1
|
Wu J, Guo D. Systematic analysis of traditional Chinese medicine prescriptions provides new insights into drug combination therapy for pox. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118842. [PMID: 39306210 DOI: 10.1016/j.jep.2024.118842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/09/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The decline in cross-protection provided by the smallpox vaccine increases the risk of infection from other poxviruses. While drug combinations are a promising management, they remain underdeveloped for poxviruses. Prior to the development of the smallpox vaccine, China had long relied on herbal medicine to combat pox and accumulated a wealth of knowledge regarding different herb combinations and symptoms related to pox. The information was documented in the form of prescriptions. AIM OF THE STUDY The extensive data of prescriptions offer the potential for uncovering commonalities underlying these prescriptions, thereby providing valuable insights into the development of drug combinations against pox. MATERIALS AND METHODS The 2344 prescriptions were collected from the LTM-TCM database and 12 traditional Chinese medicine books. Firstly, the relative frequency of citation was utilized to identify the most used herbs among these prescriptions. TCMSP and LTM-TCM databases were employed to gather information about active compounds and their targets. GeneCards and DisGeNET databases were utilized to determine the associated targets for smallpox, cowpox, chickenpox, and mpox. Subsequently, network pharmacology analysis was conducted to investigate potential pathway information related to the most used herbs. A comparison of active compounds from these herbs resulted in the identification of 29 high-frequency compounds. The functions of these compounds were elucidated through gene overlap analysis, docking, and literature review. Finally, we summarized pox-related symptoms and used fidelity levels to distinguish specific herbs for corresponding symptoms. RESULTS Based on 2344 traditional pox-related prescriptions, we identified 19 most used herbs and 64 associated bio-functional modules for poxvirus treatment, with the most significant one being immunoregulation primarily involving CD4+ regulation. We also identified 29 leads that possess anti-inflammatory, antimicrobial, and antiviral properties. These herbs and leads hold the potential for pox treatment. Additionally, docking analysis suggested that these leads could inhibit poxvirus DNA synthesis, RNA capping machinery processes, and mature poxvirus particle formation, as well as immunosuppressors. The clinical features of mpox in 2022 were found to align well with our description of symptoms related to the pox. CONCLUSION Through the analysis of 2344 prescriptions for pox treatment, we obtained a comprehensive library of the most used herbs and high-frequency compounds, along with their potential functional spectrum. These libraries served as raw resources for drug combination development, while the identified symptom patterns and specific herbs greatly enhanced our insight into diverse treatments for pox patients.
Collapse
Affiliation(s)
- Jiawei Wu
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dianjing Guo
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
2
|
Wan Q, Ren Q, Qiao S, Lyu A, He X, Li F. Therapeutic potential of flavonoids from traditional Chinese medicine in pancreatic cancer treatment. Front Nutr 2024; 11:1477140. [PMID: 39650709 PMCID: PMC11620852 DOI: 10.3389/fnut.2024.1477140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive malignancy with rising mortality rates globally. Its diagnosis is often challenging due to its asymptomatic nature in the early stages. Consequently, most patients receive a poor prognosis, with low survival rates within 5 years, as the disease is typically detected at an advanced stage, complicating effective treatment. Flavonoids, especially those derived from traditional Chinese herbal medicines, have attracted considerable attention for their potent anti-PC properties. This review highlights the therapeutic potential of these bioactive compounds, which modulate key biological pathways, making them promising candidates for PC intervention. Their mechanisms of action include the regulation of autophagy, apoptosis, cell growth, epithelial-mesenchymal transition, and oxidative stress, as well as enhancing chemotherapeutic sensitivity, exerting antiangiogenic effects, and potentially boosting immunomodulatory responses. The demonstrated benefits of these natural compounds in cancer management have spurred extensive academic interest. Beyond their role as anti-cancer agents, flavonoids may provide both preventive and therapeutic advantages for PC, resonating with the core principles of traditional Chinese medicine for disease prevention and holistic treatment.
Collapse
Affiliation(s)
- Qi Wan
- Acupuncture Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Qing Ren
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shuangying Qiao
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Aiping Lyu
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Xingwei He
- Acupuncture Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fangfei Li
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
3
|
Hesari M, Mohammadi P, Moradi M, Shackebaei D, Yarmohammadi F. Molecular mechanisms involved in therapeutic effects of natural compounds against cisplatin-induced cardiotoxicity: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8367-8381. [PMID: 38850306 DOI: 10.1007/s00210-024-03207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Cisplatin is a widely used chemotherapeutic agent for the treatment of various cancers. However, the clinical use of cisplatin is limited by its cardiotoxic side effects. The primary mechanisms implicated in this cardiotoxicity include mitochondrial dysfunction, oxidative stress, inflammation, and apoptotic. Numerous natural compounds (NCs) have been introduced as promising protective factors against cisplatin-mediated cardiac damage. The current review summarized the potential of various NCs as cardioprotective agents at the molecular levels. These compounds exhibited potent antioxidant and anti-inflammatory effects by interaction with the PI3K/AKT, AMPK, Nrf2, NF-κB, and NLRP3/caspase-1/GSDMD pathways. Generally, the modulation of these signaling pathways by NCs represents a promising strategy for improving the therapeutic index of cisplatin by reducing its cardiac side effects.
Collapse
Affiliation(s)
- Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Moradi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Su Y, Liu N, Wang P, Shang C, Sun R, Ma J, Li Z, Ma H, Sun Y, Zhang Z, Song J, Xie Z, Xu J, Zhang Z. Proteomic analysis and experimental validation reveal the blood-brain barrier protective of Huanshaodan in the treatment of SAMP8 mouse model of Alzheimer's disease. Chin Med 2024; 19:137. [PMID: 39369234 PMCID: PMC11456246 DOI: 10.1186/s13020-024-01016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Huanshaodan (HSD) is a Chinese Herbal Compound which has a definite clinical effect on Alzheimer's disease (AD), however, the underlying mechanism remains unclear. The aim of this study is to preliminarily reveal the mechanism of HSD in the treatment of AD model of SAMP8 mice. METHODS Chemical composition of HSD and its drug-containing serum were identified by Q-Orbitrap high resolution liquid mass spectrometry. Six-month-old SAMP8 mice were treated with HSD and Donepezil hydrochloride by gavage for 2 months, and Wogonin for 28 days. Behavioral test was performed to test the learning and memory ability of mice. Immunofluorescence (IF) or Western-blot methods were used to detect the levels of pSer404-tau and β-amyloid (Aβ) in the brain of mice. Hematoxylin-eosin (H&E) staining and Transmission electron microscopy (TEM) assay was applied to observe the pathological changes of neurons. Proteomic technology was carried out to analyze and identify the protein network of HSD interventions in AD. Then the pathological process of the revealed AD-related differential proteins was investigated by IF, Q-PCR, Western-blot, Fluorescence in situ hybridization (FISH) and 16S rRNA sequencing methods. RESULTS The results showed that HSD and Wogonin, one of the components in its drug-containing serum, can effectively improve the cognitive impairments of SAMP8 mice, protect hippocampal neurons and synapses, and reduce the expression of pSer404-tau and Aβ. HSD and Wogonin reduced the levels of fibrinogen β chain (FGB) and γ chain (FGG), the potential therapeutic targets revealed by proteomics analysis, reduced the colocalization of FGB and FGG with Aβ, ionized calcium binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), increased level of and myelin basic protein (MBP). Meanwhile, HSD and Wogonin increased ZO-1 and Occludin levels, improved brain microvascular injury, and reduced levels of bacteria/bacterial DNA and lipopolysaccharide (LPS) in the brain of mice. In addition, 16S rRNA sequencing indicated that HSD regulated the structure of intestinal microbiota of mice. CONCLUSION The effects of HSD on AD may be achieved by inhibiting the levels of fibrinogen and the interactions on glia cells in the brain, and by modulating the structure of intestinal microbiota and improving the blood-brain barrier function.
Collapse
Affiliation(s)
- Yunfang Su
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Zhengzhou, 450046, China
| | - Ningning Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Pan Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Congcong Shang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Ruiqin Sun
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Jinlian Ma
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Zhonghua Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Huifen Ma
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Yiran Sun
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Zijuan Zhang
- School of Basic Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Junying Song
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Zhishen Xie
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China.
| | - Jiangyan Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China.
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Gu X, Zhou H, Miao M, Hu D, Wang X, Zhou J, Teichmann AT, Yang Y, Wang C. Therapeutic Potential of Natural Resources Against Endometriosis: Current Advances and Future Perspectives. Drug Des Devel Ther 2024; 18:3667-3696. [PMID: 39188919 PMCID: PMC11345706 DOI: 10.2147/dddt.s464910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Endometriosis (EMS) is defined as the appearance, growth, infiltration, and repeated bleeding of endometrioid tissue (glands and stroma) outside the uterus cavity, which can form nodules and masses. Endometriosis is a chronic inflammatory estrogen-dependent disease and occurs in women of reproductive age. This disorder may significantly affect the quality of life of patients. The pathogenic processes involved in the development and maintenance of endometriosis remain unclear. Current treatment options for endometriosis mainly include drug therapy and surgery. Drug therapy mainly ties to the use of non-steroidal anti-inflammatory drugs (NSAIDs) and hormonal drugs. However, these drugs may produce adverse effects when used for long-term treatment of endometriosis, such as nausea, vomiting gastrointestinal reactions, abnormal liver and kidney function, gastric ulcers, and thrombosis. Although endometriosis lesions can be surgically removed, the disease has a high recurrence rate after surgical resection, with a recurrence rate of 21.5% within 2 years and 40% to 50% within 5 years. Thus, there is an urgent need to develop alternative or additional therapies for the treatment of endometriosis. In this review, we give a systematic summary of therapeutic multiple component prescriptions (including traditional Chinese medicine and so on), bioactive crude extracts of plants/herbs and purified compounds and their newly found mechanisms reported in literature in recent years against endometriosis.
Collapse
Affiliation(s)
- Xia Gu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Gynaecology and Obstetrics, Leshan People’s Hospital, Leshan, 614003, People’s Republic of China
| | - Hui Zhou
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Mengyue Miao
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Daifeng Hu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xinyue Wang
- The Basic Medical College, Army Medical University, Chongqing, 400038, People’s Republic of China
| | - Jing Zhou
- Department of Endocrinology, Chengdu Third People’s Hospital, Chengdu, 610014, People’s Republic of China
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Youzhe Yang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People’s Republic of China
| | - Chunyan Wang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
6
|
Ma J, Ji C, Sun Y, Liu D, Pan K, Wei Y. Wogonin ameliorates the proliferation, inflammatory response, and pyroptosis in keratinocytes via NOD-like receptor family pyrin domain containing 3/Caspase-1/Gasdermin-D pathway. Immun Inflamm Dis 2024; 12:e1303. [PMID: 38967379 PMCID: PMC11225086 DOI: 10.1002/iid3.1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Psoriasis refers to a highly prevalent and immunologically mediated dermatosis with considerable deterioration in life quality. Wogonin, a sort of flavonoid, has been mentioned to elicit protective activities in skin diseases. However, whether Wogonin is implicated in the treatment of psoriasis and its specific mechanisms are not fully understood. AIM The present work attempted to elaborate the role of Wogonin during the process of psoriasis and to concentrate on the associated action mechanism. METHODS Cell counting kit-8 (CCK-8) method was initially applied to assay the viability of human keratinocyte HaCaT cells treated by varying concentrations of Wogonin. To mimic psoriasis in vitro, HaCaT cells were exposed to M5 cytokines. CCK-8 and 5-Ethynyl-2'-deoxyuridine assays were adopted for the measurement of cell proliferation. Inflammatory levels were examined with enzyme-linked immunosorbent assay. Immunofluorescence staining tested nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) and Caspase-1 expressions. Western blot examined the protein expressions of proliferation-, inflammation-, pyroptosis-associated factors, and NLRP3. RESULTS Wogonin treatment antagonized the proliferation, inflammatory response, and NLRP3/caspase-1/Gasdermin-D (GSDMD)-mediated pyroptosis in M5-challenged HaCaT cells. Besides, NLRP3 elevation partially abrogated the effects of Wogonin on M5-induced proliferation, inflammatory response, and NLRP3/caspase-1/GSDMD-mediated pyroptosis in HaCaT cells. CONCLUSION In a word, Wogonin might exert anti-proliferation, anti-inflammatory and anti-pyroptosis activities in M5-induced cell model of psoriasis and the blockade of NLRP3/Caspase-1/GSDMD pathway might be recognized as a potential mechanism underlying the protective mechanism of Wogonin in psoriasis, suggesting Wogonin as a prospective anti-psoriasis drug.
Collapse
Affiliation(s)
- Jun Ma
- First College of Clinical MedicineNanjing University of Chinese MedicineNanjingChina
- Department of DermatologyThe Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhouChina
| | - Chen Ji
- Department of DermatologyZhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhouChina
| | - Yanhong Sun
- Department of DermatologyThe Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhouChina
| | - Danqing Liu
- Department of DermatologyThe Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhouChina
| | - Kai Pan
- Department of DermatologyThe Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhouChina
| | - Yuegang Wei
- First College of Clinical MedicineNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
7
|
Yang H, Liu C, Lin X, Li X, Zeng S, Gong Z, Xu Q, Li D, Li N. Wogonin inhibits the migration and invasion of fibroblast-like synoviocytes by targeting PI3K/AKT/NF-κB pathway in rheumatoid arthritis. Arch Biochem Biophys 2024; 755:109965. [PMID: 38552763 DOI: 10.1016/j.abb.2024.109965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is currently an autoimmune inflammatory disease with an unclear pathogenesis. Fibroblast-like synoviocytes (FLSs) have tumor-like properties, and their activation and secretion of pro-inflammatory factors are important factors in joint destruction. Wogonin (5,7-dihydroxy-8-methoxyflavone), a natural flavonoid isolated from Scutellaria baicalensis root, has been shown to have significant anti-inflammatory, anti-oxidative stress, and anti-tumor effects in a variety of diseases. However, the role of wogonin in RA has not yet been demonstrated. PURPOSE To investigate the inhibitory effect of wogonin on the invasive behavior of fibroblast-like synoviocytes and to explore the mechanism of action of wogonin in RA. METHODS CCK-8, EdU, cell migration and invasion, immunofluorescence staining, RT-qPCR, and protein blot analysis were used to study the inhibitory effects of wogonin on migration, invasion, and pro-inflammatory cytokine overexpression in the immortalized rheumatoid synovial cell line MH7A. The therapeutic effects of wogonin were validated in vivo using arthritis scores and histopathological evaluation of collagen-induced arthritis mice. RESULTS Wogonin inhibited the migration and invasion of MH7A cells, reduced the production of TNF-α, IL-1β, IL-6, MMP-3 and MMP-9, and increased the expression of IL-10. Moreover, wogonin also inhibited the myofibrillar differentiation of MH7A cells, increased the expression of E-cadherin (E-Cad) and decreased the expression of α-smooth muscle actin (α-SMA). In addition, wogonin treatment effectively ameliorated joint destruction in CIA mice. Further molecular mechanism studies showed that wogonin treatment significantly inhibited the activation of PI3K/AKT/NF-κB signaling pathway in TNF-α-induced arthritic FLSs. CONCLUSION Wogonin effectively inhibits migration, invasion and pro-inflammatory cytokine production of RA fibroblast-like synoviocytes through the PI3K/AKT/NF-κB pathway, and thus wogonin, as a natural flavonoid, has great potential for treating RA.
Collapse
Affiliation(s)
- Haixin Yang
- School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, China.
| | - Cuizhen Liu
- The First Clinical College of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China.
| | - Xiujuan Lin
- The First Clinical College of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China.
| | - Xing Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, 510630, Guangzhou, China.
| | - Shan Zeng
- Department of Rheumatology, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, China.
| | - Zhaohui Gong
- Department of Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China.
| | - Qiang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Detang Li
- The First Clinical College of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China; Department of Pharmacy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, China.
| | - Nan Li
- School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, China.
| |
Collapse
|
8
|
and Alternative Medicine EBC. Retracted: The Therapeutic Potential of Wogonin Observed in Preclinical Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9823091. [PMID: 38125175 PMCID: PMC10733021 DOI: 10.1155/2023/9823091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
[This retracts the article DOI: 10.1155/2021/9935451.].
Collapse
|
9
|
Ma MY, Wang Q, Wang SM, Feng XJ, Xian ZH, Zhang SH. Wogonin inhibits hepatoma cell proliferation by targeting miR-27b-5p/YWHAZ axis. J Biochem Mol Toxicol 2023; 37:e23508. [PMID: 37623816 DOI: 10.1002/jbt.23508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Wogonin (5,7-dihydroxy-8-methoxyflavone), a natural flavonoid compound in herbal plants, can suppress growth in hepatocellular carcinoma (HCC). However, the microRNA (miRNA) expression profiles that are influenced by wogonin have not been thoroughly described. To explore the novel miRNAs and the biological mechanism underlying the effect of wogonin on HCC cells. The effect of wogonin on Huh7 cell growth was assessed both in vitro and in vivo. The expression profiles of miRNAs were obtained by small RNA sequencing. Luciferase reporter experiment and bioinformatics analysis were conducted to determine whether tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) can bind to miR-27b-5p. Effects of the ectopic expression of YWHAZ and miR-27b-5p on Huh7 cells proliferation and apoptosis were evaluated. Furthermore, the cell cycle, apoptosis and multiple signaling pathway-related molecules were detected by Western blot analysis. Wogonin substantially inhibited the growth of Huh7 cells both in vitro and in vivo. Seventy miRNAs exhibited greater than twofold changes in wogonin-treated cells. Upregulation of miR-27b-5p inhibited Huh7 cell proliferation, and the anticancer effect of wogonin was reversed after miR-27b-5p knockdown. miR-27b-5p directly targeted YWHAZ in HCC cells. The proliferation-inhibiting effect of miR-27b-5p was revoked by YWHAZ overexpression. Meanwhile, inhibition of HCC growth was achieved by downregulating YWHAZ. Wogonin exerted antitumor activity through multiple signaling molecules, such as focal adhesion kinase, protein kinase B, mammalian target of rapamycin and molecules related to apoptosis and cell cycle by upregulating miR-27b-5p and downregulating YWHAZ. Our findings suggest that miR-27b-5p/YWHAZ axis contributes to the inhibitory effect of wogonin in HCC by targeting related genes and multiple signaling pathways.
Collapse
Affiliation(s)
- Ming-Yue Ma
- Department of Pathology, Yueyang integrated traditional Chinese and Western Medicine Hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Department of Pathology, Yueyang integrated traditional Chinese and Western Medicine Hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Shou-Mei Wang
- Department of Pathology, Yueyang integrated traditional Chinese and Western Medicine Hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Xiao-Jun Feng
- Department of Pathology, Yueyang integrated traditional Chinese and Western Medicine Hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Zhi-Hong Xian
- Department of Pathology, Yueyang integrated traditional Chinese and Western Medicine Hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Shu-Hui Zhang
- Department of Pathology, Yueyang integrated traditional Chinese and Western Medicine Hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Krishnan V, Parandhaman M, Kanagaraj R, Veerapandian M. Buteinylated-hafnium oxide bionanoparticles for electrochemical sensing of wogonin. NANOSCALE 2023; 15:18727-18736. [PMID: 37953667 DOI: 10.1039/d3nr04438f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Hybridizing biomolecules with metal oxide nanostructures possessing inherent optical emission and electrochemical functionality is advantageous for external mediator-free analytical applications. This work demonstrates the ultrasonochemical synthesis of hafnium oxide (HfO2) nanoparticles and their combination with butein, a chalcone type polyphenol, for the direct electrochemical detection of active herbaceuticals. The underlying hybridization chemistry between HfO2 and butein within the bio-nano interface is comprehensively investigated using ultraviolet diffuse reflectance, X-ray diffraction, Fourier-transform infrared, and X-ray photoelectron spectroscopic techniques. Electron micrographs suggest the formation of elongated nano spherical particles of HfO2 with the incorporation of butein (average particle size of 17.6 ± 2.9 nm). The catecholic OH group of butein existing on the surface of hybridized HfO2 exhibits reversible redox behavior convenient for probing the selected target analyte at physiological pH. The electron diffusion kinetics, electron transfer coefficient and rate constant parameters of the prepared HfO2-butein electrode material have been studied in detail for further application in biomolecular sensing of wogonin. The as-developed sensor platform exhibits a linear detection range of 20-100 μM with a current density of 60 μA cm-2 and a detection limit of 0.63 μM, which is promising for herbaceutical analysis.
Collapse
Affiliation(s)
- Vinoth Krishnan
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Moghitha Parandhaman
- Centre for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
| | - Ramya Kanagaraj
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201 002, India
| |
Collapse
|
11
|
Liu J, Meng T, Wang C, Cheng W, Zhang Q, Cheng G. Natural products for the treatment of depression: Insights into signal pathways influencing the hypothalamic-pituitary-adrenal axis. Medicine (Baltimore) 2023; 102:e35862. [PMID: 37932977 PMCID: PMC10627670 DOI: 10.1097/md.0000000000035862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
Depression, a prevalent psychiatric malady, afflicts a substantial global demographic, engendering considerable disease burden due to its elevated morbidity and mortality rates. Contemporary therapeutic approaches for depression encompass the administration of serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclic antidepressants, albeit these pharmaceuticals potentially induce adverse neurological and gastrointestinal effects. Traditional Chinese Medicine (TCM) natural products proffer the benefits of multi-target, multi-level, and multi-channel depression treatment modalities. In this investigation, we conducted a comprehensive literature review of the past 5 years in PubMed and other databases utilizing the search terms "Depression," "Natural medicines," "Traditional Chinese Medicine," and "hypothalamic-pituitary-adrenal axis." We delineated the 5 most recent and pertinent signaling pathways associated with depression and hypothalamic-pituitary-adrenal (HPA) axis dysregulation: nuclear factor kappa light-chain-enhancer of activated B cell, brain-derived neurotrophic factor, mitogen-activated protein kinase, cyclic AMP/protein kinase A, and phosphoinositide 3-kinase/protein kinase B. Additionally, we deliberated the antidepressant mechanisms of natural medicines comprising alkaloids, flavonoids, polyphenols, saponins, and quinones via diverse pathways. This research endeavor endeavored to encapsulate and synthesize the progression of TCMs in modulating HPA axis-associated signaling pathways to mitigate depression, thereby furnishing robust evidence for ensuing research in this domain.
Collapse
Affiliation(s)
- Jiawen Liu
- Graduate school, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Tianwei Meng
- Graduate school, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chaojie Wang
- Graduate school, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Weiping Cheng
- The Second Ward of Acupuncture and Moxibustion Department, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Zhang
- The Forth Ward of Cardiovascular Department, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guangyu Cheng
- The Sixth Ward of Acupuncture and Moxibustion Department, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
12
|
He X, Wang J, Sun L, Ma W, Li M, Yu S, Zhou Q, Jiang J. Wogonin attenuates inflammation and oxidative stress in lipopolysaccharide-induced mastitis by inhibiting Akt/NF-κB pathway and activating the Nrf2/HO-1 signaling. Cell Stress Chaperones 2023; 28:989-999. [PMID: 37910344 PMCID: PMC10746643 DOI: 10.1007/s12192-023-01391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Mastitis is a disease involved in inflammation of breast which affects human and animals. Wogonin is one bioactive compound from many Chinese herbal medicines, which have multiple properties, including anti-inflammatory activity. However, the roles of wogonin in mastitis progression are largely undefined. Mastitis models were established using LPS-treated mice and mammary epithelial cells (MECs). Infiltration of inflammatory cells was analyzed by hematoxylin-eosin staining and myeloperoxidase (MPO) activity. Inflammatory cytokine (TNF-α and IL-1β) levels were detected via ELISA. The phosphorylation and total of Akt and NF-κB levels and content of Nrf2 and HO-1 were measured via western blot. Cell viability was examined by CCK-8 assay. Oxidative stress was assessed by ROS generation and levels of MDA, GSH, and SOD. Wogonin attenuated LPS-induced infiltration of inflammatory cells, increase of MPO activity and levels of TNF-α and IL-1β, and activation of the Akt/NF-κB pathway in murine mammary gland tissues, and promoted activation of Nrf2/HO-1 signaling. Wogonin did not affect MEC viability, but mitigated LPS-induced inflammation in MECs by reducing TNF-α and IL-1β levels. Wogonin relieved LPS-induced oxidative stress in MECs through decreasing ROS generation and MDA level and increasing GSH and SOD levels. Wogonin repressed LPS-induced activation of the Akt/NF-κB pathway in MECs and increased Nrf2/HO-1 signaling activation. Activated Akt/NF-κB signaling or Nrf2/HO-1 signaling inactivation reversed the suppressive effects of wogonin on LPS-induced inflammation and oxidative stress in MECs. Wogonin mitigates LPS-induced inflammation and oxidative stress of MECs via suppressing activation of the Akt/NF-κB signaling and activating Nrf2/HO-1 pathway, indicating the therapeutic potential of wogonin in mastitis.
Collapse
Affiliation(s)
- Xin He
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Juan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lei Sun
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenqi Ma
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Miao Li
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shanshan Yu
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
13
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
14
|
Suhail M, AlZahrani WM, Shakil S, Tarique M, Tabrez S, Zughaibi TA, Rehan M. Analysis of some flavonoids for inhibitory mechanism against cancer target phosphatidylinositol 3-kinase (PI3K) using computational tool. Front Pharmacol 2023; 14:1236173. [PMID: 37900167 PMCID: PMC10612336 DOI: 10.3389/fphar.2023.1236173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
Cancer has been one of the leading causes of mortality worldwide over the past few years. Some progress has been made in the development of more effective cancer therapeutics, resulting in improved survival rates. However, the desired outcome in the form of successful treatment is yet to be achieved. There is high demand for the development of innovative, inexpensive, and effective anticancer treatments using natural resources. Natural compounds have been increasingly discovered and used for cancer therapy owing to their high molecular diversity, novel biofunctionality, and minimal side effects. These compounds can be utilized as chemopreventive agents because they can efficiently inhibit cell growth, control cell cycle progression, and block several tumor-promoting signaling pathways. PI3K is an important upstream protein of the PI3K-Akt-mTOR pathway and a well-established cancer therapeutic target. This study aimed to explore the small molecules, natural flavonoids, viz. quercetin, luteolin, kaempferol, genistein, wogonin, daidzein, and flavopiridol for PI3Kγ kinase activity inhibition. In this study, the binding pose, interacting residues, molecular interactions, binding energies, and dissociation constants were investigated. Our results showed that these flavonoids bound well with PI3Kγ with adequate binding strength scores and binding energy ranging from (-8.19 to -8.97 Kcal/mol). Among the explored ligands, flavopiridol showed the highest binding energy of -8.97 Kcal/mol, dock score (-44.40), and dissociation constant term, p K d of 6.58 against PI3Kγ. Based on the above results, the stability of the most promising ligand, flavopiridol, against PI3Kγ was evaluated by molecular dynamics simulations for 200 ns, confirming the stable flavopiridol and PI3Kγ complex. Our study suggests that among the selected flavonoids specifically flavopiridol may act as potential inhibitors of PI3Kγ and could be a therapeutic alternative to inhibit the PI3Kγ pathway, providing new insights into rational drug discovery research for cancer therapy.
Collapse
Affiliation(s)
- Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wejdan M. AlZahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Tuli HS, Rath P, Chauhan A, Parashar G, Parashar NC, Joshi H, Rani I, Ramniwas S, Aggarwal D, Kumar M, Rana R. Wogonin, as a potent anticancer compound: From chemistry to cellular interactions. Exp Biol Med (Maywood) 2023; 248:820-828. [PMID: 37387217 PMCID: PMC10468645 DOI: 10.1177/15353702231179961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Chinese native medicine Scutellaria baicalensis Georgi, also referred to as Chinese skullcap or Huang-Qin, is frequently used to treat cancer, viral infections, and seizures. This plant's abundance of flavones (wogonoside) and their related aglycones (wogonin) is responsible for many of its pharmacologic effects. A significant ingredient in S. baicalensis that has been the subject of the most research is wogonin. Numerous preclinical investigations revealed that wogonin suppresses tumor growth by cell cycle arrest, stimulating cell death and preventing metastasis. This review focuses on a complete overview of published reports that suggest chemopreventive action of wogonin and the mechanistic insights behind these neoplastic activities. It also emphasizes the synergistic improvements made by wogonin in chemoprevention. The factual data in this mini-review stimulate additional research on chemistry and toxicological profile of wogonin to confirm its safety issues. This review will encourage researchers to generalize the merits of wogonin to be used as potential compound for cancer treatment.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India
| | - Gaurav Parashar
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur Ambala 134007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali 140413, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala 134007, India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| |
Collapse
|
16
|
Nisa N, Rasmita B, Arati C, Uditraj C, Siddhartha R, Dinata R, Bhanushree B, Bidanchi RM, Manikandan B, Laskar SA, Abinash G, Pori B, Roy VK, Gurusubramanian G. Repurposing of phyto-ligand molecules from the honey bee products for Alzheimer's disease as novel inhibitors of BACE-1: small molecule bioinformatics strategies as amyloid-based therapy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51143-51169. [PMID: 36808033 DOI: 10.1007/s11356-023-25943-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 04/16/2023]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative diseases, manifesting dementia, spatial disorientation, language, cognitive, and functional impairment, mainly affects the elderly population with a growing concern about the financial burden on society. Repurposing can improve the traditional progress of drug design applications and could speed up the identification of innovative remedies for AD. The pursuit of potent anti-BACE-1 drugs for AD treatment has become a pot boiler topic in the recent past and to instigate the design of novel improved inhibitors from the bee products. Drug-likeness characteristics (ADMET: absorption, distribution, metabolism, excretion, and toxicity), docking (AutoDock Vina), simulation (GROMACS), and free energy interaction (MM-PBSA, molecular mechanics Poisson-Boltzmann surface area) analyses were performed to identify the lead candidates from the bee products (500 bioactives from the honey, royal jelly, propolis, bee bread, bee wax, and bee venom) for Alzheimer's disease as novel inhibitors of BACE-1 (beta-site amyloid precursor protein cleaving enzyme (1) receptor using appropriate bioinformatics tools. Forty-four bioactive lead compounds were screened from the bee products through high throughput virtual screening on the basis of their pharmacokinetic and pharmacodynamics characteristics, showing favorable intestinal and oral absorption, bioavailability, blood brain barrier penetration, less skin permeability, and no inhibition of cytochrome P450 inhibitors. The docking score of the forty-four ligand molecules was found to be between -4 and -10.3 kcal/mol, respectively, exhibiting strong binding affinity to BACE1 receptor. The highest binding affinity was observed in the rutin (-10.3 kcal/mol), 3,4-dicaffeoylquinic acid (-9.5 kcal/mol), nemorosone (-9.5 kcal/mol), and luteolin (-8.9 kcal/mol). Furthermore, these compounds demonstrated high total binding energy -73.20 to -105.85 kJ/mol), and low root mean square deviation (0.194-0.202 nm), root mean square fluctuation (0.0985-0.1136 nm), radius of gyration (2.12 nm), number of H-bonds (0.778-5.436), and eigenvector values (2.39-3.54 nm2) in the molecular dynamic simulation, signifying restricted motion of Cα atoms, proper folding and flexibility, and highly stable with compact of the BACE1 receptor with the ligands. Docking and simulation studies concluded that rutin, 3,4-dicaffeoylquinic acid, nemorosone, and luteolin are plausibly used as novel inhibitors of BACE1 to combat AD, but further in-depth experimental investigations are warranted to prove these in silico findings.
Collapse
Affiliation(s)
- Nisekhoto Nisa
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Borgohain Rasmita
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Chettri Arati
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Chetia Uditraj
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | - Roy Dinata
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Baishya Bhanushree
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | - Bose Manikandan
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Saeed Ahmed Laskar
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Giri Abinash
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Buragohain Pori
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | |
Collapse
|
17
|
Tuli HS, Bhushan S, Kumar A, Aggarwal P, Sak K, Ramniwas S, Vashishth K, Behl T, Rana R, Haque S, Prieto MA. Autophagy Induction by Scutellaria Flavones in Cancer: Recent Advances. Pharmaceuticals (Basel) 2023; 16:302. [PMID: 37259445 PMCID: PMC9962484 DOI: 10.3390/ph16020302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 07/28/2024] Open
Abstract
In parallel with a steady rise in cancer incidence worldwide, the scientific community is increasingly focused on finding novel, safer and more efficient modalities for managing this disease. Over the past decades, natural products have been described as a significant source of new structural leads for novel drug candidates. Scutellaria root is one of the most studied natural products because of its anticancer potential. Besides just describing the cytotoxic properties of plant constituents, their molecular mechanisms of action in different cancer types are equally important. Therefore, this review article focuses on the role of the Scutellaria flavones wogonin, baicalein, baicalin, scutellarein and scutellarin in regulating the autophagic machinery in diverse cancer models, highlighting these molecules as potential lead compounds for the fight against malignant neoplasms. The knowledge that autophagy can function as a dual-edged sword, acting in both a pro- and antitumorigenic manner, further complicates the issue, revealing an amazing property of flavonoids that behave either as anti- or proautophagic agents.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (University), Mullana, Ambala 133207, India
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Samba 181143, India
| | - Ajay Kumar
- Punjab Biotechnology Incubator (P.B.T.I.), Phase VIII, Mohali 160071, India
| | - Poonam Aggarwal
- The Basic Research Laboratory, Center for Cancer Research, National Institutes of Health, Frederick, MD 20892, USA
| | | | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, Post Graduate Institute of Medical Education and Rsearch (P.G.I.M.E.R.), Chandigarh 160012, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi 122016, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
18
|
Long P, Xia Y, Yang Y, Cao J. Network-based pharmacology and molecular docking exploring the "Bupleuri Radix-Scutellariae Radix" mechanism of action in the viral hepatitis B treatment. Medicine (Baltimore) 2022; 101:e31835. [PMID: 36482557 PMCID: PMC9726313 DOI: 10.1097/md.0000000000031835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viral hepatitis B is caused by the hepatitis B virus, which is characterized by liver lesions. Bupleuri Radix and Scutellariae Radix are the main traditional medicine pairs with remarkable efficacy in hepatitis B. However, their molecular mechanisms are incompletely understood. The main active components of Bupleuri Radix and Scutellariae Radix, as well as therapeutic targets for the treatment of hepatitis B, were identified through network pharmacology techniques. We identified viral hepatitis B targets using the GeneCards, online mendelian inheritance in man, and therapeutic target databases. We discovered the active components of Bupleuri Radix and Scutellariae Radix as well as therapeutic targets using the encyclopedia of traditional Chinese medicine, HERB, traditional Chinese medicine systems pharmacology database, and a bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine databases. VENNY obtained the intersections. Cytoscape and STRING were used to create the "active ingredient-potential target" network and protein interaction network. The DAVID database was used to enrich GO and KEGG pathways. The results were confirmed using the molecular docking method. There were 1827 viral hepatitis B targets, and 37 active ingredients for Bupleuri and Scutellariae Radix, with the main components being quercetin, wogonin, baicalein, and kaempferol. Tumor necrosis factor (TNF), mitogen-activated protein kinase 3 (MAPK3), interleukin-6 (IL-6), vascular endothelial growth factor A, cysteinyl aspartate specific proteinase 3, transcription factor AP-1 (JUN), RAC-alpha serine/threonine-protein kinase, and cellular tumor antigen p53 are among the 78 common targets of Bupleuri Radix and Scutellariae Radix intervention in viral hepatitis B. KEGG enrichment resulted in 107 pathways, including cancer, hepatitis B, and TNF signaling pathways. According to the molecular docking technique, quercetin, wogonin, baicalein, and kaempferol had strong binding activities with TNF, MAPK3, and IL-6. In this study, we initially identified various molecular targets and multiple pathways involved in hepatitis B treatment with Bupleuri Radix and Scutellariae Radix.
Collapse
Affiliation(s)
- Piao Long
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan, China
| | - Yu Xia
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan, China
| | - Yuying Yang
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan, China
| | - Jianzhong Cao
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan, China
- * Correspondence: Jianzhong Cao, Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, No. 300, Xueshi Road, Yuelu District, Changsha 410208, Hunan, China (e-mail: )
| |
Collapse
|
19
|
Collection of Hairy Roots as a Basis for Fundamental and Applied Research. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228040. [PMID: 36432139 PMCID: PMC9695355 DOI: 10.3390/molecules27228040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Due to population growth, instability of climatic conditions, and reduction of the areas of natural ecosystems, it becomes necessary to involve modern biotechnological approaches to obtain highly productive plant material. This statement applies both to the creation of plant varieties and the production of new pharmaceutical raw materials. Genetic transformation of valuable medicinal plants using Agrobacterium rhizogenes ensures the production of stable and rapidly growing hairy roots cultures that have a number of advantages compared with cell culture and, above all, can synthesize root-specific substances at the level of the roots of the intact plant. In this regard, special attention should be paid to the collection of hairy roots of the Institute of Plant Physiology RAS, Russian Academy of Sciences, the founder of which was Dr. Kuzovkina I.N. Currently, the collection contains 38 hairy roots lines of valuable medicinal and forage plants. The review discusses the prospects of creating a hairy roots collection as a basis for fundamental research and commercial purposes.
Collapse
|
20
|
Combined Effects of Methyldopa and Baicalein or Scutellaria baicalensis Roots Extract on Blood Pressure, Heart Rate, and Expression of Inflammatory and Vascular Disease-Related Factors in Spontaneously Hypertensive Pregnant Rats. Pharmaceuticals (Basel) 2022; 15:ph15111342. [PMID: 36355514 PMCID: PMC9694684 DOI: 10.3390/ph15111342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the study was to investigate the effect of baicalein or Scutellaria baicalensis root extract interaction with methyldopa in pregnant spontaneously hypertensive rats (SHR) at the pharmacodynamic, molecular, and biochemical levels. The rats, after confirming pregnancy, received baicalein (200 mg/kg/day, p.o.) and extract (1000 mg/kg/day, p.o.), in combination with methyldopa (400 mg/kg/day; p.o.), for 14 consecutive days, 1 h before blood pressure and heart rate measurements. In the heart and placenta from mothers after giving birth to their offspring, mRNA expression of factors related to inflammatory processes (TNF-α, Il-1β, IL-6) and vascular diseases (TGF-β, HIF-1α, VEGF, PlGF) was measured. Levels of markers of oxidative stress (superoxide dismutase and malondialdehyde) in the placenta and indicators of myocardial damage (troponin cTnC and cTnI, creatine kinase, myoglobin, and lactate dehydrogenase) in the heart were also assessed. Baicalein co-administered with methyldopa was associated with reduced blood pressure, especially during the first three days. The interactions were more pronounced for such factors as TGF-β, HIF-1α, VEGF, and PlGF than TNF-α, Il-1β, and IL-6. Combined application of baicalein and extract with methyldopa may be of value in the development of a new antihypertensive medication intended for patients suffering from preeclampsia or pregnancy-induced hypertension.
Collapse
|
21
|
Li J, Cai Z, Li XW, Zhuang C. Natural Product-Inspired Targeted Protein Degraders: Advances and Perspectives. J Med Chem 2022; 65:13533-13560. [PMID: 36205223 DOI: 10.1021/acs.jmedchem.2c01223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeted protein degradation (TPD), a promising therapeutic strategy in drug discovery, has great potential to regulate the endogenous degradation of undruggable targets with small molecules. As vital resources that provide diverse structural templates for drug discovery, natural products (NPs) are a rising and robust arsenal for the development of therapeutic TPD. The first proof-of-concept study of proteolysis-targeting chimeras (PROTACs) was a natural polyketide ovalicin-derived degrader; since then, NPs have shown great potential to promote TPD technology. The use of NP-inspired targeted protein degraders has been confirmed to be a promising strategy to treat many human conditions, including cancer, inflammation, and nonalcoholic fatty liver disease. Nevertheless, the development of NP-inspired degraders is challenging, and the field is currently in its infancy. In this review, we summarize the bioactivities and mechanisms of NP-inspired degraders and discuss the associated challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Jiao Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Chunlin Zhuang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
22
|
Gu Y, Zheng Q, Fan G, Liu R. Advances in Anti-Cancer Activities of Flavonoids in Scutellariae radix: Perspectives on Mechanism. Int J Mol Sci 2022; 23:ijms231911042. [PMID: 36232344 PMCID: PMC9570317 DOI: 10.3390/ijms231911042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Despite encouraging progresses in the development of novel therapies, cancer remains the dominant cause of disease-related mortality and has become a leading economic and healthcare burden worldwide. Scutellariae radix (SR, Huangqin in Chinese) is a common herb used in traditional Chinese medicine, with a long history in treating a series of symptoms resulting from cancer, like dysregulated immune response and metabolic abnormalities. As major bioactive ingredients extracted from SR, flavonoids, including baicalein, wogonin, along with their glycosides (baicalin and wogonoside), represent promising pharmacological and anti-tumor activities and deserve extensive research attention. Emerging evidence has made great strides in elucidating the multi-targeting therapeutic mechanisms and key signaling pathways underlying the efficacious potential of flavonoids derived from SR in the field of cancer treatment. In this current review, we aim to summarize the pharmacological actions of flavonoids against various cancers in vivo and in vitro. Moreover, we also make a brief summarization of the endeavor in developing a drug delivery system or structural modification to enhance the bioavailability and biological activities of flavonoid monomers. Taken together, flavonoid components in SR have great potential to be developed as adjuvant or even primary therapies for the clinical management of cancers and have a promising prospect.
Collapse
|
23
|
Flavones: Six Selected Flavones and Their Related Signaling Pathways That Induce Apoptosis in Cancer. Int J Mol Sci 2022; 23:ijms231810965. [PMID: 36142874 PMCID: PMC9505532 DOI: 10.3390/ijms231810965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is a horrific disease that, to date, has no cure. It is caused by various factors and takes many lives. Apoptosis is a programmed cell death mechanism and if it does not function correctly in cancer cells, it can lead to severe disease. There are various signaling pathways for regulating apoptosis in cancer cells. Flavonoids are non-artificial natural bioactive compounds that are gaining attention as being capable of for inducing apoptosis in cancer cells. Among these, in this study, we focus on flavones. Flavones are a subclass of the numerous available flavonoids and possess several bioactive functions. Some of the most reported and well-known critical flavones, namely apigenin, acacetin, baicalein, luteolin, tangeretin, and wogonin, are discussed in depth in this review. Our main aim is to investigate the effects of the selected flavones on apoptosis and cell signaling pathways that contribute to death due to various types of cancers.
Collapse
|
24
|
Natural Compounds Affecting Inflammatory Pathways of Osteoarthritis. Antioxidants (Basel) 2022; 11:antiox11091722. [PMID: 36139796 PMCID: PMC9495743 DOI: 10.3390/antiox11091722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis and chronic joint disease, affecting more than 240 million people worldwide. Although there are numerous advances in using drugs in treating OA, the use of natural compounds has aroused much interest among researchers due to their safety margin. Recent discovery shows that natural compounds play an extensive role in the oxidative stress signaling pathway in treating OA. Thus, this review summarizes the commonly used natural compounds for treating OA focusing on the oxidative stress signaling pathway and its downstream mediators. Selected databases—such as Scopus, Web of Science, Nature, and PubMed—were used to search for potentially relevant articles. The search is limited to the last 15 years and the search was completed using the Boolean operator’s guideline using the keywords of natural product AND oxidative stress AND osteoarthritis OR natural extract AND ROS AND degenerative arthritis OR natural plant AND free radicals AND degenerative joint disease. In total, 37 articles were selected for further review. Different downstream mechanisms of oxidative stress involved in the usage of natural compounds for OA treatment and anabolic and catabolic effects of natural compounds that exhibit chondroprotective effects have been discussed with the evidence of in vitro and in vivo trials in this review.
Collapse
|
25
|
Protective and therapeutic effects of Scutellaria baicalensis and its main active ingredients baicalin and baicalein against natural toxicities and physical hazards: a review of mechanisms. Daru 2022; 30:351-366. [PMID: 35870110 PMCID: PMC9715893 DOI: 10.1007/s40199-022-00443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/10/2022] [Indexed: 10/16/2022] Open
Abstract
OBJECTIVES Scutellaria baicalensis (SB) has been traditionally used to combat a variety of conditions ranging from ischemic heart disease to cancer. The protective effects of SB are due to the action of two main flavonoids baicalin (BA) and baicalein (BE). This paper aimed to provide a narrative review of the protective and antidotal effects of SB and its main constituents against natural toxicities and physical hazards. EVIDENCE ACQUISITION Scientific databases Medline, Scopus, and Web of Science were thoroughly searched, based on different keywords for in vivo, in vitro and clinical studies which reported protective or therapeutic effects of SB or its constituents in natural and physical toxicities. RESULTS Numerous studies have reported that treatment with BE, BA, or total SB extract prevents or counteracts the detrimental toxic effects of various natural compounds and physical hazards. The toxic agents include mycotoxins, lipopolysaccharide, multiple plants and animal-derived substances as well as physical factors which negatively affected vital organs such as CNS, liver, kidneys, lung and heart. Increasing the expression of radical scavenging enzymes and glutathione content as well as inhibition of pro-inflammatory cytokines and pro-apoptotic mediators were important mechanisms of action. CONCLUSION Different studies on the Chinese skullcap have exhibited that its total root extract, BA or BE can act as potential antidotes or protective agents against the damage induced by natural toxins and physical factors by alleviating oxidative stress and inflammation. However, the scarcity of high-quality clinical evidence means that further clinical studies are required to reach a more definitive conclusion.
Collapse
|
26
|
Huang J, Zhou M, Zhang H, Fang Y, Chen G, Wen J, Liu L. Characterization of the mechanism of Scutellaria baicalensis on reversing radio-resistance in colorectal cancer. Transl Oncol 2022; 24:101488. [PMID: 35872478 PMCID: PMC9307497 DOI: 10.1016/j.tranon.2022.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 12/09/2022] Open
Abstract
Scutellaria baicalensis (SB) has been shown to improve the therapeutic effects of colorectal cancer (CRC) and perform well for reversing radio-resistance in different cancers. However, its potential function and mechanism related to radio-resistance in CRC has not been explored. A radio-resistant human CRC cell line (HCT116R) was applied. A network pharmacological analysis was performed to reveal the potential mechanism of SB for reversing radio-resistance in CRC, and computational pathological analysis was applied to indicate the clinicopathological significance of the key targets. Then, our hypothesis was further verified by molecular docking. The network pharmacology analysis showed that wogonin is the key compound of SB for reversing the radio-resistance of CRC. A Kyoto Encyclopedia of Genes and Genomes analysis showed that the genes for SB that reverse radio-resistance in CRC are mainly involved in steroid hormone biosynthesis. An enrichment analysis pointed out that Sulfotransferase family 2B member 1 (SULT2B1) is a potentially vital gene. SULT2B1 was demonstrated as being highly expressed in CRC and upregulated in radio-resistant rectal tissues or cell lines. A CCK-8 and clone formation test showed that the viability and clone formation ability of HCT116R were significantly decreased by wogonin combined with radiotherapy, compared to radiotherapy alone. By contrast, flow cytometry revealed that the apoptosis of HCT116R was significantly increased when wogonin treatment combined with radiotherapy, compared with radiotherapy alone. Molecular docking verification indicated that SULT2B1 and wogonin have a good binding ability. Taken together, SULT2B1 may be the potential drug target in treating radio-resistant CRC. Wogonin may be the core compound of SB for reversing radio-resistance in CRC by targeting SULT2B1.
Collapse
Affiliation(s)
- Jinmei Huang
- Department of Drug Toxicology, College of Pharmacy of Guangxi Medical University, Nanning 530021, PR China.
| | - Ming Zhou
- Department of Pharmacy, Wuhan Pulmonary Hospital, Wuhan, PR China.
| | - Huan Zhang
- Department of Pharmacy, Wuhan Pulmonary Hospital, Wuhan, PR China.
| | - Yeying Fang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - Jiaying Wen
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - LiMin Liu
- Department of Drug Toxicology, College of Pharmacy of Guangxi Medical University, Nanning 530021, PR China.
| |
Collapse
|
27
|
A Review of Twenty Years of Research on the Regulation of Signaling Pathways by Natural Products in Breast Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113412. [PMID: 35684353 PMCID: PMC9182524 DOI: 10.3390/molecules27113412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/21/2022]
Abstract
Breast cancer (BC) is the second leading cause of death among women, and it has become a global health issue due to the increasing number of cases. Different treatment options, including radiotherapy, surgery, chemotherapy and anti-estrogen therapy, aromatase inhibitors, anti-angiogenesis drugs, and anthracyclines, are available for BC treatment. However, due to its high occurrence and disease progression, effective therapeutic options for metastatic BC are still lacking. Considering this scenario, there is an urgent need for an effective therapeutic strategy to meet the current challenges of BC. Natural products have been screened as anticancer agents as they are cost-effective, possess low toxicity and fewer side effects, and are considered alternative therapeutic options for BC therapy. Natural products showed anticancer activities against BC through the inhibition of angiogenesis, cell migrations, proliferations, and tumor growth; cell cycle arrest by inducing apoptosis and cell death, the downstream regulation of signaling pathways (such as Notch, NF-κB, PI3K/Akt/mTOR, MAPK/ERK, and NFAT-MDM2), and the regulation of EMT processes. Natural products also acted synergistically to overcome the drug resistance issue, thus improving their efficacy as an emerging therapeutic option for BC therapy. This review focused on the emerging roles of novel natural products and derived bioactive compounds as therapeutic agents against BC. The present review also discussed the mechanism of action through signaling pathways and the synergistic approach of natural compounds to improve their efficacy. We discussed the recent in vivo and in vitro studies for exploring the overexpression of oncogenes in the case of BC and the current status of newly discovered natural products in clinical investigations.
Collapse
|
28
|
Identification of Bioactive Compounds and Potential Mechanisms of Kuntai Capsule in the Treatment of Polycystic Ovary Syndrome by Integrating Network Pharmacology and Bioinformatics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3145938. [PMID: 35528524 PMCID: PMC9073551 DOI: 10.1155/2022/3145938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Objective This study elucidates the potential therapeutic targets and molecular mechanisms of KTC in the treatment of PCOS. Materials and Methods Using the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), the active ingredients and potential targets of KTC were obtained. The Gene Expression Omnibus (GEO) database was used to find differentially expressed genes (DEGs) related to PCOS. Search the CTD, DisGeNet, genecards, NCBI, OMIM, and PharmGKB databases for therapeutic targets related to PCOS. The intersection of potential targets, DEGs, and therapeutic targets was submitted to perform bioinformatics analysis by R language. Finally, the analyses' core targets and their corresponding active ingredients were molecularly docked. Results 88 potential therapeutic targets of KTC for PCOS were discovered by intersecting the potential targets, DEGs, and therapeutic targets. According to bioinformatics analysis, the mechanisms of KTC treatment for PCOS could be linked to IL-17 signaling route, p53 signaling pathway, HIF-1 signaling pathway, etc. The minimal binding energies of the 5 core targets and their corresponding ingredients were all less than -6.5. Further research found that quercetin may replace KTC in the treatment of PCOS. Discussion and Conclusions. We explored the active ingredients and molecular mechanisms of KTC in the treatment of PCOS and found that quercetin may be the core ingredient of KTC in the treatment of PCOS.
Collapse
|
29
|
Zeng J, Bao T, Yang K, Zhu X, Wang S, Xiang W, Ge A, Zeng L, Ge J. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: A review. Front Immunol 2022; 13:1047550. [PMID: 36818470 PMCID: PMC9933144 DOI: 10.3389/fimmu.2022.1047550] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
Ischemic stroke (IS) is one of the most fatal diseases. Neuroimmunity, inflammation, and oxidative stress play important roles in various complex mechanisms of IS. In particular, the early proinflammatory response resulting from the overactivation of resident microglia and the infiltration of circulating monocytes and macrophages in the brain after cerebral ischemia leads to secondary brain injury. Microglia are innate immune cells in the brain that constantly monitor the brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce dual effects of neurotoxicity and neuroprotection, and the balance of the two effects determines the fate of damaged neurons. The activation of microglia is defined as the classical activation (M1 type) or alternative activation (M2 type). M1 type microglia secrete pro-inflammatory cytokines and neurotoxic mediators to exacerbate neuronal damage, while M2 type microglia promote a repairing anti-inflammatory response. Fine regulation of M1/M2 microglial activation to minimize damage and maximize protection has important therapeutic value. This review focuses on the interaction between M1/M2 microglia and other immune cells involved in the regulation of IS phenotypic characteristics, and the mechanism of natural plant components regulating microglia after IS, providing novel candidate drugs for regulating microglial balance and IS drug development.
Collapse
Affiliation(s)
- Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | | | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.,Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
30
|
Autophagy as a Therapeutic Target of Natural Products Enhancing Embryo Implantation. Pharmaceuticals (Basel) 2021; 15:ph15010053. [PMID: 35056110 PMCID: PMC8779555 DOI: 10.3390/ph15010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Infertility is an emerging health issue worldwide, and female infertility is intimately associated with embryo implantation failure. Embryo implantation is an essential process during the initiation of prenatal development. Recent studies have strongly suggested that autophagy in the endometrium is the most important factor for successful embryo implantation. In addition, several studies have reported the effects of various natural products on infertility improvement via the regulation of embryo implantation, embryo quality, and endometrial receptivity. However, it is unclear whether natural products can improve embryo implantation ability by regulating endometrial autophagy. Therefore, we performed a literature review of studies on endometrial autophagy, embryo implantation, natural products, and female infertility. Based on the information from these studies, this review suggests a new treatment strategy for female infertility by proposing natural products that have been proven to be safe and effective as endometrial autophagy regulators; additionally, we provide a comprehensive understanding of the relationship between the regulation of endometrial autophagy by natural products and female infertility, with an emphasis on embryo implantation.
Collapse
|
31
|
Targeting Cancer Stem Cells by Dietary Agents: An Important Therapeutic Strategy against Human Malignancies. Int J Mol Sci 2021; 22:ijms222111669. [PMID: 34769099 PMCID: PMC8584029 DOI: 10.3390/ijms222111669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/β-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.
Collapse
|