using the three lncRNAs and clinicopathological features has good clinical utility.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Interventional Department, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Li-Li Li
- Interventional Department, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Peng Lou
- Vascular Surgery, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Qian Zhang
- Interventional Department, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Yang Wang
- Vascular Surgery, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| |
Collapse
|
8
|
Sahib AS, Fawzi A, Zabibah RS, Koka NA, Khudair SA, Muhammad FA, Hamad DA. miRNA/epithelial-mesenchymal axis (EMT) axis as a key player in cancer progression and metastasis: A focus on gastric and bladder cancers. Cell Signal 2023; 112:110881. [PMID: 37666286 DOI: 10.1016/j.cellsig.2023.110881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The metastasis a major hallmark of tumors that its significant is not only related to the basic research, but clinical investigations have revealed that majority of cancer deaths are due to the metastasis. The metastasis of tumor cells is significantly increased due to EMT mechanism and therefore, inhibition of EMT can reduce biological behaviors of tumor cells and improve the survival rate of patients. One of the gaps related to cancer metastasis is lack of specific focus on the EMT regulation in certain types of tumor cells. The gastric and bladder cancers are considered as two main reasons of death among patients in clinical level. Herein, the role of EMT in regulation of their progression is evaluated with a focus on the function of miRNAs. The inhibition/induction of EMT in these cancers and their ability in modulation of EMT-related factors including ZEB1/2 proteins, TGF-β, Snail and cadherin proteins are discussed. Moreover, lncRNAs and circRNAs in crosstalk of miRNA/EMT regulation in these tumors are discussed and final impact on cancer metastasis and response of tumor cells to the chemotherapy is evaluated. Moreover, the impact of miRNAs transferred by exosomes in regulation of EMT in these cancers are discussed.
Collapse
Affiliation(s)
- Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Amjid Fawzi
- Medical Technical College, Al-Farahidi University, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Nisar Ahmad Koka
- Department of English, Faculty of Languages and Translation, King Khalid University, Abha, Kingdom of Saudi Arabia.
| | | | | | - Doaa A Hamad
- Nursing Department, Hilla University College, Babylon, Iraq
| |
Collapse
|
9
|
Xu D, Feng H, Ren Z, Li X, Jiang C, Chen Y, Liu L, Chen W, Cui Z, Cang S. SNHG3/WISP2 Axis Promotes Hela Cell Migration and Invasion via Activating Wnt/β-Catenin Signaling. Cancer Genomics Proteomics 2023; 20:744-753. [PMID: 38035707 PMCID: PMC10687733 DOI: 10.21873/cgp.20421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND/AIM Cervical cancer (CC) poses a significant threat to women's health and has a relatively poor prognosis due to local invasion and metastasis. It is, therefore, crucial to elucidate the molecular mechanisms of CC metastasis. SNHG3 has been implicated in various tumor metastasis processes, but its involvement in CC has not been thoroughly studied. Our study aimed to investigate the role of SNHG3 in metastasis and elucidate its underlying mechanisms in CC. MATERIALS AND METHODS LncRNA SNHG3 expression in CC tissues was analyzed using TCGA and GSE27469 databases. Normal cervical epithelial cells and CC cell lines were used to detect mRNA expression of SNHG3 via quantitative reverse transcription polymerase chain reaction (qRT-PCR). With RNA interference (RNAi) technology, antisense oligonucleotides (ASO) can act on HeLa cells to knockdown target gene expression. The influence of SNHG3 on cell migration and invasion were determined by wound healing and transwell assays. Transcriptome sequencing (RNA-seq) was used to seek abnormally expressed genes between SNHG3 knockdown cells and control cells. The expressions of epithelial-mesenchymal transition (EMT) and Wnt/β-catenin signaling related proteins were detected using western blot. RESULTS SNHG3 was obviously up-regulated in CC tissues and cell lines, and ectopic expression of SNHG3 was associated with lymph node metastasis of CC. Knockdown of SNHG3 significantly inhibited cell migration and invasion in CC. Further molecular mechanism studies showed that SNHG3 knockdown could down-regulate the expression of WNT1 Inducible Signaling Pathway Protein 2 (WISP2) so as to inhibit the activation of the Wnt/β-catenin signaling pathway, and regulated the expression of EMT-related markers, that promoted the protein expression of E-cadherin, as well as decreased the expression of N-cadherin and vimentin. CONCLUSION SNHG3 appears to exert a pro-metastatic effect in CC, as evidenced by inhibition of cell migration and invasion upon SNHG3 knockdown. EMT also appears to be attenuated. Of interest is the down-regulation of WISP2 following SNHG3 knockdown leads to the inactivation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Dengfei Xu
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Zheng Zhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Hao Feng
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Zirui Ren
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Zheng Zhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Xiang Li
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Zheng Zhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Chenyang Jiang
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Zheng Zhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Yuming Chen
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Zheng Zhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Lina Liu
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Zheng Zhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Wenchao Chen
- Department of Gastrointestinal Surgery, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, P.R. China
| | - Zhilei Cui
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Shundong Cang
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Zheng Zhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, P.R. China;
| |
Collapse
|
10
|
Wu Y, Li M, Bai J, Ma X. Silencing long non-coding RNA SNHG3 repairs the dysfunction of pulmonary microvascular endothelial barrier by regulating miR-186-5p/Wnt axis. Biochem Biophys Res Commun 2023; 639:36-45. [PMID: 36463759 DOI: 10.1016/j.bbrc.2022.11.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Barrier permeability changes of human pulmonary microvascular endothelial cells (HPMVECs) are important in sepsis-related acute lung injury (ALI) pathogenesis. Long non-coding small nucleolar RNA host gene 3 (SNHG3) mediates the cell-biological phenotype of lung cancer cells and affects the progression of lung cancer, but its role in regulating functions of lung non-malignant cells is still rarely reported. Therefore, we evaluated the regulatory effect of SNHG3 on the function of PMVECs in sepsis-related ALI. Small interference RNA (siRNA)-mediated deletion of SNHG3 promoted the proliferation of PMVECs, reduced apoptosis and barrier permeability, and increased the expression of tight junction proteins claudin-5 and ZO-1. Knockdown of SNHG3 increased the miR-186-5p expression, while overexpression of SNHG3 upregulated the level of wnt5a. Through a dual luciferase reporter assay, we confirmed the binding between SNHG3 and miR-186-5p, miR-186-5p and wnt5a. We further found that knockout of miR-186-5p could inhibit cell proliferation, increase apoptosis and barrier permeability, and down-regulate claudin-5 and ZO-1. Importantly, silencing miR-186-5p and activating Wnt signal pathway could eliminate the barrier repair effect caused by down-regulation of SNHG3. To sum up, our results suggested that knockdown of long non-coding RNA SNHG3 repaired the dysfunction of pulmonary microvascular endothelial barrier through the miR-186-5p/Wnt axis.
Collapse
Affiliation(s)
- Yanli Wu
- Department of Critical Care Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, PR China; Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, PR China
| | - Mei Li
- Department of Critical Care Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, PR China
| | - Jijia Bai
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, PR China
| | - Xigang Ma
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, PR China.
| |
Collapse
|
11
|
Ji G, Wang X, Xi H. METTL3-mediated m 6A modification of lncRNA SNHG3 accelerates gastric cancer progression by modulating miR-186-5p/cyclinD2 axis. Int J Immunopathol Pharmacol 2023; 37:3946320231204694. [PMID: 37823387 PMCID: PMC10571673 DOI: 10.1177/03946320231204694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVES METTL3 as an m6A methyltransferase acts in diverse malignancies including gastric cancer (GC). We aimed to reveal the underlying mechanisms by which METTL3 contributes to gastric carcinogenesis. METHODS The association of METTL3 and SNHG3 with GC was analyzed by qRT-PCR, Western blot, and TCGA cohort. The functional experiments were implemented to uncover the role of METTL3 in GC. m6A dot blot and MeRIP were used to determine METTL3-mediated m6A modification of lncRNA SNHG3. The effect of METTL3 on SNHG3-mediated miR-186-5p/cyclinD2 axis was evaluated by luciferase gene report, RT-qPCR, and Western blot assays. RESULTS We found that METTL3 was remarkably elevated in GC tissues and correlated with poor survival in patients with GC. Silencing of METTL3 impaired GC cell growth and invasion, whereas restored METTL3 expression promoted these effects. Mechanistically, reduced expression of METTL3 decreased SNHG3 m6A level and caused a decrease in SNHG3 expression, which could further act as a sponge of miR-186-5p to upregulate cyclinD2. Overexpression of SNHG3 attenuated METTL3 knockdown-induced anti-proliferating and miR-186-5p upregulation and cyclinD2 downregulation. CONCLUSION We find that METTL3-mediated m6A modification of lncRNA SNHG3 accelerates GC progression by modulating miR-186-5p/cyclinD2 axis.
Collapse
Affiliation(s)
| | | | - Hao Xi
- Hao Xi, Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yanchang Middle Road, Shanghai 200072, China.
| |
Collapse
|
12
|
Zhou B, Lei JH, Wang Q, Qu TF, Cha LC, Zhan HX, Liu SL, Hu X, Sun CD, Cao JY, Qiu FB, Guo WD. LINC00960 regulates cell proliferation and glycolysis in pancreatic cancer through the miR-326-3p/TUFT1/AKT-mTOR axis. Kaohsiung J Med Sci 2022; 38:1155-1167. [PMID: 36149758 DOI: 10.1002/kjm2.12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is a common malignant cancer characterized by high mortality and poor prognosis. LINC00690 was involved in the occurrence and progression of PC, but the underlying mechanisms require further investigation. The goal of this study was to figure out how LINC00960 mediates glycolysis in PC. LINC00960, miR-326-3p, and Tuftelin 1 (TUFT1) expression levels were detected in PC cell lines. LINC00960 and TUFT1 expression levels were increased in PC cells when compared with normal pancreatic cells, whereas miR-326-3p expression levels were decreased. The expression levels of LINC00690 affected glycolysis in PC, and inhibition of LINC00960 inhibited tumor growth in vivo. LINC00690 targeted and suppressed the expression of miR-326-3p. MiR-326-3p bound to TUFT1, and miR-326-3p inhibited AKT-mTOR pathway activation via TUFT1. In conclusion, the depletion of LINC00960 repressed cell proliferation and glycolysis in PC by mediating the miR-326-3p/TUFT1/AKT-mTOR axis. Thus, we present a novel mechanism underlying the progression of PC that suggests LINC00960 is a potential therapeutic target for this cancer.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jing-Hao Lei
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Qiang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Teng-Fei Qu
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Li-Chao Cha
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Han-Xiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Shang-Long Liu
- Department of General Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiao Hu
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chuan-Dong Sun
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jing-Yu Cao
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Fa-Bo Qiu
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Wei-Dong Guo
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
13
|
Sogutlu F, Pekerbas M, Biray Avci C. Epigenetic signatures in gastric cancer: current knowledge and future perspectives. Expert Rev Mol Diagn 2022; 22:1063-1075. [PMID: 36522183 DOI: 10.1080/14737159.2022.2159381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Gastric cancer (GC) is the fifth most common malignancy in the world and accounts for 7.7% of all cancer-related deaths. Early diagnosis of GC is critical in terms of prognosis, and aberrations at the molecular level, especially epigenetic alterations, manifest much earlier than histological findings. In recent years, there has been a great deal of research on the epigenomic profile of GC, and epigenetic alterations seem to play a more important role than genetic factors. With the introduction of epigenetic drugs into clinical use in the last decade, the importance of the epigenetic background of GC has increased considerably. AREAS COVERED In this review, we summarize the role of methylation changes, histone modifications, and non-coding RNAs in the pathogenesis of GC and how these signatures can be used as diagnostic and therapeutic targets in clinical management. EXPERT OPINION Epigenetic alterations take place before most genetic aberrations observed in GC and may have an initiating role in the pathogenesis of GC. They can be used as biomarkers in risk calculation, early diagnosis, and evaluation of prognosis of GC, as well as treatment targets.
Collapse
Affiliation(s)
- Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Mert Pekerbas
- Department of Medical Genetics, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| |
Collapse
|
14
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
15
|
Feng YN, Li BY, Wang K, Li XX, Zhang L, Dong XZ. Epithelial-mesenchymal transition-related long noncoding RNAs in gastric carcinoma. Front Mol Biosci 2022; 9:977280. [PMCID: PMC9605205 DOI: 10.3389/fmolb.2022.977280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
As an evolutionarily phenotypic conversion program, the epithelial-mesenchymal transition (EMT) has been implicated in tumour deterioration and has facilitated the metastatic ability of cancer cells via enhancing migration and invasion. Gastric cancer (GC) remains a frequently diagnosed non-skin malignancy globally. Most GC-associated mortality can be attributed to metastasis. Recent studies have shown that EMT-related long non-coding RNAs (lncRNAs) play a critical role in GC progression and GC cell motility. In addition, lncRNAs are associated with EMT-related transcription factors and signalling pathways. In the present review, we comprehensively described the EMT-inducing lncRNA molecular mechanisms and functional perspectives of EMT-inducing lncRNAs in GC progression. Taken together, the statements of this review provided a clinical implementation in identifying lncRNAs as potential therapeutic targets for advanced GC.
Collapse
|
16
|
Corrigendum to “LncRNA SNHG3 Promotes Gastric Cancer Cells Proliferation, Migration, and Invasion by Targeting miR-326”. JOURNAL OF ONCOLOGY 2022; 2022:9780315. [PMID: 36245979 PMCID: PMC9553525 DOI: 10.1155/2022/9780315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
|
17
|
A comprehensive analysis of ncRNA-mediated interactions reveals potential prognostic biomarkers in prostate adenocarcinoma. Comput Struct Biotechnol J 2022; 20:3839-3850. [PMID: 35891787 PMCID: PMC9307580 DOI: 10.1016/j.csbj.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
As one of common malignancies, prostate adenocarcinoma (PRAD) has been a growing health problem and a leading cause of cancer-related death. To obtain expression and functional relevant RNAs, we firstly screened candidate hub mRNAs and characterized their associations with cancer. Eight deregulated genes were identified and used to build a risk model (AUC was 0.972 at 10 years) that may be a specific biomarker for cancer prognosis. Then, relevant miRNAs and lncRNAs were screened, and the constructed primarily interaction networks showed the potential cross-talks among diverse RNAs. IsomiR landscapes were surveyed to understand the detailed isomiRs in relevant homologous miRNA loci, which largely enriched RNA interaction network due to diversities of sequence and expression. We finally characterized TK1, miR-222-3p and SNHG3 as crucial RNAs, and the abnormal expression patterns of them were correlated with poor survival outcomes. TK1 was found synthetic lethal interactions with other genes, implicating potential therapeutic target in precision medicine. LncRNA SNHG3 can sponge miR-222-3p to perturb RNA regulatory network and TK1 expression. These results demonstrate that TK1:miR-222-3p:SNHG3 axis may be a potential prognostic biomarker, which will contribute to further understanding cancer pathophysiology and providing potential therapeutic targets in precision medicine.
Collapse
|
18
|
Taghehchian N, Alemohammad R, Farshchian M, Asoodeh A, Abbaszadegan MR. Inhibitory role of LINC00332 in gastric cancer progression through regulating cell EMT and stemness. Life Sci 2022; 305:120759. [PMID: 35787995 DOI: 10.1016/j.lfs.2022.120759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/11/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Gastric cancer (GC) is one of the most common lethal malignancies worldwide. The molecular mechanisms underlying GC early detection are poorly understood. Identifying potential coding and non-coding markers and related pathways in the GC progression is essential. Some Long non-coding RNAs (lncRNAs) reportedly play vital roles during gastric GC development. However, the clinical significance and biological function of LINC00332 in GC remain largely unclear. METHODS The gene expression patterns of GC from an RNAseq dataset (GSE122401) were retrieved from the Gene Expression Omnibus (GEO) database to recognize differentially expressed genes (DEGs) and lncRNAs (DELs) between normal and GC samples through several bioinformatic analysis. The expression of LINC00332 and MMP-13 as a target gene was quantified in fresh frozen tissues obtained from GC patients. In addition, we investigated the potential function of LINC00332 in silico and in vitro. RESULTS The expressions of LINC00332 and MMP-13 were significantly downregulated and upregulated in GC tissues, respectively. A significant inverse correlation between LINC00332 and MMP-13 mRNA expression was observed in tumor samples. The mRNA expression level of mesenchymal markers, stem cell factors, and MMP genes were significantly decreased after the LINC00332 ectopic expression, while epithelial markers expression was significantly increased. The LINC00332 overexpression markedly repressed proliferation, migration, and invasion and did not induce apoptosis in AGS cells. In addition, LINC00332 overexpression notably promoted the E-cadherin protein expression. Moreover, LINC00332 significantly decreased the cisplatin resistance. CONCLUSION Our findings indicated that LINC00332 may be a critical anti-EMT factor and provided a new efficient therapeutic strategy for GC treatment.
Collapse
Affiliation(s)
- Negin Taghehchian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Reza Alemohammad
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Khorasan Razavi, Mashhad, Iran
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Khorasan Razavi, Mashhad, Iran.
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | |
Collapse
|
19
|
Shan DD, Zheng QX, Wang J, Chen Z. Small nucleolar RNA host gene 3 functions as a novel biomarker in liver cancer and other tumour progression. World J Gastroenterol 2022; 28:1641-1655. [PMID: 35581965 PMCID: PMC9048787 DOI: 10.3748/wjg.v28.i16.1641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer has become the most life-threatening disease in the world. Mutations in and aberrant expression of genes encoding proteins and mutations in noncoding RNAs, especially long noncoding RNAs (lncRNAs), have significant effects in human cancers. LncRNAs have no protein-coding ability but function extensively in numerous physiological and pathological processes. Small nucleolar RNA host gene 3 (SNHG3) is a novel lncRNA and has been reported to be differentially expressed in various tumors, such as liver cancer, gastric cancer, and glioma. However, the interaction mechanisms for the regulation between SNHG3 and tumor progression are poorly understood. In this review, we summarize the results of SNHG3 studies in humans, animal models, and cells to underline the expression and role of SNHG3 in cancer. SNHG3 expression is upregulated in most tumors and is detrimental to patient prognosis. SNHG3 expression in lung adenocarcinoma remains controversial. Concurrently, SNHG3 affects oncogenes and tumor suppressor genes through various mechanisms, including competing endogenous RNA effects. A deeper understanding of the contribution of SNHG3 in clinical applications and tumor development may provide a new target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
20
|
Zhu H, Zhu C, Feng X, Luo Y. Long noncoding RNA SNHG3 promotes malignant phenotypes in cervical cancer cells via association with YAP1. Hum Cell 2021; 35:320-332. [PMID: 34816392 DOI: 10.1007/s13577-021-00644-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Long non-coding RNA (LncRNA) Small Nucleolar RNA Host Gene 3 (SNHG3) is involved in the occurrence and development of various cancers. However, the exact function and mechanism of SNHG3 in cervical cancer (CC) are still unclear. In this context, we identified a significant increase of SNHG3 expression in CC tissues. Upregulation of SNHG3 expression was associated with advanced FIGO stage and metastasis, and indicated poor overall survival of the CC patients. Functionally, SNHG3 enhanced the proliferation, migration and invasion of CC cells in vitro, and facilitated CC growth in vivo. Further investigation uncovered that SNHG3 interacted with oncoprotein YAP1, thus suppressing its degradation. Additionally, SNHG3 modulated the transcription of several target genes of YAP1. The oncogenic role of SNHG3 was partially attributable to YAP1. Taken together, our research revealed the prognostic and functional roles for SNHG3 in CC, suggesting that SNHG3 could serve as a biomarker for prognosis and a therapeutic target for CC.
Collapse
Affiliation(s)
- Hongyu Zhu
- Gynecology Second Ward, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443003, Hubei, China.
| | - Chenyu Zhu
- Gastrointestinal Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443003, Hubei, China
| | - Xiang Feng
- Obstetrics Department, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443003, Hubei, China
| | - Youzhen Luo
- Gynecology Second Ward, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443003, Hubei, China.
| |
Collapse
|