1
|
Palazzo E, Marabese I, Ricciardi F, Guida F, Luongo L, Maione S. The influence of glutamate receptors on insulin release and diabetic neuropathy. Pharmacol Ther 2024; 263:108724. [PMID: 39299577 DOI: 10.1016/j.pharmthera.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Diabetes causes macrovascular and microvascular complications such as peripheral neuropathy. Glutamate regulates insulin secretion in pancreatic β-cells, and its increased activity in the central nervous system is associated with peripheral neuropathy in animal models of diabetes. One strategy to modulate glutamatergic activity consists in the pharmacological manipulation of metabotropic glutamate receptors (mGluRs), which, compared to the ionotropic receptors, allow for a fine-tuning of neurotransmission that is compatible with therapeutic interventions. mGluRs are a family of eight G-protein coupled receptors classified into three groups (I-III) based on sequence homology, transduction mechanisms, and pharmacology. Activation of group II and III or inhibition of group I represents a strategy to counteract the glutamatergic hyperactivity associated with diabetic neuropathy. In this review article, we will discuss the role of glutamate receptors in the release of insulin and the development/treatment of diabetic neuropathy, with particular emphasis on their manipulation to prevent the glutamatergic hyperactivity associated with diabetic neuropathy.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy.
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Federica Ricciardi
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
2
|
Wang J, Zhang R, Wu C, Wang L, Liu P, Li P. Exploring potential targets for natural product therapy of DN: the role of SUMOylation. Front Pharmacol 2024; 15:1432724. [PMID: 39431155 PMCID: PMC11486755 DOI: 10.3389/fphar.2024.1432724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Diabetic nephropathy (DN) is a common and serious micro-vascular complication of diabetes and a leading cause of end-stage renal disease globally. This disease primarily affects middle-aged and elderly individuals, especially those with a diabetes history of over 10 years and poor long-term blood glucose control. Small ubiquitin-related modifiers (SUMOs) are a group of reversible post-translational modifications of proteins that are widely expressed in eukaryotes. SUMO proteins intervene in the progression of DN by modulating various signaling cascades, such as Nrf2-mediated oxidative stress, NF-κB, TGF-β, and MAPK pathways. Recent advancements indicate that natural products regulating SUMOylation hold promise as targets for intervening in DN. In a previous article published in 2022, we reviewed the mechanisms by which SUMOylation intervenes in renal fibrosis and presented a summary of some natural products with therapeutic potential. Therefore, this paper will focus on DN. The aim of this review is to elucidate the mechanism of action of SUMOylation in DN and related natural products with therapeutic potential, thereby summarising the targets and candidate natural products for the treatment of DN through the modulation of SUMOylation, such as ginkgolic acid, ginkgolide B, resveratrol, astragaloside IV, etc., and highlighting that natural product-mediated modulation of SUMOylation is a potential therapeutic strategy for the treatment of DN as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jingjing Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Denizci E, Altun G, Kaplan S. Morphological evidence for the potential protective effects of curcumin and Garcinia kola against diabetes in the rat hippocampus. Brain Res 2024; 1839:149020. [PMID: 38788929 DOI: 10.1016/j.brainres.2024.149020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
This research investigated the effects of sciatic nerve transection and diabetes on the hippocampus, and the protective effects of Garcinia kola and curcumin. Thirty-five adults male Wistar albino rats were divided into five groups: a control group (Cont), a transected group (Sham group), a transected + diabetes mellitus group (DM), a transected + diabetes mellitus + Garcinia kola group (DM + GK), and a transected + DM + curcumin group (DM + Cur), each containing seven animals. The experimental diabetes model was created with the intraperitoneal injection of a single dose of streptozotocin. No procedure was applied to the Cont group, while sciatic nerve transection was performed on the other groups. Garcinia kola was administered to the rats in DM + GK, and curcumin to those in DM + Cur. Cardiac perfusion was performed at the end of the experimental period. Brain tissues were dissected for stereological, histopathological, and immunohistochemical evaluations. The volume ratios of hippocampal layers to the entire hippocampus volume were compared between the groups. Anti-S100, anti-caspase 3, and anti-SOX 2 antibodies were used for immunohistochemical analysis. No statistically significant difference was observed in the volume ratios of the four hippocampal layers. However, the volume ratio of the stratum lucidum was higher in the Sham, DM, and DM + Cur groups compared to the Cont group. While curcumin exhibited a protective effect on hippocampal tissue following diabetes induction, Garcinia kola had only a weak protective effect. Increased cell density and nuclear deterioration due to diabetes and nerve transection can be partially ameliorated by treatment with Garcinia kola and curcumin.
Collapse
Affiliation(s)
- Eda Denizci
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun 55139, Turkey; Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
| |
Collapse
|
4
|
Patel P, Thakkar K, Shah D, Shah U, Pandey N, Patel J, Patel A. Decrypting the multifaceted peripheral neuropathy based on molecular pathology and therapeutics: a comprehensive review. Arch Physiol Biochem 2024:1-12. [PMID: 38588401 DOI: 10.1080/13813455.2024.2336916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
CONTEXT Peripheral neuropathy (PN) is a multifaceted complication characterized by nerve damage due to oxidative stress, inflammatory mediators, and dysregulated metabolic processes. Early PN manifests as sensory changes that develop progressively in a "stocking and glove" pattern. METHODS AND MECHANISMS A thorough review of literature has been done to find the molecular pathology, clinical trials that have been conducted to screen the effects of different drugs, current treatments and novel approaches used in PN therapy. Diabetic neuropathy occurs due to altered protein kinase C activity, elevated polyol pathway activity in neurons, and Schwann cells-induced hyperglycemia. Other causes involve chemotherapy exposure, autoimmune ailments, and chronic ethanol intake. CONCLUSION Symptomatic treatments for neuropathic pain include use of tricyclic antidepressants, anticonvulsants, and acetyl-L-carnitine. Patients will have new hope if clinicians focus on novel therapies including gene therapy, neuromodulation techniques, and cannabidiol as an alternative to traditional medications, as management is still not ideal.
Collapse
Affiliation(s)
- Praysha Patel
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| | - Krishna Thakkar
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| | - Div Shah
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| | - Nilesh Pandey
- Health Science Center, Louisiana State University, Shreveport, LA, USA
| | - Jayesh Patel
- Consultant, Vascular surgeon, Shree Krishna Hospital, Karamsad, Gujarat, India
| | - Alkeshkumar Patel
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| |
Collapse
|
5
|
Eissa RG, Eissa NG, Eissa RA, Diab NH, Abdelshafi NA, Shaheen MA, Elsabahy M, Hammad SK. Oral proniosomal amitriptyline and liraglutide for management of diabetic neuropathy: Exceptional control over hyperglycemia and neuropathic pain. Int J Pharm 2023; 647:123549. [PMID: 37890645 DOI: 10.1016/j.ijpharm.2023.123549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Exploitation of nanocarriers provides a compartment for enclosing drugs to protect them from degradation and potentiate their therapeutic efficiency. In the current study, amitriptyline- and liraglutide-loaded proniosomes were constructed for management of diabetic neuropathy, a serious complication associated with diabetes, that triggers spontaneous pain in patients and results in impaired quality of life. The developed therapeutic proniosomes were extensively characterized via dynamic light scattering, scanning electron microscopy, transmission electron microscopy, and Fourier transform-infrared spectroscopy. High entrapment efficiency could be attained for both drugs in the proniosomes, and the reconstituted amitriptyline- and liraglutide-loaded niosomes possessed spherical morphology and particle sizes of 585.3 nm and 864.4 nm, respectively. In a diabetic neuropathy rat model, oral administration of the developed amitriptyline- and liraglutide-loaded proniosomes significantly controlled blood glucose levels, reduced neuropathic pain, oxidative stress and inflammatory markers, and improved histological structure of the sciatic nerve as compared to the oral and subcutaneous administration of amitriptyline and liraglutide, respectively. Loading of the tricyclic antidepressant amitriptyline and the antidiabetic peptide liraglutide into proniosomes resulted in exceptional control over hyperglycemia and neuropathic pain, and thus could provide an auspicious delivery system for management of neuropathic pain and control of blood glucose levels.
Collapse
Affiliation(s)
- Rana G Eissa
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Noura G Eissa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Rana A Eissa
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Nadeen H Diab
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Nahla A Abdelshafi
- Department of Pharmaceutical Analytical Chemistry, School of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Mohamed A Shaheen
- Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Elsabahy
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| | - Sally K Hammad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
6
|
Gupta A, Jamal A, Jamil DA, Al-Aubaidy HA. A systematic review exploring the mechanisms by which citrus bioflavonoid supplementation benefits blood glucose levels and metabolic complications in type 2 diabetes mellitus. Diabetes Metab Syndr 2023; 17:102884. [PMID: 37939436 DOI: 10.1016/j.dsx.2023.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Citrus bioflavonoids are polyphenolic compounds that are derived from citrus fruits and vegetables. Although they are well known for their powerful antioxidant properties, their effects on glycemic control are not well understood. This review aims to highlight the potential benefits of using citrus bioflavonoids in patients with type 2 diabetes mellitus and its metabolic complications, as well as the medicinal effects of known subclasses of naturally occurring citrus bioflavonoids. METHODS In this systematic review, a survey of studies was conducted from January 2012 to February 2023 using various databases (PubMed, Medline, Google Scholar, and Scopus) to determine the effects of citrus bioflavonoid supplementation on reducing oxidative stress, improving lipid profiles, and glycemic index in patients with diabetes mellitus, as well as the proposed mechanisms of action. RESULTS The results of the survey indicate that citrus bioflavonoids may have a positive impact on reducing oxidative stress levels in patients with type 2 diabetes mellitus. In addition to reducing oxidative stress, citrus bioflavonoids may also have a positive impact on other markers of diabetes. For example, studies have shown that they can reduce non-enzymatic protein glycation, which is a process that occurs when glucose molecules bind to proteins in the body. CONCLUSION The reduction in oxidative stress that can be achieved using citrus bioflavonoids may help to maintain antioxidant levels in the body, thereby reducing the severity of diabetes and its complications. These findings suggest that citrus bioflavonoids may be a useful complementary therapy for patients with diabetes.
Collapse
Affiliation(s)
- Ankit Gupta
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Abdulsatar Jamal
- Department of Microbiology, Anatomy, Physiology and Pharmacology & Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Dina A Jamil
- Department of Microbiology, Anatomy, Physiology and Pharmacology & Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, VIC, 3086, Australia; New Medical Education Australia, Brisbane, QLD, 4007, Australia
| | - Hayder A Al-Aubaidy
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia; Department of Microbiology, Anatomy, Physiology and Pharmacology & Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, VIC, 3086, Australia; New Medical Education Australia, Brisbane, QLD, 4007, Australia.
| |
Collapse
|
7
|
Jaipal N, Ram H, Kumar P, Charan J, Kashyap P, Chowdhury S, Tripathi R, Kumar S, Singh BP, Panwar A. Statins mimic and free radical scavenging potential of phytoconstituents of methanolic pod extract of Prosopis cineraria (L.) Druce. VEGETOS 2023. [DOI: 10.1007/s42535-023-00677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 09/25/2023]
|
8
|
Su W, Xu W, Liu E, Su W, Polyakov NE. Improving the Treatment Effect of Carotenoids on Alzheimer's Disease through Various Nano-Delivery Systems. Int J Mol Sci 2023; 24:ijms24087652. [PMID: 37108814 PMCID: PMC10142927 DOI: 10.3390/ijms24087652] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Natural bioactive compounds have recently emerged as a current strategy for Alzheimer's disease treatment. Carotenoids, including astaxanthin, lycopene, lutein, fucoxanthin, crocin and others are natural pigments and antioxidants, and can be used to treat a variety of diseases, including Alzheimer's disease. However, carotenoids, as oil-soluble substances with additional unsaturated groups, suffer from low solubility, poor stability and poor bioavailability. Therefore, the preparation of various nano-drug delivery systems from carotenoids is a current measure to achieve efficient application of carotenoids. Different carotenoid delivery systems can improve the solubility, stability, permeability and bioavailability of carotenoids to a certain extent to achieve Alzheimer's disease efficacy. This review summarizes recent data on different carotenoid nano-drug delivery systems for the treatment of Alzheimer's disease, including polymer, lipid, inorganic and hybrid nano-drug delivery systems. These drug delivery systems have been shown to have a beneficial therapeutic effect on Alzheimer's disease to a certain extent.
Collapse
Affiliation(s)
- Wenjing Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Enshuo Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nikolay E Polyakov
- Institute of Solid State Chemistry and Mechanochemistry, 630128 Novosibirsk, Russia
- Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
| |
Collapse
|
9
|
Wang T, Xu H, Dong R, Wu S, Guo Y, Wang D. Effectiveness of targeting the NLRP3 inflammasome by using natural polyphenols: A systematic review of implications on health effects. Food Res Int 2023; 165:112567. [PMID: 36869555 DOI: 10.1016/j.foodres.2023.112567] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Globally, inflammation and metabolic disorders pose serious public health problems and are major health concerns. It has been shown that natural polyphenols are effective in the treatment of metabolic diseases, including anti-inflammation, anti-diabetes, anti-obesity, neuron-protection, and cardio-protection. NLRP3 inflammasome, which are multiprotein complexes located within the cytosol, play an important role in the innate immune system. However, aberrant activation of the NLRP3 inflammasome were discovered as essential molecular mechanisms in triggering inflammatory processes as well as implicating it in several major metabolic diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis or cardiovascular disease. Recent studies indicate that natural polyphenols can inhibit NLRP3 inflammasome activation. In this review, the progress of natural polyphenols preventing inflammation and metabolic disorders via targeting NLRP3 inflammasome is systemically summarized. From the viewpoint of interfering NLRP3 inflammasome activation, the health effects of natural polyphenols are explained. Recent advances in other beneficial effects, clinical trials, and nano-delivery systems for targeting NLRP3 inflammasome are also reviewed. NLRP3 inflammasome is targeted by natural polyphenols to exert multiple health effects, which broadens the understanding of polyphenol mechanisms and provides valuable guidance to new researchers in this field.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, 211169 Nanjing, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hanzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| |
Collapse
|
10
|
Malakoti F, Mohammadi E, Akbari Oryani M, Shanebandi D, Yousefi B, Salehi A, Asemi Z. Polyphenols target miRNAs as a therapeutic strategy for diabetic complications. Crit Rev Food Sci Nutr 2022; 64:1865-1881. [PMID: 36069329 DOI: 10.1080/10408398.2022.2119364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MiRNAs are a large group of non-coding RNAs which participate in different cellular pathways like inflammation and oxidation through transcriptional, post-transcriptional, and epigenetic regulation. In the post-transcriptional regulation, miRNA interacts with the 3'-UTR of mRNAs and prevents their translation. This prevention or dysregulation can be a cause of pathological conditions like diabetic complications. A huge number of studies have revealed the association between miRNAs and diabetic complications, including diabetic nephropathy, cardiomyopathy, neuropathy, retinopathy, and delayed wound healing. To address this issue, recent studies have focused on the use of polyphenols as selective and safe drugs in the treatment of diabetes complications. In this article, we will review the involvement of miRNAs in diabetic complications' occurrence or development. Finally, we will review the latest findings on targeting miRNAs by polyphenols like curcumin, resveratrol, and quercetin for diabetic complications therapy.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Mohammadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Darioush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Salehi
- Faculty of Pharmacy, Islamic Azad University of Tehran Branch, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
11
|
Kabir MT, Ferdous Mitu J, Akter R, Akhtar MF, Saleem A, Al-Harrasi A, Bhatia S, Rahman MS, Damiri F, Berrada M, Rahman MH. Therapeutic potential of dopamine agonists in the treatment of type 2 diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46385-46404. [PMID: 35486279 DOI: 10.1007/s11356-022-20445-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Diabetes is a global health concern that has affected almost 415 million people globally. Bromocriptine is a dopamine D2 agonist, which is a Food and Drug Administration (FDA)-approved drug to treat type 2 diabetes mellitus (T2DM) patients. However, it is considered that a novel treatment therapy is required which can be used in the treatment of diabetes with or without other antidiabetic agents. Dopamine agonists are usually used in neurological disorders like Parkinson's disease (PD), restless leg syndrome, and hyperprolactinemia. However, dopamine agonists including bromocriptine and cabergoline are also effective in reducing the glycemic level in T2DM patients. Bromocriptine was formerly used for the treatment of PD, hyperprolactinemia, and restless leg syndrome, but now it is used for improving glycemic levels as well as reducing free fatty acids and triglycerides. In addition, cabergoline has been found to be effective in glycemic control, but this drug is yet to be approved by the FDA due to its limitations and lack of study. Findings of the clinical trials of bromocriptine have suggested that it reduces almost 0.4-0.8% glycated hemoglobin and cardiovascular risk by 40% in insulin-resistant patients. Moreover, the safe use of bromocriptine in obese T2DM patients makes it a more attractive option as it causes weight loss. Indeed, bromocriptine is a novel therapy for T2DM patients, as its mechanism of action is unique in T2DM patients with minimal adverse effects. This review summarizes the potential of dopamine agonists in the treatment of T2DM.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | | | - Raushanara Akter
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Md Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal, 8200, Bangladesh
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca, Morocco
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca, Morocco
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Gangwon-do, Korea.
| |
Collapse
|
12
|
Mollik M, Rahman MH, Al-Shaeri M, Ashraf GM, Alexiou A, Gafur MA. Isolation, characterization and in vitro antioxidant activity screening of pure compound from black pepper (Piper nigrum). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52220-52232. [PMID: 35260981 DOI: 10.1007/s11356-022-19403-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The present study's aims of isolation, characterization and in vitro antioxidant activity screening of pure compound from Black pepper (Piper nigrum) were investigated. Nowadays, scientific exploration of medicinal plants from natural sources has become the prime concern globally. All the crude drugs that have been isolated from natural plant origin (herbs, root, stem, bark, fruit and flower) have great significance in drug discovery as well as a lead compound to demonstrate great synergistic effect on pharmacology. For this research work, methanol was selected as a mother solvent, and the crude methanolic extract of black pepper was partitioned in between the solvent chloroform and di-ethyl-ether. A crystal fraction has been eradicated from the chloroform extract of black pepper (Piper nigrum). The crystal compound (C1) was isolated and purified by using thin layer chromatography (TLC) and recrystallization technique. The purified crystal compound (C1) isolated from black pepper possesses a strong in vitro antioxidant activity. The IC50 value of crystal compound (C1) was 4.1 µg/ml where the standard one had 3.2 µg/ml. Physical, phytochemical and chromatographical characterization of pure crystal compound (C1) has been explored, and from the analysis of all characteristics, it was found that, crystal compound (C1) might have resembling features of the standard Piperine of black pepper. The overall research work was really remarkable and introduced a convenient way of isolating pure compound from the natural source which will be a great referential resource in isolating crude drugs for future analysis.
Collapse
Affiliation(s)
- Murshida Mollik
- Department of Pharmacy, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Department of Pharmacy, Southeast University, Banani Street, Dhaka, 1213, Bangladesh.
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, NSW, Hebersham, Australia
- AFNP Med Austria, Haidingergasse 29, 1030, Wien, Austria
| | - Md Abdul Gafur
- Department of Pharmacy, Rajshahi University, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
13
|
Rahman MM, Islam MR, Shohag S, Hossain ME, Shah M, Shuvo SK, Khan H, Chowdhury MAR, Bulbul IJ, Hossain MS, Sultana S, Ahmed M, Akhtar MF, Saleem A, Rahman MH. Multifaceted role of natural sources for COVID-19 pandemic as marine drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46527-46550. [PMID: 35507224 PMCID: PMC9065247 DOI: 10.1007/s11356-022-20328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/14/2022] [Indexed: 05/05/2023]
Abstract
COVID-19, which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread over the world, posing a global health concern. The ongoing epidemic has necessitated the development of novel drugs and potential therapies for patients infected with SARS-CoV-2. Advances in vaccination and medication development, no preventative vaccinations, or viable therapeutics against SARS-CoV-2 infection have been developed to date. As a result, additional research is needed in order to find a long-term solution to this devastating condition. Clinical studies are being conducted to determine the efficacy of bioactive compounds retrieved or synthesized from marine species starting material. The present study focuses on the anti-SARS-CoV-2 potential of marine-derived phytochemicals, which has been investigated utilizing in in silico, in vitro, and in vivo models to determine their effectiveness. Marine-derived biologically active substances, such as flavonoids, tannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, and lipids, can affect SARS-CoV-2 during the viral particle's penetration and entry into the cell, replication of the viral nucleic acid, and virion release from the cell; they can also act on the host's cellular targets. COVID-19 has been proven to be resistant to several contaminants produced from marine resources. This paper gives an overview and summary of the various marine resources as marine drugs and their potential for treating SARS-CoV-2. We discussed at numerous natural compounds as marine drugs generated from natural sources for treating COVID-19 and controlling the current pandemic scenario.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Gopalganj, Bangladesh
| | - Md Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Hosneara Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | | | - Israt Jahan Bulbul
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea.
| |
Collapse
|
14
|
Chen K, Deng Y, Shang S, Li P, Liu L, Chen X. Network Pharmacology-Based Investigation of the Molecular Mechanisms of the Chinese Herbal Formula Shenyi in the Treatment of Diabetic Nephropathy. Front Med (Lausanne) 2022; 9:898624. [PMID: 35755045 PMCID: PMC9226379 DOI: 10.3389/fmed.2022.898624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background The Chinese herbal formula Shenyi (SY) is a prescription that was developed by the Department of Nephrology, Chinese People's Liberation Army General Hospital. This preparation is mainly used to treat chronic kidney disease (CKD) caused by Diabetic nephropathy (DN) and is effective. However, the active ingredients of SY, DN treatment-related molecular targets and the effector mechanisms are still unclear. Methods The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and the Traditional Chinese Medicine and Chemical Component Database of Shanghai Institute of Organic Chemistry were used to screen the active ingredients in SY, the TCMSP database and Swiss Target Prediction database were used to collect the targets of the active ingredients of SY, and the Gene Cards and Online Mendelian Inheritance in Man (OMIM) databases were used to screen for DN pathogenesis targets. The intersections of the component targets and disease targets were mapped to obtain the therapeutic targets. The METASCAPE database was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the therapeutic targets. Cytoscape 3.7.2 was used to analyze topological parameters and construct a network of SY for the treatment of DN. Results Sixty-two active ingredients and 497 active ingredient effector targets in SY, 3260 DN-related targets, and 271 SY treatments for DN targets were identified. Among these targets, 17 were core targets, including AKT1, tumor necrosis factor (TNF), interleukin-6 (IL6), and TP53. The GO and KEGG enrichment analyses show that SY's therapeutic effects for DN occur mainly through pathways such as advanced glycation end product (AGE)-RAGE, PI3K-Akt, and IL-17. Conclusion Multiple active ingredients in SY exhibit treatment effects on DN by affecting metabolism, inhibiting inflammation, and affecting cell structure growth.
Collapse
Affiliation(s)
- Keng Chen
- Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China.,First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yiyao Deng
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shunlai Shang
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Ping Li
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Linchang Liu
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.,Department of Nephrology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Xiangmei Chen
- Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China.,First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
15
|
Sindhu RK, Kaur P, Kaur P, Singh H, Batiha GES, Verma I. Exploring multifunctional antioxidants as potential agents for management of neurological disorders. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24458-24477. [PMID: 35064486 DOI: 10.1007/s11356-021-17667-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Free radical or oxidative stress may be a fundamental mechanism underlying several human neurologic diseases. Therapy using free radical scavengers (antioxidants) has the potential to prevent, delay, or ameliorate many neurologic disorders. However, the biochemistry of oxidative pathobiology is complex, and optimum antioxidant therapeutic options may vary and need to be tailored to individual diseases. In vitro and animal model studies support the potential beneficial role of various antioxidant compounds in neurological disease. Antioxidants generally play an important role in reducing or preventing the cell damage and other changes which occur in the cells like mitochondrial dysfunction, DNA mutations, and lipid peroxidation in the cell membrane. Based on their mechanism of action, antioxidants can be used to treat various neurological disorders like Huntington's disease, Alzheimer's disease, and Parkinson's disease. Vitamin E has a scavenging action for reactive oxygen species (ROS) and also prevents the lipid peroxidation. Creatine generally reduces the mitochondrial dysfunction in Parkinson's disease (PD) patients. Various metal chelators are used in PD for the prevention of accumulation of the metals. Superoxidase dismutase (SOD), lipases, and proteases act as repair enzymes in patients with AD. Accordingly, the antioxidant defense system is found to be most useful for treating various neurological disorders.
Collapse
Affiliation(s)
- Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Prabhjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Harmanpreet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Inderjeet Verma
- Department of Pharmacy Practice, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana, India
| |
Collapse
|
16
|
Lum PT, Sekar M, Gan SH, Jeyabalan S, Bonam SR, Rani NNIM, Ku-Mahdzir KM, Seow LJ, Wu YS, Subramaniyan V, Fuloria NK, Fuloria S. Therapeutic potential of mangiferin against kidney disorders and its mechanism of action: A review. Saudi J Biol Sci 2022; 29:1530-1542. [PMID: 35280538 PMCID: PMC8913403 DOI: 10.1016/j.sjbs.2021.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/13/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
There is a swing in research developments concerning the utilization of natural products as effective pharmacotherapeutic agents due to their comparatively lower toxicities than synthetic compounds. Among natural products, mangiferin is a natural C-glucosyl xanthonoid polyphenol with remarkable pharmacological activities. Emerging evidence indicates the therapeutic benefits of mangiferin against various kidney disorders, including renal injury, diabetic nephropathy, renal fibrosis, hyperuricemic nephropathy, and lupus nephritis, in experimental animal models. The mangiferin induced antioxidant response resulting in vital functions, such as protection against renal inflammation, inhibits renal cell apoptosis, activates autophagy, causes immunomodulation, regulates renal urate transporters and modulates cell signalling pathways. The purpose of this review provide a brief overview of the in vitro/in vivo reno-protective effect of mangiferin and the underlying mechanism(s) in protecting against kidney disorders. Understanding the pharmacological actions of mangiferin is prominence due to its excellent therapeutic potential in managing kidney disorders. Thus, in addition to this review, in-silico molecular docking is performed against nuclear factor kappa B (NF-κB) and soluble epoxide hydrolase (sEH) to study the mechanism of action of mangiferin. It is believed that mangiferin is a safe reno-protective molecule. The observed positive effects are attributed to the inhibition of inflammation caused by NF-κB and sEH upregulation and oxidative stress activation. Studies on the efficacy and safety of mangiferin in clinical trials are further warranted to confirm its medicinal potential as therapeutic agent for kidney disorders in humans.
Collapse
|
17
|
Wang P, Wen C, Olatunji OJ. Anti-Inflammatory and Antinociceptive Effects of Boesenbergia rotunda Polyphenol Extract in Diabetic Peripheral Neuropathic Rats. J Pain Res 2022; 15:779-788. [PMID: 35356266 PMCID: PMC8959722 DOI: 10.2147/jpr.s359766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Peng Wang
- Department of Pharmacy, Wuhu Second People's Hospital, Wuhu City, 241001, Anhui, People’s Republic of China
| | - Chaoling Wen
- Anhui Traditional Chinese Medicine College, Wuhu City, 241001, Anhui, People’s Republic of China
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
- Correspondence: Opeyemi Joshua Olatunji, Traditional Thai Medical Research and Innovation Center, Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand, Email
| |
Collapse
|
18
|
Zhang H, Jiang Z, Yan K, Yu Z, Sun J, Li J. Association of cooking water with the health of middle-aged and elderly Chinese individuals: evidence from a national household longitudinal survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12347-12354. [PMID: 34569005 DOI: 10.1007/s11356-021-16698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Little evidence has demonstrated the association between health conditions and cooking water. The purpose of this study was to explore the relationship, using a representative sample of 10,531 subjects selected from the China Family Panel Study (CFPS). The usage rate of surface-exposed water showed a slight upward trend from 2010 to 2018. The adjusted odds ratio (OR) of chronic diseases with surface-exposed and well water was 1.140 (95% CI: 0.989-1.315) and 0.902 (95% CI: 0.839-0.969), respectively, with reference to tap/purified water. Surface-exposed water increased the likelihood of a worsening health change by 25.5% (OR: 1.255; 95% CI: 1.123-1.411), while well water was associated with poor self-rated health (OR: 1.169; 95% CI: 1.094-1.249). As such, surface-exposed water was associated with chronic diseases and worsening changes in health, and well water was negatively associated with chronic diseases. Although efforts to improve quality of drinking water have been made in China for decades, our conclusions reveal that water quality still remains a critical public livelihood issue among middle-aged and elderly populations. More in-depth research is required on whether the disinfection ingredients of tap water may increase the risk for chronic disease.
Collapse
Affiliation(s)
- Hongli Zhang
- Xi'an Central Hospital, Xi'an, 710003, Shaanxi Province, China
| | - Zeshun Jiang
- Department of Epidemiology and Statistics, School of Public Health and Management, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Kangkang Yan
- Xi'an No. 3 Hospital, Xi'an, 710018, Shaanxi, China
| | - Zhenfan Yu
- Department of Epidemiology and Statistics, School of Public Health and Management, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Jian Sun
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Jiangping Li
- Department of Epidemiology and Statistics, School of Public Health and Management, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China.
- Research Center of Health Big Data, Key Laboratory of Environmental Factors and Chronic Disease Control, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
19
|
Kubczak M, Szustka A, Rogalińska M. Molecular Targets of Natural Compounds with Anti-Cancer Properties. Int J Mol Sci 2021; 22:ijms222413659. [PMID: 34948455 PMCID: PMC8708931 DOI: 10.3390/ijms222413659] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death in humans. Despite rapid developments in diagnostic methods and therapies, metastasis and resistance to administrated drugs are the main obstacles to successful treatment. Therefore, the main challenge should be the diagnosis and design of optimal therapeutic strategies for patients to increase their chances of responding positively to treatment and increase their life expectancy. In many types of cancer, a deregulation of multiple pathways has been found. This includes disturbances in cellular metabolism, cell cycle, apoptosis, angiogenesis, or epigenetic modifications. Additionally, signals received from the microenvironment may significantly contribute to cancer development. Chemical agents obtained from natural sources seem to be very attractive alternatives to synthetic compounds. They can exhibit similar anti-cancer potential, usually with reduced side effects. It was reported that natural compounds obtained from fruits and vegetables, e.g., polyphenols, flavonoids, stilbenes, carotenoids and acetogenins, might be effective against cancer cells in vitro and in vivo. Several published results indicate the activity of natural compounds on protein expression by its influence on transcription factors. They could also be involved in alterations in cellular response, cell signaling and epigenetic modifications. Such natural components could be used in our diet for anti-cancer protection. In this review, the activities of natural compounds, including anti-cancer properties, are described. The influence of natural agents on cancer cell metabolism, proliferation, signal transduction and epigenetic modifications is highlighted.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
| | - Aleksandra Szustka
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
| | - Małgorzata Rogalińska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
- Correspondence:
| |
Collapse
|
20
|
Riyaphan J, Pham DC, Leong MK, Weng CF. In Silico Approaches to Identify Polyphenol Compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes. Biomolecules 2021; 11:1877. [PMID: 34944521 PMCID: PMC8699780 DOI: 10.3390/biom11121877] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Type-II diabetes mellitus (T2DM) results from a combination of genetic and lifestyle factors, and the prevalence of T2DM is increasing worldwide. Clinically, both α-glucosidase and α-amylase enzymes inhibitors can suppress peaks of postprandial glucose with surplus adverse effects, leading to efforts devoted to urgently seeking new anti-diabetes drugs from natural sources for delayed starch digestion. This review attempts to explore 10 families e.g., Bignoniaceae, Ericaceae, Dryopteridaceae, Campanulaceae, Geraniaceae, Euphorbiaceae, Rubiaceae, Acanthaceae, Rutaceae, and Moraceae as medicinal plants, and folk and herb medicines for lowering blood glucose level, or alternative anti-diabetic natural products. Many natural products have been studied in silico, in vitro, and in vivo assays to restrain hyperglycemia. In addition, natural products, and particularly polyphenols, possess diverse structures for exploring them as inhibitors of α-glucosidase and α-amylase. Interestingly, an in silico discovery approach using natural compounds via virtual screening could directly target α-glucosidase and α-amylase enzymes through Monte Carto molecular modeling. Autodock, MOE-Dock, Biovia Discovery Studio, PyMOL, and Accelrys have been used to discover new candidates as inhibitors or activators. While docking score, binding energy (Kcal/mol), the number of hydrogen bonds, or interactions with critical amino acid residues have been taken into concerning the reliability of software for validation of enzymatic analysis, in vitro cell assay and in vivo animal tests are required to obtain leads, hits, and candidates in drug discovery and development.
Collapse
Affiliation(s)
| | - Dinh-Chuong Pham
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Max K. Leong
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan
| | - Ching-Feng Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
21
|
Khoshhali M, Ebrahimpour K, Shoshtari-Yeganeh B, Kelishadi R. Systematic review and meta-analysis on the association between seasonal variation and gestational diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55915-55924. [PMID: 34490580 DOI: 10.1007/s11356-021-16230-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Recently, there is growing evidence that ambient temperature and seasonal changes are related to the incidence of gestational diabetes mellitus (GDM). Thereby, this study was conducted to evaluate the association between seasonal changes and ambient temperature and GDM. We conducted a systematic search in PubMed, ISI Web of Science, Scopus, Google Scholar, and Cochrane Collaboration for human studies available until the end of 2020. We used the following keywords to identify relevant articles: "Diabetes, Gestational" (MeSH), "Glucose Tolerance Test" (MeSH), "Glucose intolerance" (MeSH), "Pregnancy outcome" (MeSH), "Birth outcome", "Seasons" (MeSH), "Weather" (MeSH), "Ambient Temperature," "Climate Change" (MeSH). Meta-analyses by using STATA software were conducted for analyzing data. Due to the high heterogeneity between included studies, a random-effects model was used. Subgroup analysis, meta-regression, and sensitivity analysis were used to define a source of heterogeneity. We found 13 studies related to the association between ambient temperature and season changes and GDM, which 11 of them were included in meta-analyses. Despite inconsistencies in outcome assessment across studies, we found a significant positive association between seasons of GDM screening and risk of GDM (pooled OR=1.12; 95% CI (1.03, 1.21)). The funnel plot and Egger's test showed that there was no significant publication bias among these studies (p=0.51). In general, season changes showed a significant positive relationship with prevalence of GDM. However, due to the unknown exact mechanism on this association, further studies should be conducted.
Collapse
Affiliation(s)
- Mehri Khoshhali
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahareh Shoshtari-Yeganeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|