1
|
Ozcan M, Burus A, Boynuyogun E, Calis M, Ozgur F, Bayazit Y. Effects of Photobiomodulation Application on Glutathione-Related Antioxidant Defense System in Rabbit Eye Tissues. JOURNAL OF BIOPHOTONICS 2024; 17:e202400261. [PMID: 39209319 DOI: 10.1002/jbio.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Photobiomodulation (PBM) has emerged as a potentially effective therapeutic approach to modulate cellular functions. This study aimed to examine the impact of PBM on reactive oxygen species (ROS), lipid peroxidation, and glutathione-related antioxidant defense systems in rabbit eye tissues. A polychromatic light source with an intensity of 2.6 J/cm2/min was used for PBM treatment in New Zealand White rabbits for 12 min. The PBM group (n = 8) received treatments every 2 days for a total of 12 sessions, whereas the control group (n = 8) did not undergo any PBM light exposure during the same period. The application of PBM significantly elevated ROS-mediated glutathione levels, along with increased activities of glutathione peroxidase and reductase, particularly in corneal tissue (p ≤ 0.05). In conclusion, PBM treatment effectively enhances antioxidant defense mechanisms in the eye, particularly in corneal tissue, suggesting its potential as a therapeutic strategy for managing oxidative stress-related ocular conditions.
Collapse
Affiliation(s)
- Mehmet Ozcan
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Ayse Burus
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Etkin Boynuyogun
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mert Calis
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Figen Ozgur
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yasemin Bayazit
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Bahr AC, Naasani LIS, de Gregório E, Wink MR, da Rosa Araujo AS, Turck P, Dal Lago P. Photobiomodulation improves cell survival and death parameters in cardiomyocytes exposed to hypoxia/reoxygenation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112991. [PMID: 39033547 DOI: 10.1016/j.jphotobiol.2024.112991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Ischemic heart disease is one of the most harmful conditions to cellular structure and function. After reperfusion treatment, a spectrum of adverse effects becomes evident, encompassing altered cell viability, heightened oxidative stress, activated autophagy, and increased apoptosis. Photobiomodulation (PBM) has been utilized in experimental models of cardiac hypoxia to enhance mitochondrial response and ameliorate biochemical changes in injured tissue. However, the effects of PBM on cultured cardiomyocytes subjected to hypoxia/reoxygenation are not yet well established. METHOD H9C2 cardiomyocytes were exposed to hypoxia with concentrations of 300 μM CoCl2 for 24 h, followed by 16 h of reoxygenation through incubation in a normoxic medium. Treatment was conducted using GaAIAs Laser (850 nm) after hypoxia at an intensity of 1 J/cm2. Cells were divided into three groups: Group CT (cells maintained under normoxic conditions), Group HR (cells maintained in hypoxia and reoxygenation conditions without treatment), Group HR + PBM (cells maintained in hypoxia and reoxygenation conditions that underwent PBM treatment). Cell viability was analyzed using MTT, and protein expression was assessed by western blot. One-way ANOVA with the Tukey post hoc test was used for data analysis. Differences were significant when p < 0.05. RESULTS PBM at an intensity of 1 J/cm2 mitigated the alterations in cell survival caused by hypoxia/reoxygenation. Additionally, it significantly increased the expression of proteins Nrf2, HSP70, mTOR, LC3II, LC3II/I, and Caspase-9, while reducing the expression of PGC-1α, SOD2, xanthine oxidase, Beclin-1, LC3I, and Bax. CONCLUSION PBM at intensities of 1 J/cm2 reverses the changes related to oxidative stress, mitochondrial biogenesis, autophagy, and apoptosis caused by hypoxia and reoxygenation in a culture of cardiomyocytes.
Collapse
Affiliation(s)
- Alan Christhian Bahr
- Experimental Physiology Laboratory, Graduate Program in Rehabilitation Sciences (PPG-CR), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Physiotherapy, UFCSPA, Porto Alegre, RS, Brazil
| | - Liliana Ivet Sous Naasani
- Cell Biology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Elizama de Gregório
- Department of Physiology, Universidade Federal Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Cell Biology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Patrick Turck
- Department of Physiology, Universidade Federal Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Pedro Dal Lago
- Experimental Physiology Laboratory, Graduate Program in Rehabilitation Sciences (PPG-CR), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Physiotherapy, UFCSPA, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Luiz Antonio E, de Oliveira HA, Albuquerque-Pontes GM, Teixeira ILA, Yoshizaki AP, Dos Santos LFN, Leal-Junior ECP, Tucci PJF, Serra AJ. Examining the impact of varying low-level laser dose on cardiac failure. Photochem Photobiol 2024. [PMID: 39126163 DOI: 10.1111/php.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Low-level laser therapy (LLLT) has been targeted as a promising tool that can mitigate post-infarction cardiac remodeling. However, there is no gold standard energy delivered to the heart and few studies have evaluated the impact of LLLT on cardiac performance. This study evaluated effects of repeated LLLT applications with different energies delivered to the infarcted myocardium. Echocardiography and hemodynamic measurements were applied to evaluate left ventricular (LV) performance in rats with large infarcts. ELISA, Western blot and biochemical assays were used to assess LV inflammation and oxidative stress. An 830-nm Laser Photon III semiconductor aluminum gallium arsenide diode (DMC, São Carlos, SP, Brazil) was applied transthoracically three times a week for 4 weeks based on the energy (i.e., 10J, 20J, and 40J; respectively). LLLT on 10J and 20J had a similar action in attenuating pulmonary congestion and myocardial fibrosis. Moreover, 10J and 20J attenuated LV end-diastolic pressure and improved +dP/dt and -dP/dt. All LLLT groups had lower levels of inflammatory mediators, but only the 10J group had normalized oxidative stress. All LLLT doses improved superoxide dismutase levels; however, only the 20J group showed a high content of the catalase. There was a lower level of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a in the infarcted myocardium, which it was normalized in the 20J and 40J groups. A higher phospholamban content was found in the 10J group. This study supports the beneficial LLLT role post-infarction. Apparently, the 10J and 20J doses show to be chosen for clinical translation.
Collapse
Affiliation(s)
- Ednei Luiz Antonio
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Helenita Antonia de Oliveira
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Gianna Móes Albuquerque-Pontes
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ighor Luiz Azevedo Teixeira
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Amanda Pereira Yoshizaki
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Paulo José Ferreira Tucci
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Andrey Jorge Serra
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Liu J, Deng L, Qu L, Li X, Wang T, Chen Y, Jiang M, Zou W. Herbal medicines provide regulation against iron overload in cardiovascular diseases: Informing future applications. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117941. [PMID: 38387684 DOI: 10.1016/j.jep.2024.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Iron is an essential micronutrient for maintaining physiological activities, especially for highly active cardiomyocytes. Inappropriate iron overload or deficiency has a significant impact on the incidence and severity of cardiovascular diseases (CVD). Iron overload exerts potentially deleterious effects on doxorubicin (DOX) cardiomyopathy, atherosclerosis, and myocardial ischemia-reperfusion injury (MI/RI) by participating in lipid peroxides production. Notably, iron overload-associated cell death has been defined as a possible mechanism for ferroptosis. At present, some traditional herbal medicines and extracts have been included in the study of regulating iron overload and the subsequent therapeutic effect on CVD. AIM OF THE STUDY To give an outline of iron metabolism and ferroptosis in cardiomyocytes and to focus on herbal medicines and extracts to prevent iron overload in CVD. MATERIALS AND METHODS Literature information was systematically collected from ScienceDirect, PubMed, Google Scholar, Web of Science, China National Knowledge Infrastructure, WanFang data, as well as classic books and clinical reports. RESULTS After understanding the mechanism of iron overload on CVD, this paper reviews the therapeutic function of various herbal medicines in eliminating iron overload in CVD. These include Chinese herbal compound prescriptions (Salvia miltiorrhiza injection, Gegen Qinlian decoction, Tongxinluo, Banxia-Houpu decoction), plant extracts, phenylpropanoids, flavonoids, terpenoids, and polyphenols. Among them, flavonoids are considered to be the most promising compounds because of their prominent iron chelation. Mechanically, these herbal medicines act on the Nrf2 signaling pathway, AMPK signaling pathway, and KAT5/GPX4 signaling pathway, thereby attenuating iron overload and lipid peroxidation in CVD. CONCLUSION Our review provides up-to-date information on herbal medicines that exert cardiovascular protective effects by modulating iron overload and ferroptosis. These herbal medicines hold promise as a template for preventing iron overload in CVD.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liangyan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liping Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofen Li
- School of Basic Medicine Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Tao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Miao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
5
|
Chao C, Qian Y, Lv H, Mei K, Wang M, Liu Y, Wang B, Di D. Whole exome sequencing and proteomics-based investigation of the pathogenesis of coronary artery disease with diffuse long lesion. J Cardiothorac Surg 2024; 19:280. [PMID: 38715006 PMCID: PMC11075290 DOI: 10.1186/s13019-024-02760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/30/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVES The long-term prognosis of patients with coronary artery disease (CAD) with diffuse long lesion underwent coronary artery bypass graft (CABG) or percutaneous coronary intervention (PCI) remains worse. Here, we aimed to identify distinctive genes involved and offer novel insights into the pathogenesis of diffuse long lesion. MATERIALS AND METHODS Whole exome sequencing was performed on peripheral blood samples from 20 CAD patients with diffuse long lesion (CAD-DLL) and from 10 controls with focal lesion (CAD-FL) through a uniform pipeline. Proteomics analysis was conducted on the serum samples from 10 CAD-DLL patients and from 10 controls with CAD-FL by mass spectrometry. Bioinformatics analysis was performed to elucidate the involved genes, including functional annotation and protein-protein interaction analysis. RESULTS A total of 742 shared variant genes were found in CAD-DLL patients but not in controls. Of these, 46 genes were identified as high-frequency variant genes (≥ 4/20) distinctive genes. According to the consensus variant site, 148 shared variant sites were found in the CAD-DLL group. The lysosome and cellular senescence-related pathway may be the most significant pathway in diffuse long lesion. Following the DNA-protein combined analysis, eight genes were screened whose expression levels were altered at both DNA and protein levels. Among these genes, the MAN2A2 gene, the only one that was highly expressed at the protein level, was associated with metabolic and immune-inflammatory dysregulation. CONCLUSIONS Compared to individuals with CAD-FL, patients with CAD-DLL show additional variants. These findings contribute to the understanding of the mechanism of CAD-DLL and provide potential targets for the diagnosis and treatment of CAD-DLL.
Collapse
Affiliation(s)
- Ce Chao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Yongxiang Qian
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Hao Lv
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Kun Mei
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Min Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Yang Liu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Bin Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China.
| | - Dongmei Di
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
6
|
Yang K, Ma Y, Xie C, He L, Zhao H, Dai Z, Wang X. Dexmedetomidine combined with propofol attenuates myocardial ischemia/reperfusion injury by activating the AMPK signaling pathway. Heliyon 2023; 9:e22054. [PMID: 38034796 PMCID: PMC10682120 DOI: 10.1016/j.heliyon.2023.e22054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Objective Myocardial ischemia/reperfusion (MI/R) injury is a major cause of cardiac tissue damage, with high disability and death rates. Although both dexmedetomidine (Dex) and propofol (PPF) have been indicated to alleviate MI/R injury in rat models, the effects of the combined use of these two drugs remain unclear. This study aimed to investigate the combined effects of Dex and PPF against MI/R injury and related mechanisms. Methods A rat model of MI/R injury was established and used to explore the combined effects of Dex and PPF on MI/R injury. Hematoxylin-eosin (HE) and Masson staining were used for histopathological evaluation. 2,3,5-triphenyltetrazolium chloride (TTC), echocardiography, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining were used to determine myocardial infarction size, cardiac function, and apoptosis, respectively. Enzyme-linked immunosorbent assay (ELISA) was performed to assess myocardial function and oxidative stress (OS). Autophagy was observed through transmission electron microscopy. Moreover, western blotting was conducted to detect autophagy markers and the AMPK pathway. Results The combination of Dex and PPF alleviated histopathological injury, reduced myocardial infarction, and rescued cardiac dysfunction in MI/R rats. Furthermore, Dex combined with PPF decreased the levels of MDA and ROS and increased the SOD level in MI/R rats. Besides, Dex combined with PPF inhibited myocardial apoptosis in MI/R rats. After combined treatment with Dex and PPF, the number of autophagosomes, expression levels of Beclin-1 and LC3II/LC3I were elevated, while the expression levels of p62 were reduced in MI/R rats. The combined use of Dex and PPF activated the AMPK pathway in MI/R rats. Compound C (an AMPK inhibitor) could abolish the combined effects of Dex and PPF on alleviating myocardial injury and enhancing autophagy in MI/R rats. Conclusion The combination of Dex and PPF attenuated MI/R injury in rats, which may be associated with the activation of the AMPK signaling pathway.
Collapse
Affiliation(s)
| | | | - Chunmei Xie
- Department of Anesthesiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, 650000, China
| | - Lixian He
- Department of Anesthesiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, 650000, China
| | - Haoxing Zhao
- Department of Anesthesiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, 650000, China
| | - Zheng Dai
- Department of Anesthesiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, 650000, China
| | - Xiaoqi Wang
- Department of Anesthesiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, 650000, China
| |
Collapse
|
7
|
Ao X, Ding W, Li X, Xu Q, Chen X, Zhou X, Wang J, Liu Y. Non-coding RNAs regulating mitochondrial function in cardiovascular diseases. J Mol Med (Berl) 2023; 101:501-526. [PMID: 37014377 DOI: 10.1007/s00109-023-02305-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of disease-related death worldwide and a significant obstacle to improving patients' health and lives. Mitochondria are core organelles for the maintenance of myocardial tissue homeostasis, and their impairment and dysfunction are considered major contributors to the pathogenesis of various CVDs, such as hypertension, myocardial infarction, and heart failure. However, the exact roles of mitochondrial dysfunction involved in CVD pathogenesis remain not fully understood. Non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, have been shown to be crucial regulators in the initiation and development of CVDs. They can participate in CVD progression by impacting mitochondria and regulating mitochondrial function-related genes and signaling pathways. Some ncRNAs also exhibit great potential as diagnostic and/or prognostic biomarkers as well as therapeutic targets for CVD patients. In this review, we mainly focus on the underlying mechanisms of ncRNAs involved in the regulation of mitochondrial functions and their role in CVD progression. We also highlight their clinical implications as biomarkers for diagnosis and prognosis in CVD treatment. The information reviewed herein could be extremely beneficial to the development of ncRNA-based therapeutic strategies for CVD patients.
Collapse
Affiliation(s)
- Xiang Ao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xiaoge Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Qingling Xu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xinhui Chen
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
8
|
Li J, Liu W, Peng F, Cao X, Xie X, Peng C. The multifaceted biology of lncR-Meg3 in cardio-cerebrovascular diseases. Front Genet 2023; 14:1132884. [PMID: 36968595 PMCID: PMC10036404 DOI: 10.3389/fgene.2023.1132884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Cardio-cerebrovascular disease, related to high mortality and morbidity worldwide, is a type of cardiovascular or cerebrovascular dysfunction involved in various processes. Therefore, it is imperative to conduct additional research into the pathogenesis and new therapeutic targets of cardiovascular and cerebrovascular disorders. Long non-coding RNAs (lncRNAs) have multiple functions and are involved in nearly all cellular biological processes, including translation, transcription, signal transduction, and cell cycle control. LncR-Meg3 is one of them and is becoming increasingly popular. By binding proteins or directly or competitively binding miRNAs, LncR-Meg3 is involved in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, epithelial-mesenchymal transition, and other processes. Recent research has shown that LncR-Meg3 is associated with acute myocardial infarction and can be used to diagnose this condition. This article examines the current state of knowledge regarding the expression and regulatory function of LncR-Meg3 in relation to cardiovascular and cerebrovascular diseases. The abnormal expression of LncR-Meg3 can influence neuronal cell death, inflammation, apoptosis, smooth muscle cell proliferation, etc., thereby aggravating or promoting the disease. In addition, we review the bioactive components that target lncR-Meg3 and propose some potential delivery vectors. A comprehensive and in-depth analysis of LncR-Meg3’s role in cardiovascular disease suggests that targeting LncR-Meg3 may be an alternative therapy in the near future, providing new options for slowing the progression of cardiovascular disease.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenxiu Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| |
Collapse
|
9
|
Azadeh SS, Esmaeeli Djavid G, Nobari S, Keshmiri Neghab H, Rezvan M. Light-Based Therapy: Novel Approach to Treat COVID-19. TANAFFOS 2023; 22:279-289. [PMID: 38638386 PMCID: PMC11022193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/01/2023] [Indexed: 04/20/2024]
Abstract
The pandemic outbreak of Coronavirus disease 2019 (COVID-19) which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), is a new viral infection in all countries around the world. An increase in inflammatory cytokines, fever, dry cough, and pneumonia are the main symptoms of COVID-19. A shared of growing clinical evidence confirmed that cytokine storm correlates with COVID-19 severity which is also a crucial cause of death from COVID-19. The success of anti-inflammatory therapies in the recovery process of COVID-19 patients has been well established. Over the years, phototherapy (PhT) has been identified as a promising non-invasive treatment approach for inflammatory conditions. New evidence suggests that PhT as an anti-inflammatory therapy may be effective in treating acute respiratory distress syndrome (ARDS) and COVID-19. This review aims to a comprehensive overview of the direct and indirect effects of anti-inflammatory mechanisms of PhT in ARDS and COVID-19 patients.
Collapse
Affiliation(s)
- Seyedeh Sara Azadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Sima Nobari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hoda Keshmiri Neghab
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Motahareh Rezvan
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
10
|
de Brito AA, Gonçalves Santos T, Herculano KZ, Estefano-Alves C, de Alvarenga Nascimento CR, Rigonato-Oliveira NC, Chavantes MC, Aimbire F, da Palma RK, Ligeiro de Oliveira AP. Photobiomodulation Therapy Restores IL-10 Secretion in a Murine Model of Chronic Asthma: Relevance to the Population of CD4 +CD25 +Foxp3 + Cells in Lung. Front Immunol 2022; 12:789426. [PMID: 35185864 PMCID: PMC8847394 DOI: 10.3389/fimmu.2021.789426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
It is largely known that photobiomodulation (PBM) has beneficial effects on allergic pulmonary inflammation. Our previous study showed an anti-inflammatory effect of the PBM in an acute experimental model of asthma, and we see that this mechanism is partly dependent on IL-10. However, it remains unclear whether the activation of regulatory T cells is mediated by PBM in a chronic experimental model of asthma. In this sense, the objective of this study was to verify the anti-inflammatory role of the PBM in the pulmonary inflammatory response in a chronic experimental asthma model. The protocol used for asthma induction was the administration of OVA subcutaneously (days 0 and 14) and intranasally (3 times/week, for 5 weeks). On day 50, the animals were sacrificed for the evaluation of the different parameters. The PBM used was the diode, with a wavelength of 660 nm, a power of 100 mW, and 5 J for 50 s/point, in three different application points. Our results showed that PBM decreases macrophages, neutrophils, and lymphocytes in the bronchoalveolar lavage fluid (BALF). Moreover, PBM decreased the release of cytokines by the lung, mucus, and collagen in the airways and pulmonary mechanics. When we analyzed the percentage of Treg cells in the group irradiated with laser, we verified an increase in these cells, as well as the release of IL-10 in the BALF. Therefore, we conclude that the use of PBM therapy in chronic airway inflammation attenuated the inflammatory process, as well as the pulmonary functional and structural parameters, probably due to an increase in Treg cells.
Collapse
Affiliation(s)
- Aurileia Aparecida de Brito
- Department of Research, Development and Innovation, Innovative Health System Health Management (IHS Medicine and Technology), São Paulo, Brazil
| | - Tawany Gonçalves Santos
- Post-Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Karine Zanella Herculano
- Post-Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Cintia Estefano-Alves
- Post-Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | | | | | - Flávio Aimbire
- Translational Medicine, Federal University of São Paulo—UNIFESP, São José dos Campos, Brazil
| | - Renata Kelly da Palma
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
- Human Movement and Rehabilitation, Post-Graduate Program Medical School, Evangelic University of Anápolis—UniEVANGELICA, Anápolis, Brazil
| | - Ana Paula Ligeiro de Oliveira
- Post-Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| |
Collapse
|
11
|
Huang Y, Ding HS, Song T, Chen YT, Wang T, Tang YH, Barajas-Martinez H, Huang CX, Hu D. Abrogation of CC Chemokine Receptor 9 Ameliorates Ventricular Electrical Remodeling in Mice After Myocardial Infarction. Front Cardiovasc Med 2021; 8:716219. [PMID: 34712704 PMCID: PMC8545906 DOI: 10.3389/fcvm.2021.716219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction: Myocardial infarction (MI) triggers structural and electrical remodeling. CC chemokine receptor 9 (CCR9) mediates chemotaxis of inflammatory cells in MI. In our previous study, CCR9 knockout has been found to improve structural remodeling after MI. Here, we further investigate the potential influence of CCR9 on electrical remodeling following MI in order to explore potential new measures to improve the prognosis of MI. Methods and Results: Mice was used and divided into four groups: CCR9+/+/Sham, CCR9−/−/Sham, CCR9+/+/MI, CCR9−/−/MI. Animals were used at 1 week after MI surgery. Cardiomyocytes in the infracted border zone were acutely dissociated and the whole-cell patch clamp was used to record action potential duration (APD), L-type calcium current (ICa,L) and transient outward potassium current (Ito). Calcium transient and sarcoplasmic reticulum (SR) calcium content under stimulation of Caffeine were measured in isolated cardiomyocytes by confocal microscopy. Multielectrode array (MEA) was used to measure the conduction of the left ventricle. The western-blot was performed for the expression level of connexin 43. We observed prolonged APD90, increased ICa,L and decreased Ito following MI, while CCR9 knockout attenuated these changes (APD90: 50.57 ± 6.51 ms in CCR9−/−/MI vs. 76.53 ± 5.98 ms in CCR9+/+/MI, p < 0.05; ICa,L: −13.15 ± 0.86 pA/pF in CCR9−/−/MI group vs. −17.05 ± 1.11 pA/pF in CCR9+/+/MI, p < 0.05; Ito: 4.01 ± 0.17 pA/pF in CCR9−/−/MI group vs. 2.71 ± 0.16 pA/pF in CCR9+/+/MI, p < 0.05). The confocal microscopy results revealed CCR9 knockout reversed the calcium transient and calcium content reduction in sarcoplasmic reticulum following MI. MEA measurements showed improved conduction velocity in CCR9−/−/MI mice (290.1 ± 34.47 cm/s in CCR9−/−/MI group vs. 113.2 ± 14.4 cm/s in CCR9+/+/MI group, p < 0.05). Western-blot results suggested connexin 43 expression was lowered after MI while CCR9 knockout improved its expression. Conclusion: This study shows CCR9 knockout prevents the electrical remodeling by normalizing ion currents, the calcium homeostasis, and the gap junction to maintain APD and the conduction function. It suggests CCR9 is a promising therapeutic target for MI-induced arrhythmia, which warrants further investigation.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hua-Sheng Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tao Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yu-Ting Chen
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Teng Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, United States.,Jefferson Medical College, Philadelphia, PA, United States
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
12
|
Carroll JD. 2021 July Summary of Photobiomodulation Literature. Photobiomodul Photomed Laser Surg 2021; 39:682-684. [DOI: 10.1089/photob.2021.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- James D. Carroll
- Founder, CEO at THOR Photomedicine Ltd., Chesham Bois, England, UK
| |
Collapse
|